First Year of BAB - Harvard University · 2016. 7. 29. · First Year of BaBar/PEP-II Masahiro...

19
First Year of BABAR/PEP-II — Measuring CP Violation at an Asymmetric B Factory — Masahiro Morii Stanford Linear Accelerator Center

Transcript of First Year of BAB - Harvard University · 2016. 7. 29. · First Year of BaBar/PEP-II Masahiro...

  • EP-IIc B Factory —

    ter

    First Year of BABAR/P— Measuring CP Violation at an Asymmetri

    Masahiro MoriiStanford Linear Accelerator Cen

  • SLAC

    CP Violation in B0 Decays

    atrix

    ard Model?

    , β, γ

    rediction

    ween direct androduces CP asymmetry

    ACP ∆m t⋅( )sin=

    First Year of BaBar/PEP-II Masahiro Morii

    CP violation has been known for 36 years◆ Occurs naturally in the Standard Model ← the CKM m◆ Limited experimental constraints from KL decays

    → Is CP violation fully explained by the Stand

    CP violation in B0 decays comes to the rescue

    Asymmetry ACP is related to the CKM angles α◆ E.g. for (gold-plated decay)

    → Powerful probe to verify/disprove the SM p

    B0

    B0

    CP eigenstate

    Mixing

    Decay ◆ Interference betmixed decays ptime-dependent

    ACP t( )Γ B0 f CP→( ) Γ B

    0f CP→( )–

    Γ B0 f CP→( ) Γ B0

    f CP→( )+-------------------------------------------------------------------------=

    t = decay time

    ACP 2βsin= B0

    J/ψ KS→

  • SLAC

    How We Measure CP Violation

    fficiency

    non-CP) decayes orB0 B

    0

    CP decay

    First Year of BaBar/PEP-II Masahiro Morii

    Step 1: Reconstruct a CP decay (e.g. B0 → J/ψ KS)✱ Low BR (5 x 10-5) → luminosity & detector e

    Step 2: Tag the flavor of the other B0

    ✱ Leptons and kaons → particle identificationStep 3: Measure ∆z → t = ∆z/βγc

    ✱ Asymmetric collider (βγ = 0.56)✱ Vertex resolution → silicon vertex tracker

    e- e+B0

    B0 (t = 0)

    ϒ4S µ+µ- J/ψ

    π+π-KS

    ∆z

    ACP t( )Γ B0 f CP→( ) Γ B

    0f CP→( )–

    Γ B0 f CP→( ) Γ B0

    f CP→( )+------------------------------------------------------------------------- ACP ∆m t⋅( )sin= =

    } Tagging (determin

    }

  • SLAC

    PEP-II Storage Ring

    peak scan

    First Year of BaBar/PEP-II Masahiro Morii

    9 GeV e- + 3.1 GeV e+ → βγ ∼ 0.56

    First collision May 26, 1999

    >1/2 design luminosity achieved

    Design Achieved

    Luminosity (cm-2s-1) 3 x 1033 1.7 x 1033

    No. of bunches 1658 829

    LER current (mA) 2140 960

    HER current (mA) 610 750 ϒ4S

  • SLAC

    PEP-II Integrated Luminosity

    k

    reded

    ents

    repair

    First Year of BaBar/PEP-II Masahiro Morii

    Current run continues through August 2000

    → accumulate 10 fb -1 on-pea

    3.8 fb -1 delive3.2 fb -1 record

    Detector improvem

    Vacuum

  • SLAC

    BABAR Detector

    3.1GeV e

    +

    Drift Chamberrtex Tracker

    1.5T Solenoid

    First Year of BaBar/PEP-II Masahiro Morii

    9GeV e

    -

    Instrumented Flux Return

    Electromagnetic

    DIRC

    Silicon Ve

    (Cerenkov)

    Calorimeter

  • SLAC

    Silicon Vertex Tracker (SVT)

    Si detectora (●) reachedo

    o 2 Mrad

    First Year of BaBar/PEP-II Masahiro Morii

    SVT Hit Resolution vs. Incident Track Angle

    Monte Carlo - SP2

    Layer 1 - Z View

    (deg)

    (µm

    )

    Data - Run 7925

    BA B A R

    Monte Carlo - SP2

    Layer 1 - φ View

    (deg)

    (µm

    )

    Data - Run 7925

    BA B A R

    0

    20

    40

    60

    -50 0 50

    0

    20

    40

    60

    -50 0 50

    ◆ 5 layer double-sided◆ Hit resolution in dat

    design: ~15 µm at 0◆ Radiation hard up t

  • SLAC

    Drift Chamber (DCH)for low multiple

    in data (●)40 µm

    First Year of BaBar/PEP-II Masahiro Morii

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

    BABAR

    Signed distance from wire (cm)

    Res

    olut

    ion

    (cm

    )

    Design Goal = 140 µm

    ◆ He-iC4H10 (80/20) scattering

    ◆ Single hit resolutionreached design: 1GeV/c

    ◆ dE/dx resolution ~7.5% forBhabhas (design 7%)

