f(t) F(s) Lf(t) }= e st f(t) - alan.eng.br · PDF fileTabela de Transformadas de Laplace f(t)...

2
Tabela de Transformadas de Laplace f(t) F(s)= L {f(t)}= +∞ - 0 st dt e f(t) 1 1 s 1 2 t n ( n=1,2,...) 1 n s ! n + 3 t p ( p>-1) 1 p s ) 1 p ( + + Γ 4 e at a s 1 - 5 e at t n ( n=1,2,...) 1 n ) a s ( ! n + - 6 sin bt 2 2 b s b + 7 cos bt 2 2 b s s + 8 sinh bt 2 2 b s b - 9 cosh bt 2 2 b s s - 10 e at sin bt 2 2 b ) a s ( b + - 11 e at cos bt 2 2 b ) a s ( a s + - - 12 u (t - c) s e cs - 13 u(t - c)f( t- c) ) s ( F e cs - 14 t sin at 2 2 2 ) a s ( as 2 + 15 t cos at 2 2 2 2 2 ) a s ( a s + - 16 sin at – at cos at 2 2 2 3 ) a s ( a 2 + 17 sin at + at cos at 2 2 2 2 ) a s ( as 2 + 18 - t 0 d ) ( g ) t ( f τ τ τ F(s)G(s) 19 ) c t ( - δ e -cs 20 ) t ( f ) n ( ) 0 ( f ... ) 0 ( f s ) s ( F s ) 1 n ( 1 n n - - - - - 21 t n f(t) ) s ( F ) 1 ( ) n ( n - 22 f(t+T)=f(t) sT T 0 st e 1 dt e - - -

Transcript of f(t) F(s) Lf(t) }= e st f(t) - alan.eng.br · PDF fileTabela de Transformadas de Laplace f(t)...

Page 1: f(t) F(s) Lf(t) }= e st f(t) - alan.eng.br · PDF fileTabela de Transformadas de Laplace f(t) F(s) = L {f(t)}=

Tabela de Transformadas de Laplace

f(t) F(s)= L {f(t)}= ∫+∞

0

stdte f(t)

1 1 s

1

2 tn ( n=1,2,...) 1ns

!n+

3 tp ( p>-1) 1ps

)1p(+

4 eat

as

1

5 eattn ( n=1,2,...) 1n)as(

!n+−

6 sin bt 22 bs

b

+

7 cos bt 22 bs

s

+

8 sinh bt 22 bs

b

9 cosh bt 22 bs

s

10 eatsin bt 22 b)as(

b

+−

11 eatcos bt 22 b)as(

as

+−

12 u (t - c) s

e cs−

13 u(t - c)f( t- c) )s(Fe cs−

14 t sin at 222 )as(

as2

+

15 t cos at 222

22

)as(

as

+

16 sin at – at cos at 222

3

)as(

a2

+

17 sin at + at cos at 222

2

)as(

as2

+

18 ∫ −

t

0

d)(g)t(f τττ F(s)G(s)

19 )ct( −δ e-cs

20 )t(f )n( )0(f...)0(fs)s(Fs )1n(1nn −− −−−

21 tnf(t) )s(F)1( )n(n−

22 f(t+T)=f(t)

sT

T

0

st

e1

dte

Page 2: f(t) F(s) Lf(t) }= e st f(t) - alan.eng.br · PDF fileTabela de Transformadas de Laplace f(t) F(s) = L {f(t)}=

PROPRIEDADES

Transformada de Laplace Transformada Inversa de Laplace

L {f +g}=L {f} + L {g} L -1{F +G}=L -1{F} + L -1{G}

L {cf } = cL {f} L --1{cF }= cL -1{F}

L {f ’}= sL {f}- f(0) L –1{F(s)}=

− −

n

n1

n

n

ds

)s(Fd

t

)1(L

L {f ’’}= s2L {f}- sf(0) – f ’(0) L –1

s

)s(F= ττ d)(f

t

0

L {f (n)}= snL {f} - sn-1f(0) - sn-2f’(0) - ... - f(n-1)(0) L -1 (F(s - a)) = eatf(t)

L {eatf(t)}=F(s - a)

L { } )s(Fds

d)1()t(ft

n

nnn −=

L { }

=

a

sF

a

1)at(f

L { }=∗ gf L {f}L {g}

L )s(Fs

1d )(f

t

0

=

∫ ττ

L ∫∞

=

s

d )(Ft

)t(fεε

)0(f)s(sFlims

=∞→

)(f)s(sFlim0s

∞=→

Fonte: Stanley Farlow ,“An Introdution to Differential Equations and their Applications”, Mc Graw-Hill