Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell)...

68
Byungwoo Park Department of Materials Science and Engineering Seoul National University http://bp.snu.ac.kr Fuel Cell

Transcript of Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell)...

Page 1: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

http://bp.snu.ac.kr 1

Byungwoo ParkDepartment of Materials Science and Engineering

Seoul National University

http://bp.snu.ac.kr

Fuel Cell

Page 2: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Environment-Friendly Power Sources

Laptop Cellular Phone

Power Sourcesfor the Next Generation

PMP

Samsung SDI LG Chem.

Samsung SDILEV

Hyundai Motor

http://bp.snu.ac.kr 2Fuel Cell Yejun

Page 3: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Fuel Cell (PEMFC: η = 83% / DMFC: η = 97% at 298 K)

e- e-

CH3OH + H2O ↔ CO2 + 6H+ + 6e-

Eano = 0.05 V (Methanol Oxidation)3/2O2 + 6H+ + 6e- ↔ 3H2OEcat = 1.23 V (Oxygen Reduction)

Load

Methanol + Water(DMFC)

H+Oxygen or Air

Membrane(Nafion)

Carbon Dioxide(DMFC)

WaterHeat

Anode Cathode

Eano

Ecat

Φ

2H2 ↔ 4H+ + 4e-

Eano = 0 V (Hydrogen Oxidation)O2 + 4H+ + 4e- ↔ 2H2OEcat = 1.23 V (Oxygen Reduction)

PEMFC(1.23 V)

DMFC(1.18 V)

Hydrogen(PEMFC)

CatalystsCatalysts

Goals:- Catalytic Activity- Stability

Nanostructured Materials

http://bp.snu.ac.kr 3Fuel Cell Yejun- 2010-11-03

Page 4: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Maximum efficiency possible =(Thermodynamic efficiency)

ΔG (T1)

ΔH (T1)Χ 100%

Change in Enthalpy

Change in Gibbs free energy

ΔG = ΔH - TΔS

Thermodynamic Efficiency = 100% at 0 K.

Total enthalpy produced during a chemical reaction

Produced electrical energy

H2O (g) -241.826 kJ/mol [ΔfH° (298.15 K)] 9.905 kJ/mol [H° (298.15 K) – H° (0 K)]H2O (l) -285.830 kJ/mol [ΔfH° (298.15 K)] 13.273 kJ/mol [H° (298.15 K) – H° (0 K)]

D. R. Lide, CRC Handbook of Chemistry and Physics, p. 5-2 (2000).

J. Larminie and A. DicksFuel cell systems Explained, p. 25, (2000).

Fuel Cell Yejun

Page 5: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Types of Fuel Cells

ElectrolyteOperating

TemperatureCharge Carrier Catalyst Power

SOFC(Solid Oxide Fuel Cell) Ceramic (YSZ) 1000°C O2- Perovskites MW

MCFC(Molten Carbonate Fuel Cell)

Immobilized Liquid Molten Carbonate 650°C CO3

2- Ni MW

PAFC(Phosphoric Acid Fuel Cell)

Immobilized Liquid Phosphoric Acid 200°C H+ Pt kW

PEMFC(Proton Exchange

Membrane Fuel Cell)

Ion Exchange Membrane (Nafion) 80°C

H+

or

OH-Pt kW-W

DMFC(Direct Methanol Fuel Cell)

+DAFC

(Direct Alcohol Fuel Cell)

Ion Exchange Membrane (Nafion) 30-90°C

H+

or

OH-Pt, Pt-Ru W

5http://bp.snu.ac.krFuel Cell Chunjoong

Page 6: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

U. Stimming’s Group, Technische Universität MünchenFuel Cells (2001).

Anode Cathode Nafion Membrane

Hydrophilic Hydrophobic

Fuel-Cell Components

Fuel Cell Yejun 6http://bp.snu.ac.kr

~1960

Page 7: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

7http://bp.snu.ac.krFuel Cell Chunjoong

___________________

_________________

_______________________________________

Page 8: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

State of Understanding for Nafion

- Difficult synthetic process- Poor conductivity at high temperature

- Methanol crossover- High material cost

x=5, y=1000

m=0~3

Polymer Structure

CF2

O

CF2 CF CF2

CF2

CF

O

CF2

SO3- H+

CF3

x y

mhydrophobic

hydrophilic

K. A. Mauritz’s group, The University of Southern MississippiChem. Rev. (2004).

8http://bp.snu.ac.krFuel Cell Chunjoong

Page 9: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Products

Free

Ene

rgy

Reaction Progress

W. Vielstich, A. Lamm, and H. A. GasteigerHandbook of Fuel Cells, John Wiley & Sons Ltd (2003).

9http://bp.snu.ac.kr

The use of electrocatalysts serves faster kinetic paths.