    ◆ K/π separation >2σ up to700 MeV/c → DIRC coversp > 500 MeV/c

  • SLAC

    DIRC: the PID Device

    0

    500

    1000

    1500

    2000

    2500

    1.6 1.8 2

    C

    GeV)

    D0 → K- π+With DIRC

    K- π+ Mass (GeV)

    Num

    ber

    of e

    vent

    s/10

    MeV

    BABAR

    2

    ov light in quartzmitted by inter-

    ectioncted by PMTs resolutiond (target 2 mrad)aration atc is 6.5 mrad

    First Year of BaBar/PEP-II Masahiro Morii

    Without DIR

    K- π+ Mass (

    Num

    ber

    of e

    vent

    s/10

    MeV

    D0 → K- π+

    0

    2000

    4000

    6000

    8000

    1.6 1.8

    ◆ Cerenk→ transnal refl→ dete

    ◆ 3 mradachieve

    ◆ K/π sep4 GeV/

    ◆ K efficiency ~80% for D0 → K+π-inside the acceptance

    ◆ Background rejection factor ~5(NB: background contains kaons)

  • SLAC

    Electromagnetic Calorimeter (EMC)

    d / E expected deposited9 1 1.1 1.2 1.3

    lusters

    BaBar

    )

    100%

    abhasonversions

    3π→ 2π

    First Year of BaBar/PEP-II Masahiro Morii

    mγγ (GeV)0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

    En

    trie

    s

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    π0 Mass E γγ > 500 MeV

    BaBar

    π0-mass = 134.9 MeV

    π0-width = 7.2 MeV

    E measure0.6 0.7 0.8 0.

    Entri

    es/B

    in

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800Constant = 1674

    Mean = 1.016

    Sigma = 0.02214

    EMC Bhabha C

    Forward Barrel

    Constant = 1674

    Mean = 1.016

    Sigma = 0.02214

    ◆ CsI(Tl) with photodiode readout◆ E(Bhabha) and m(π0) resolutions

    close to Monte Carloσ = 2.2%(MC 2.0%

    Electron ID (p > 0.5 GeV)

    Electrons >90%

    Pions 1–2%

    Bhγ c

    τ →KS

    σ = 5.3%(MC 5.0%)

  • SLAC

    Instrumented Flux Return (IFR)

    GeV)

    5%

    %

    First Year of BaBar/PEP-II Masahiro Morii

    BABAR

    p (GeV/c)

    eff.

    muons from eeµµpions from τ-3prong and Ks

    IFR Barrel

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 1 2 3 4

    ◆ Bakelite-based RPCs sand-wiched between iron plates

    ◆ Muons above p = 0.5 GeV/cidentified

    ◆ Neutral hadrons (KL) detected

    Muon ID (p > 0.5

    Muons >7

    Pions ~3

    e+e− → e+e−µ+µ−

    τ → 3πKS → 2π

  • SLAC

    Are We Ready to Measure sin2β?

    ration!)

    te

    mer

    s I speak

    First Year of BaBar/PEP-II Masahiro Morii

    PEP-II had a terrific startup!◆ Collected 3.2 fb-1 on tape → But we need more

    BABAR works beautifully◆ Initial problems have been solved◆ Performance very promising → Still much to do (calib

    Physics analysis has started◆ Signals are seen in key channels → Limited statistics

    → We don’t have a CP measurement just yetWhat can I show you today?

    Examples of what we have done to demonstra➤How well we understand the detector

    ➤How well the data agree with our expectation

    ➤How realistic is our plan to measure sin2β by Sum

    Everything is PRELIMINARY and improving a

  • SLAC

    J/ψ → l+l- Signal

    (µ+µ-) GeV/c2

    (µ+µ-)(µ+µ-)

    BABAR

    3.2 3.4

    - (~380 pb-1)

    V

    e to muon ID

    First Year of BaBar/PEP-II Masahiro Morii

    m(e+e-) GeV/c2

    Can

    dida

    tes

    / 10

    MeV

    /c2

    m(e+e-)

    J/ψ → e+e-

    m(e+e-)

    BABAR

    0

    20

    40

    60

    2.6 2.8 3 3.2 3.4

    J/ψ → e+e- (~540 pb-1)

    σ = 16 MeV

    m

    Can

    dida

    tes

    / 10

    MeV

    /c2

    m

    J/ψ → µ+µ-

    m

    0

    25

    50

    75

    100

    2.6 2.8 3

    J/ψ → µ+µ

    σ = 15 Me

    ◆ Efficiency consistent with expectation

    → Already reasonable, but can be improved

    Background duTail due to Bremsstrahlung

  • SLAC

    K → π+π- Signal

    First Year of BaBar/PEP-II Masahiro Morii

    S

    M(π+π-) (GeV)

