Fatigue - Nc State Universitymurty/NE509/NOTES/Ch4d-Fatigue.pdf · Fatigue Fatigue is failure under...

3
Fatigue Fatigue is failure under cyclic loading • define various parameters (Fig. 8.17) : σ m - mean stress σ r - stress range σ a - stress amplitude R = σ min σ max S - N curves : (Fig. 8.19) fatigue strength endurance-limit (35 - 60% of UTS) low vs high cycle fatigue : LCF - ductility controlled HCF - strength controlled effects of CW / radiation Coffin-Manson Equation (LCF) : ∆ε p 2 = A (2N) c , c ~ -0.5 - -0.7, A~ε f (Fig.12.13); similarly for hcf : ∆ε E 2 = B (2N) b , b ~ -0.05 - -0.12, B~σ f Characteristic slopes : ∆ε 2 = σ f E (2N) b + ε f (2N) c Universal slopes : ∆ε = 3.5 S u E N -0.12 + ε 0.6 f N -0.6 ∆ε 2 = ∆ε Ε 2 + ∆ε p 2 KL Murty page 1 NE 409/509

Transcript of Fatigue - Nc State Universitymurty/NE509/NOTES/Ch4d-Fatigue.pdf · Fatigue Fatigue is failure under...

Page 1: Fatigue - Nc State Universitymurty/NE509/NOTES/Ch4d-Fatigue.pdf · Fatigue Fatigue is failure under cyclic loading • define various parameters (Fig. 8.17) : σm - mean stress σr

Fatigue

Fatigue is failure under cyclic loading

• define various parameters (Fig. 8.17) :

σm - mean stress σr - stress range σa - stress amplitude R = σminσmax

• S - N curves : (Fig. 8.19) • fatigue strength • endurance-limit (35 - 60% of UTS)

• low vs high cycle fatigue : LCF - ductility controlled HCF - strength controlled effects of CW / radiation ⇒

Coffin-Manson Equation (LCF) :

∆εp2 = A (2N)c , c ~ -0.5 - -0.7, A~εf (Fig.12.13);

similarly for hcf : ∆εE2 = B (2N)b , b ~ -0.05 - -0.12, B~σf

Characteristic slopes :

∆ε2 =

σfE (2N) b + εf (2N)c

Universal slopes :

∆ε = 3.5 SuE N-0.12 + ε0.6

f N-0.6

∆ε2 =

∆εΕ2 +

∆εp 2

KL Murty page 1 NE 409/509

Page 2: Fatigue - Nc State Universitymurty/NE509/NOTES/Ch4d-Fatigue.pdf · Fatigue Fatigue is failure under cyclic loading • define various parameters (Fig. 8.17) : σm - mean stress σr

• mechanism (Fig. 8.22) crack initiation and propagation (Fig. 8.21) stage I (slow / along preferred crystallographic directions) stage II (relatively faster / ⊥r to the loading direction) beachmarks (Fig.8.23) & fatigue striations (Fig. 8.24)

• Crack propagation rate (Fig. 8.26)

No. of cycles to failure :

Paris law : dadN = A (∆K)m ⇔ Fig. 8.27

∫πσ∆

=∫∆

=∫=∴f

o

f

o

f a

a 2/m2/mmm

a

a m

N

of

a

da

)(AY

1

)K(A

dadNN

Nf = 1

Aπm/2(∆σ)m ⌡⎮⌠

ao

afda

Ym am/2 (Eq.8.21) ⇔⎪

⎪⎨⎧

=

2m

2m

Factors Affecting Fatigue Life (& solutions to improve fatigue life)

1. Mean Stress (Fig. 8.29) 2. Surface Effects

(polished vs machined) 3. Design Factors (Fig. 8.30) 4. Surface Treatments

• shot peening (surface compressive stresses) • case hardening (carburization / nitriding - Fig. 8.31)

(Fig. 8.30)

vs

(Fig. 8.31)

KL Murty page 2 NE 409/509

Page 3: Fatigue - Nc State Universitymurty/NE509/NOTES/Ch4d-Fatigue.pdf · Fatigue Fatigue is failure under cyclic loading • define various parameters (Fig. 8.17) : σm - mean stress σr

Group Work

A steel has the following properties: Yield stress σo = 700 MPaToughness KIC = 165 MPa vm

A plate of this steel containing an edge crack was tested in fatigue under conditions where ao = 2 mm, R = 0.5 and σmax - σmin = 140 MPa.

This steel follows Paris law : da/dN = 0.66 x 10-8 (∆K)2.25 where da/dN is in m/cycle and ∆K is in MPa m .

a. Show that the critical crack size at failure af is 110 mm. First find σmax : from R and ∆σ ⇒ use relation between KIc , σ and af

b. Compute the fatigue life Nf In Eq. 8.21 we know A, m, ∆σ, ao, af and Y˜1

c. Compute tf at a cyclic frequency ν = 15 Hz

t = Nν

KL Murty page 3 NE 409/509