• Two ways to get over the ‘energy hill’

1) The use of catalysts.2) Raising the temperature.

The Role of Electrocatalyst

Fuel Cell Chunjoong

Reactants

Page 10: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Electrocatalysts: Supplying Different Paths by Total-Energy Calculation

Products

YC

oord

inat

e

X CoordinateProducts

ReactantsIntermediate 1

Intermediate 2

Pote

ntia

l Ene

rgy

Reaction Coordinate

Reactants

Intermediate 1

Reaction Coordinate

Reactants

Products

Intermediate 2

Intermediate 1Reactants Products

Intermediate 2

Catalyzed Reaction

Products

W. Vielstich, A. Lamm, and H. A. GasteigerHandbook of Fuel Cells, John Wiley & Sons Ltd (2003).

10http://bp.snu.ac.kr

Reactants

Products

Transition StateX Coordinate

Pote

ntia

l Ene

rgy

YC

oord

inat

e ReactantsTransition State

Reaction Coordinate

ProductsReactants

Uncatalyzed Reaction

Products

Fuel Cell Chunjoong

Page 11: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Reactions on Pt Catalysts

0.0 0.5 1.0 1.5

0

50

100

-50

-100

-150

Potential (V) vs. NHE

Cur

rent

Den

sity

(μA

/cm

2 )

Pt-H Pt + H+ + e- Pt-H2O Pt-OH + H+ + e-

Pt-OH Pt-O + H+ + e-

Pt-O + H+ + e- Pt-OHPt-OH + H+ + e- Pt-H2O

Pt + H+ + e- Pt-H

Hydrogen Oxidation

Hydrogen Reduction Oxygen Reduction

Water Oxidation

Pt (110)

Pt (100)

Pt (110)

Pt (100)

11http://bp.snu.ac.kr

0.3

Cur

rent

Den

sity

(μA

/cm

2 )

0

100

Pt (110)Pt (100)

Pt (111)

Potential (V) vs. NHE

Surface Orientation Dependency(Single Crystal)

W. Vielstich, A. Lamm, and H. A. GasteigerHandbook of Fuel Cells, John Wiley & Sons Ltd (2003).

Fuel Cell Chunjoong

Page 12: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Exchange current is determined by M-H bonding strength.

Hydrogen Oxidation Reaction (HOR) vs.

Metal-Hydrogen Bonding Energy

W. Vielstich, A. Lamm, and H. A. GasteigerHandbook of Fuel Cells, John Wiley & Sons Ltd (2003).

12http://bp.snu.ac.krFuel Cell Chunjoong

Exchange current

Page 13: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

K. E. Swider-Lyons’ Group, Naval Research LaboratoryJ. Electrochem. Soc. (2004).

Electrode Bulk solutionDiffusion layer

Double layer

Convection

Oxygen-Reduction Reaction (ORR) and Tafel Slope

Fuel Cell Yejun 13http://bp.snu.ac.kr

log i = log io – βnF/RTηTafel slope

i: current densityi0: exchange current density F: Faraday constant n: the number of electrons involved in the reactionβ: symmetry constant η: overpotential

Tafel SlopeRotating Disk Electrodes

Page 14: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

4-electron reduction of oxygen to water

O2 + 4e- + 4H+ ↔ 2H2O E0 = 1.229 V vs. NHE

Reaction Mechanisms of ORR

W. Vielstich, A. Lamm, and H. A. GasteigerHandbook of Fuel Cells, John Wiley & Sons Ltd (2003).

14http://bp.snu.ac.kr

2-electron reduction of oxygen to peroxide (H2O2)

δ-Four-Electron Process

O2δ-

δ- δ-

2Oδ-

δ- δ-H H

First Adsorption Second Adsorption(Oxygen dissociation)

H+H+H+H+

δ-

Two-Electron Process

O2δ-

δ-

H

First adsorption

H+

Fuel Cell Chunjoong and Yejun

Page 15: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Reaction Mechanisms of ORR

ORR pathway is more complex than HOR.Mechanisms are not known exactly.