    N(π

    +π-

    ) ca

    nd

    ida

    tes/

    1.7

    Me

    V

    BABAR

    0

    100

    200

    300

    0.45 0.475 0.5 0.525 0.55

    ◆ Mass resolution OK

    Mass 498.94 ± 0.12 MeVσnarrow 2.8 MeV (69%)σwide 11 MeV (31%)

  • SLAC

    B0 → J/ψ K Signal

    BABAR

    .25 5.275 5.3

    12 events

    1.4 ± 0.29.8 ± 1.1

    First Year of BaBar/PEP-II Masahiro Morii

    S

    -0.1

    -0.05

    0

    0.05

    0.1

    5.2 5.225 5

    BABAR

    0

    1

    2

    3

    4

    5.2 5.225 5.25 5.275 5.3

    ∆E EBCMS

    EbeamCMS

    –=

    mB EbeamCMS( )

    2pB

    CMS( )2

    –=

    Data ~620 pb-1

    Signal

    Background

    Expected signal

  • SLAC

    B+ → J/ψ K+ Signal

    Mb(GeV)5.25 5.275 5.3

    s under control expectations

    (calibration, PID)

    First Year of BaBar/PEP-II Masahiro Morii

    B A B A R

    ∆E(G

    eV)

    -0.1

    -0.05

    0

    0.05

    0.1

    5.2 5.225

    Bchmass(GeV)

    Nev

    /2.5

    MeV

    BABAR

    0

    2.5

    5

    7.5

    10

    5.2 5.225 5.25 5.275 5.3

    Data ~620 pb-1

    Signal 41 events

    Background 5.0 ± 0.6Expected signal 39.0 ± 3.4

    → J/ψ K signal◆ Yields agree with◆ Resolution OK◆ Bkg will improve

  • SLAC

    D* Signal and Vertexingroves with beam

    0 1 2 3

    π proper decay time (ps)

    BABAR

    ial ⊗ gaussian fitpectednt with PDG

    First Year of BaBar/PEP-II Masahiro Morii

    0

    100

    200

    0.14 0.145 0.15 0.155

    0

    100

    200

    300

    0.14 0.145 0.15 0.155

    GeV

    N e

    ven

    ts/2

    00

    ke

    V

    m(Kππ) - m(Kπ)

    BABARBefore refitσ1=354 keV (27%)σ2=908 keV (73%)

    GeV

    N e

    ven

    ts/2

    00

    ke

    V

    m(Kππ) - m(Kπ)

    BABARAfter refitσ1=280 keV (47%)σ2=679 keV (53%)

    ◆ ∆m resolution impprofile constraint

    0

    20

    40

    60

    -3 -2 -1

    Candidate D0 → kE

    ntrie

    s/0.

    1 ps

    ~220 pb-1

    ◆ Simple exponent◆ Resolution as ex◆ Lifetime consiste

  • SLAC

    B0 → D*−e+ν Signal

    0.15 0.16 0.17

    m(D*)-m(D0), GeV

    BABAR

    -2 0 2 4

    MM2, GeV2

    BABAR

    asurement

    First Year of BaBar/PEP-II Masahiro Morii

    0.14

    0.15

    0.16

    0.17

    -4 -2 0 2 4

    BABAR

    MM2, GeV2

    ∆m, G

    eVBABAR

    0

    20

    40

    60

    80

    0.14

    even

    ts/1

    MeV

    0

    20

    40

    60

    -4

    even

    ts/0

    .4 G

    eV2

    ~390 pb-1

    ◆ ∆m = m(D*−)−m(D0), MM = missing mass◆ ~120 signal events

    → Will be used for a mixing measurement→ Tagging efficiency and purity → CP me

  • SLAC

    Summary and Outlook

    ugust

    ion OK

    D*l ν

    ing ready

    2 β) ≤ 0.3

    First Year of BaBar/PEP-II Masahiro Morii

    PEP-II had a terrific first year◆ Record luminosity: 1.7 x 1033 cm-2s-1. 80 pb-1/day◆ BABAR recorded 3.2 fb-1 → 10 fb-1 by the end of A

    BABAR is working great◆ Performance approaching the design goals

    Analyses are progressing rapidly◆ Signals seen in key channels. Efficiency & resolut◆ Vertexing resolution OK. More tests will follow◆ Tagging being studied using real data, e.g. B0 →

    → All ingredients for the CP measurement gettMore data is coming!!!◆ With 10 fb-1: Expect ~160 J/ ψ KS events → σ(sin

    First Year of BaBar/PEP-IICP Violation in B0 DecaysHow We Measure CP ViolationPEP-II Storage RingPEP-II Integrated LuminosityBaBar DetectorSilicon Vertex Tracker (SVT)Drift Chamber (DCH)DIRC: the PID DeviceElectromagnetic Calorimeter (EMC)Instrumented Flux Return (IFR)Are We Ready to Measure sin2b?J/y Æ l+l- SignalKS Æ p+p- SignalB0 Æ J/y KS SignalB+ Æ J/y K+ SignalD* Signal and VertexingB0 Æ D*-e+n SignalSummary and Outlook