W. Vielstich, A. Lamm, and H. A. GasteigerHandbook of Fuel Cells, John Wiley & Sons Ltd (2003).

15http://bp.snu.ac.krFuel Cell Chunjoong

Page 16: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

CH3OH + H2O → CO2 + 6H+ + 6e- E = 0.05 V

CH3OH → CH2OH → CHOH → COH

CH2O → CHO → CO

HCOOH → COOH

(HCHO)

CO2

-H -H

+OH

-H

-H

-H

Mechanisms of Methanol Oxidation

Fuel Cell Yejun 16http://bp.snu.ac.kr

Page 17: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

CO Tolerant Catalyst

(CH3OH)ad ↔ (CO) ad + 4H+ + 4e-

Ru + H2O ↔ (OH) ad + H+ + e-

Pt(CO)ad + Ru(OH)ad ↔ CO2 + H+ + e-

Bimetallic Function

W. Vielstich, A. Lamm, and H. A. GasteigerHandbook of Fuel Cells, John Wiley & Sons Ltd (2003).

17http://bp.snu.ac.krFuel Cell Chunjoong

Page 18: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

1. Bifunctional Effect

Ru provides “active” OH in the low potential (<0.3 V)

Pt-CO + Ru-OH ↔ Pt + Ru + CO2 + H+ + e-

2. Electronic Effect

Reduction in density of states on the Fermi level Reduce the bonding energy between CO and Pt

Watanabe’s Group , J. Electroanal. Chem. 60, 267 (1975).

Cairns’s Group, J. Phys. Chem. 97, 12020 (1993).

Rameshand’s Group, Chem. Mater. 1, 391 (1989).

Wiekowski’s Group, J. Phys. Chem. 98, 5074 (1994).

PtRu Catalysts for Enhanced CO Oxidation

Fuel Cell Yejun 18http://bp.snu.ac.kr

Pt Ru

C

O

e-

Pt

C

O

O

H

Ru

Page 19: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

High-Efficiency Catalysts for Oxygen Reduction

Nanostructure-Tailored CatalystsN. M. Markovic’s Group, Argonne National Lab.Nature Mater. (2007).

19http://bp.snu.ac.krFuel Cell Chunjoong

____________________________ _____

Page 20: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Fuel Cell Yejun 20http://bp.snu.ac.kr

Page 21: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Pt3Co Nanoparticle

Comparison of Several Pt3M Alloys N. M. Markovic’s Group, Argonne National Lab.Nature Mater. (2007).

Fuel Cell Yejun 21http://bp.snu.ac.kr

Page 22: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

(p): interface, (s): support, (g): gas

Activation of oxygen by water

Vital Role of Moisture in the Catalytic Activity

Masakazu Date‘s Group, AIST (Japan)Angew. Chem. Int. Ed. (2004).

Fuel Cell Yejun 22http://bp.snu.ac.kr

Page 23: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Fuel Cell Yejun 23http://bp.snu.ac.kr

____________

____________________________________________________

CO Oxidation Experiments with O2 and partial H2O

Page 24: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Fuel Cell Yejun 24http://bp.snu.ac.kr

_____________________________________

________________________________________________

_____________________________________

_________________

__________________________

Page 25: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

K. E. Swider-Lyons’ Group, Naval Research LaboratoryJ. Electrochem. Soc. (2006).

SnOx~ partly amorphous~ alkaline nature

Au~ 1.7 nm

0.2V

No peroxide

Tin-Oxide Supported Au Nanoparticle Catalysts

Fuel Cell Yejun 25http://bp.snu.ac.kr

Page 26: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Peter Strasser’s Group, University of HoustonJ. Am. Chem. Soc. (2007).

Modifying Catalytic Reactivity by Surface Dealloying

Fuel Cell Yejun 26http://bp.snu.ac.kr

Page 27: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Fuel Cell Yejun 27http://bp.snu.ac.kr

Page 28: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Fuel Cell Yejun 28http://bp.snu.ac.kr

Alternative Fuels

Page 29: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Requirements

- Low to no toxicity- Facility to store and handle safely- High energy density- Oxidation potential close to the H+/H2 couple

Alternative Fuels

Fuel Cell Yejun 29http://bp.snu.ac.kr

Mark S. Wrighton's Group, Massachusetts Institute of TechnologyJ. Phys. Chem. B (1998).

Page 30: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Alternative Fuels

Fuel Cell Yejun 30http://bp.snu.ac.kr

Mark S. Wrighton's Group, Massachusetts Institute of TechnologyJ. Phys. Chem. B (1998).

Page 31: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Fuel Cell Yejun 31http://bp.snu.ac.kr

Page 32: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Mark S. Wrighton's Group, Massachusetts Institute of TechnologyLangmuir (1993).

Pt-Ru vs. Pt-Sn

Fuel Cell Yejun 32http://bp.snu.ac.kr

Page 33: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Nanoporous Pt-Based Catalysts

Y.-S. Hu and Y.-G. Guo et al. Max-Planck InstituteNature Mat. (2006).

Electrochemically synthesized nanoporous Ptshowed the enhanced catalytic activities.

4Li + RuO2 Ru:2Li2ORu:2Li2O RuO2 (Nanoporous) + 4Li

4Li + PtO2 Pt:2Li2OPt:2Li2O + 4H+ Pt (Nanoporous) + 4Li+ + 2H2O

PtO2 Nanoporous Pt

200 nm30 nm

33http://bp.snu.ac.krFuel Cell Chunjoong

Page 34: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

34http://bp.snu.ac.krFuel Cell Chunjoong

Page 35: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Nanocomposite Materials

• Nanocomposite Materials:- Metal nanoparticles + metal-oxide matrix - Physical, chemical, and catalytic properties are different from bulk materials.

• Platinum/Metal-Oxide Nanocomposite Catalysts:- Pt/WO3, Pt/RuO2, etc.- Enhanced catalytic activity(Physical effects and/or Catalytic effects)

Sung’s Group, SNUAppl. Phys. Lett. (2002).

35http://bp.snu.ac.krFuel Cell Chunjoong

Page 36: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

36http://bp.snu.ac.krFuel Cell Chunjoong

Page 37: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Metal Phosphate

• Hydrous FePO4 :- Reasonable Proton Conductivity (~10-4 S/cm)- Good Acidic/Thermal Stability (Anti-Corrosion Additives)- Partial Oxidation Catalysts (CH4 CH3OH)- Enhanced CO Oxidation by Bifunctional Mechanisms

(Pt-CO + M-OH Pt + M + CO2 + H+ + e-)

My Group, Angew. Chem. Int. Ed. (2003) Wang’s Group, Tokyo Institute of TechnologyJ. Catal. (1997).

Li-Ion Battery Catalyst

37http://bp.snu.ac.krFuel Cell Chunjoong

Page 38: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Wang’s Group, Tokyo Institute of TechnologyJ. Catal. (1997).

38http://bp.snu.ac.krFuel Cell Chunjoong

Page 39: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

K. E. Swider-Lyons’ Group, Naval Research Lab.J. Electrochem. Soc. (2004).

39http://bp.snu.ac.krFuel Cell Chunjoong

Pt-Fe-P-O Alloy

Page 40: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

40

FePO4·xH2O

• Hydrous FePO4 :- Reasonable electron and proton conductivity- Enhanced CO oxidation by bifunctional mechanism(Pt-CO + M-OH → Pt + M + CO2 + H+ + e-)

Pt

O

Fe

PH

C

Pt

Possible Abilities of FePO4

Fe

PH

C

O

O

O

O

Fuel Cell Yuhonghttp://bp.snu.ac.kr

Page 41: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Metal/Metal-Phosphate Nanocomposites Control of Nanostructures

Co-Sputtering System (a)

(b) (111)(200)

(220)(311)

Fe/Pt = 0.12

5 nm

(311)

(111) (200)

(220)

Fe/Pt = 0.27

5 nm

FePO4

Pt (111)

Pt (111)FePO4

Pt (200)

Pt (111)

Pt (200)

Pt (111)

Pt FePO4

Nanostructured Pt-FePO4 Thin-Film Electrode

B. Lee, C. Kim, Y. Park, T.-G. Kim, and B. ParkElectrochem. Solid-State Lett. 9, E27 (2006).

41http://bp.snu.ac.krFuel Cell Byungjoo

ITO-Coated Glass

Page 42: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Shaded Area: Oxidation of hydrogen adsorbed on Pt Cyclic voltammetry in 0.5 M H2SO4 at 50 mV/s

Increased Active Surface Area

0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

Pt-FePO4 (Fe/Pt = 0.27)Pt-FePO4 (Fe/Pt = 0.12)

Curr

ent D

ensi

ty (m

A/cm

2 )

Potential (V) vs. NHE

Pt

42http://bp.snu.ac.krFuel Cell Byungjoo

Page 43: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Pt-FePO4 nanocomposite electrodes:- Higher current density for methanol oxidation

• Increased active surface area of Pt nanophases• Enhanced activity of Pt by the possible ability of FePO4 matrix

Enhanced Methanol Oxidation

Increased Activityby FePO4/Pt Ratio

0.3 0.4 0.5 0.6

0.0

0.2

0.4

0.6

Pt-FePO4 (Fe/Pt = 0.27)

Curre

nt D

ensi

ty (m

A/cm

2 )

Potential (V) vs. NHE

Pt-FePO4 (Fe/Pt = 0.12)Pt

43http://bp.snu.ac.krFuel Cell Byungjoo

Page 44: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Steady-State Activities of Nanostructured Thin Films

0 100 200 3000.00

0.06

0.12

Curr

ent D

ensi

ty (m

A/cm

2 )

Time (sec)

PtPt-FePO4 (Fe/Pt = 0.12)Pt-FePO4 (Fe/Pt = 0.27)

• Pt-FePO4 Nanocomposites:- High steady-state activity - Low decay rate

• As the atomic ratio (Fe/Pt) increases, the steady-state activity is enhanced.

• Effective transfer of protons• Improved CO oxidation

Summary

Electrode Active surface area

Current densityat 0.3 V

Current density at 0.3 V at 300 sec

Pt-FePO4 (Fe/Pt = 0.27) 5.7 cm2 140 μA/cm2 53 μA/cm2

Pt-FePO4 (Fe/Pt = 0.12) 3.6 cm2 70 μA/cm2 13 μA/cm2

Pt 2.5 cm2 35 μA/cm2 2 μA/cm2

44http://bp.snu.ac.krFuel Cell Byungjoo

Page 45: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Iron Phosphate/Pt Thin-Film Nanostructures

45http://bp.snu.ac.kr

※ Effective thickness of FePO4: ~10 nm※ Distance between Pt nanoparticles: 1-2 nm FePO4 shows reasonable electron conductivity.

※ Pt active layer: ~3 layers of Pt nanoparticles

(b) (111)(200)

(220)(311)

(311)

(111) (200)

(220)

Fe/Pt = 0.27

5 nm

Pt (111)FePO4Pt (200)

Pt (111)

B. Lee, C. Kim, Y. Park, T.-G. Kim, and B. ParkElectrochem. Solid-State Lett. 9, E27 (2006).

Fuel Cell Byungjoo

B. Lee, Ph.D. Thesis at SNU (2007)

Pt

3 nm

FePO4 matrix

Page 46: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Suggested Mechanisms of Enhanced CO Oxidation

2. Bifunctional Effect

Metal phosphate provides “active” OH.

Pt-CO + FePO4-OH → Pt + FePO4 + CO2 + H+ + e-

Watanabe’s Group, Yamanashi Univ., J. Electroanal. Chem. (1975).Cairns’s Group, Lawrence Berkeley Lab., J. Phys. Chem. (1993).

1. Electronic Effect

Pt FePO4

C

O

e-

Reduction in density of states on the Fermi level Reduced bonding energy between CO and Pt

Goodenough’s Group, Univ. of Texas at Austin, Chem. Mater. (1989). Wiekowski’s Group, UIUC, J. Phys. Chem. (1994).

Pt

C

O

O

H

FePO4

http://bp.snu.ac.kr 46Fuel Cell Byungjoo

Page 47: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Current Issues in Pt Catalysts

Slow Oxygen-Reduction Kinetics

Poor Stability during Long-Term Operation

Easy Poisoning by Pollutants

High Cost

Nanostructured Catalysts- Nanocomposites- Nanoporous Materials

47http://bp.snu.ac.krFuel Cell Chunjoong

Page 48: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Instabilities of Fuel Cells during Long-Term OperationPristine Pt/C

Cycled Pt/C

“Instability of Pt/C Electrocatalysts in PEMFC” Y. Shao-Horn’s Group (MIT), J. Electrochem. Soc. (2005).

• The Significant Electrochemical Active Area Loss: Agglomeration and Dissolution of Pt Nanoparticles

Surface Area LossDissolution

Ostwald Ripening LossAgglomeration

Electrochemical Active Area

Membrane DiffusionMedia

% P

t Sur

face

Are

a

~10 μmCathode

10 nm

10 nm

0

50

100

48http://bp.snu.ac.krFuel Cell Chunjoong

Page 49: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

49http://bp.snu.ac.krFuel Cell Chunjoong

Page 50: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Instability of Pt Catalysts

Pt ↔ Pt2+ + 2e- E = 1.18 V

• Pt Dissolution at the Cathode- Stable at a Wide Potential Range- Abrupt Potential Change at the On/Off Operation Dissolution of Pt

“Mathematical Model of Platinum Movement in PEM Fuel Cells”UTC Fuel Cells, J. Electrochem. Soc. (2003)

• Pt dissolution in this work was accelerated with the repeated cycling.(0.68 – 1.48 V, 500 mV/s for 1000 cycles)

Pt PtO2·xH2OPtO

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Anode

Cathode

Accelerated cycling in this workPt + H2O ↔ PtO + 2H+ + 2e-

E = 0.98 V

1.6 V (vs. NHE)

On

OnOff

50http://bp.snu.ac.krFuel Cell Chunjoong

Page 51: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Synthesis of FePO4-Pt/C Nanocomposites

FePO4/Pt/C Nanocompositeswith Various Conditions

Fe(NO3)3·9H2O (NH4)2HPO4

DistilledWater

~pH 2Solution

20 wt. % Pt/C (E-TEK Co.)

Drying and Annealing

FePO4Pt FePO4

1/2O2 + H2

Pt Pt FePO4FePO4Carbon Surface

H2O ~2.6 nm~15 nm

51http://bp.snu.ac.krFuel Cell Chunjoong

Page 52: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Nanostructures of FePO4/Pt/C Nanocomposites

52http://bp.snu.ac.kr

EDS Mapping(311)(200)

(220)(111)

Pt (200)Pt (111)

TEM Images

FePO4 and Pt nanoparticles are well dispersed.

Pt Fe

C. Kim, B. Lee, Y. Park, J. Lee, H. Kim, and B. ParkAppl. Phys. Lett. 91, 113101 (2007).

Fuel Cell Chunjoong

Page 53: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

XPS of FePO4-Pt/C Nanocomposites

Slight Peak Shift of Pt in FePO4-Pt/C Nanocomposites

• Zero-Valent Metallic Pt Phase• Charge Transfer of Pt• The Largest Interfacial Contacts in

FePO4 (0.1 mM)-Pt/C

FePO4 (0.1 mM)-Pt/C

FePO4 (1 mM)-Pt/C

FePO4 (10 mM)-Pt/C

Pt/C

(FePO4 : Pt = 1 : 1)78 75 72 69

Inte

nsity

(arb

. uni

t)

Binding Energy (eV)

Pt0 Pt0Pt2+

4f7/24f7/24f5/2

XPS of Pt

53http://bp.snu.ac.krFuel Cell Chunjoong

Page 54: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

FePO4/Pt ratio of 1 and 3 showed the best enhanced long-term stabilities. The Decreased Loss of Electrochemical Active AreaMore Conserved Oxygen-Reduction Reaction

0.0 0.4 0.8 1.2

-1.0

-0.5

0.0

-1.0

-0.5

0.0

Potential (V) vs. NHE

Curr

ent D

ensit

y (m

A/cm

2 )

-20

-10

0

10

0.0 0.4 0.8 1.2-20

-10

0

10

Curr

ent (

mA/

mg)

Potential (V) vs. NHE

Pt/CFePO4 : Pt/C = 1 : 1FePO4 : Pt/C = 3 : 1FePO4 : Pt/C = 5 : 1(FePO4 0.1 mM)

After 1000 Cycles

1 : 1

3 : 15 : 1

Pt/C

1 : 13 : 1

5 : 1

Pt/C

1 : 13 : 15 : 1Pt/C

1 : 1

3 : 1

5 : 1

Pt/C

Electrocatalytic Properties of FePO4/Pt/C Nanocomposites

54http://bp.snu.ac.krFuel Cell Chunjoong

Page 55: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Agglomeration after 1000 Cycles

Synthetic Concentrationof FePO4

Molar Ratio(FePO4 : Pt)

ElectrochemicalSurface Area1

Dissolution of Pt(at. %)2

Pt/C 0 : 1 41% 18%

FePO4 (0.1 mM)/Pt/C

1 : 1 53% 4%

3 : 1 71% 3%

5 : 1 50% 11%

FePO4 (1 mM)/Pt/C 1 : 1 47% 6%

FePO4 (10 mM)/Pt/C 1 : 1 46% 14%

TEM of Pt/Cafter 1000 cycles

TEM of FePO4/Pt/Cafter 1000 cycles

1 ESA: Measured byHydrogen Desorption(from initial 100%)

Similar Nanoparticle Size to the Initial Stage

Initial Pt/C

2 Dissolution intoElectrolyte (by ICP)

30 nm

AgglomeratedPt Nanoparticles( ~10 nm)

55http://bp.snu.ac.krFuel Cell Chunjoong

Page 56: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Suggested Mechanisms for Enhanced Stability I1. Stabilization of Pt by the modification of the electronic structures

due to the charge transfer with FePO4.

Electron-poor Pt nanoparticles by Auclusters exhibited the enhanced stabilities.

“Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters”R. R. Adzic’s Group, Science (2007).

Au cluster

Pte-

Au cluster

56http://bp.snu.ac.krFuel Cell Chunjoong

Page 57: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Suggested Mechanisms for Enhanced Stability I

Electron-rich Au clusters showed the enhanced catalytic properties.

“Charging Effects on Bonding and Catalyzed Oxidation of CO on Au8 Clusters on MgO”U. Landman’s Group, Science (2005).

Au cluster

e-

57http://bp.snu.ac.krFuel Cell Chunjoong

_____ _______

Page 58: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Suggested Mechanisms for Enhanced Stability II

2. FePO4 nanoparticles can passivate the active paths for the agglomeration of Pt nanoparticles.

Pt nanoparticles can migrate easily through etched carbon surface and agglomerate into larger Pt.

“Stability of Pt-Catalyzed Highly Oriented Pyrolytic GraphiteAgainst Hydrogen Peroxide in Acid Solution”Z. Ogumi’s Group, J. Electrochem Soc. (2006).

Highly OrientedPyrolytic Graphite

Pt

Pt Agglomerates

58http://bp.snu.ac.krFuel Cell Chunjoong

Page 59: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

“Stability of Pt-Catalyzed Highly Oriented Pyrolytic GraphiteAgainst Hydrogen Peroxide in Acid Solution”Z. Ogumi’s Group, J. Electrochem Soc. (2006).

59http://bp.snu.ac.krFuel Cell Chunjoong

________

Page 60: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

• For PtRu catalyst in DMFC Anode:- Ru Crossover from PtRu Anode to Pt Cathode

[Zeleney’s Group, Los Alamos National Lab., J. Electrochem. Soc. (2004)]

Need to Block Ru Crossover

• Degradation of electrode performance by long-term operations: - Dissolution of noble metal-based catalysts - Agglomeration of catalyst nanoparticles

• Impacts of Ru Dissolution:- Methanol Oxidation- Membrane Performance - Oxygen Reduction

Motivation: Problems of Ru Crossover

Fuel Cell Yejun 60http://bp.snu.ac.kr

Page 61: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

• Ru dissolution of PtRu:- Abrupt high potential is applied to DMFC anode when fuel cell is turned off.

[duPont Inc., J. Phys. Chem. B (2004)]

• Investigation of Ru dissolution in this workwith the accelerated potential cycling (200 cycles, 0.4 – 1.05 V)

Pt + 2H2O ↔ Pt(OH)2 + 2H+ + 2e-

E = 0.980 V

Ru + 3H2O ↔ Ru(OH)3 + 3H+ + 3e-

E = 0.738 V

Ru ↔ Ru2+ + 2e-

E = 0.455 V

Ru

Pt PtO2·xH2O

Pt(OH)2

RuO2·2H2O

0

Ru(OH)3

0.2 0.4 0.6 0.8 1.0 1.2 1.4

OnDMFC Anode

Accelerated Cycling

Potential (V vs. NHE)

Off

Measurement Cycling

Ru+ can be reduced within the DMFC operating-potential ranges.

Motivation: Ru Oxidation Potential and DMFC Operating Potential

Fuel Cell Joonhyeon 61http://bp.snu.ac.kr

Page 62: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

FePO4

H+

CH3OH

H+

CH3OH

H+

CH3OH

PtRu

PtRu

PtRu

(b) (111)(200)

(220)(311)

(311)

(111) (200)

(220)

Fe/Pt = 0.27

Pt (111)FePO4Pt (200)

Pt (111)

5 nm

My GroupElectrochem. Solid-State Lett. (2006).

FePO4·xH2O

O

FePH

Hydrous and Porous FePO4:Channel of H+ and CH3OH

FeFe

P

P

Motivation: Metal-Phosphate Coating

Fuel Cell Yejun 62http://bp.snu.ac.kr

Page 63: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Fuel Cell Yejun 63http://bp.snu.ac.kr

________

Page 64: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Ru Deposition on Pt Surface: The Loss of Pt Nature

Kucernak’s Group, Imperial College of Science Technology, J. Phys. Chem. B (2002).

Cyclic voltammogram of Pt in Ru+-dissolved electrolyte:Spontaneous Ru deposition on Pt

Motivation: Change of Voltammogram due to Ru Deposition on Pt

Fuel Cell Yejun 64http://bp.snu.ac.kr

Page 65: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Considering exposed PtRu surface area, the dissolved Ru species were retained within FePO4-coated layer.

Before 200 accelerated cycles

After 200accelerated cycles

ESA(per 1 cm2 sample)

ESA(per 1 cm2 sample)

Ru dissolution into electrolyte(per 1 cm2 sample) (normalized by ESA)

Uncoated 0.60 cm2 1.06 cm2 1.63 ± 0.39 ppb/cm2 2.72 ± 0.65 ppb/cm2

FePO4-coated (5 nm) 1.05 cm2 1.67 cm2 1.97 ± 0.44 ppb/cm2 1.88 ± 0.42 ppb/cm2

FePO4-coated (20 nm) 1.08 cm2 1.61 cm2 1.78 ± 0.44 ppb/cm2 1.65 ± 0.41 ppb/cm2

PtRu

FePO4 Electrolyte

5 nm

Con

cent

ratio

n of

Ru

PtRu

FePO4 Electrolyte

5 nm

Con

cent

ratio

n of

Ru

PtRu Electrolyte

Con

cent

ratio

n of

Ru

PtRu Electrolyte

Con

cent

ratio

n of

Ru

Uncoated FePO4-coated

FePO4 Coating Layer for Blocking Ru Crossover

Fuel Cell Yejun 65http://bp.snu.ac.kr

Page 66: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

The transfer of electron density from AlPO4 to Au:Controlling the Au catalytic activities with the modification of electronic structure.

Various Au/AlPO4 nanocomposites were synthesized:~10 nm gold crystallites were aggregated with the interposed AlPO4.

Y. Park, B. Lee, C. Kim, J. Kim, S. Nam, Y. Oh, and B. Park, J. Phys. Chem. C (2010).

Oxygen-Reduction Activity of Modified Au Catalyst

Fuel Cell Yejun http://bp.snu.ac.kr 67

Page 67: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

Nanoscale Interface Control

- Compositions? - Nanostructures? - Mechanisms?

http://bp.snu.ac.kr

Conclusions

Page 68: Fuel Cellocw.snu.ac.kr/sites/default/files/NOTE/6900.pdf · (Molten Carbonate Fuel Cell) Immobilized Liquid Molten Carbonate. 650 ° C CO. 3 2-Ni. MW: PAFC (Phosphoric Acid Fuel Cell)

- 2010-11-08