EXPRESSION AND BIOCHEMICAL CHARACTERIZATION OF...

29
EXPRESSION AND BIOCHEMICAL CHARACTERIZATION OF MALTOGENIC AMYLASE FROM Bacillus lehensis G1 SAMSON PACHELLES A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Bioprocess) Faculty of Chemical Engineering Universiti Teknologi Malaysia MAY 2013

Transcript of EXPRESSION AND BIOCHEMICAL CHARACTERIZATION OF...

EXPRESSION AND BIOCHEMICAL CHARACTERIZATION OF

MALTOGENIC AMYLASE FROM Bacillus lehensis G1

SAMSON PACHELLES

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Master of Engineering (Bioprocess)

Faculty of Chemical Engineering

Universiti Teknologi Malaysia

MAY 2013

iv

ACKNOWLEDGEMENT

First and foremost, I would like to extend my sincere appreciation to my

supervisor, Prof. Dr. Rosli Md. Illias for his stern yet valuable advicse as well as his

guidance throughout the duration of this research. I would also like to thank and

acknowledge the assistance of the laboratory staff of the Department of Bioprocess

Engineering, UTM and my laboratory colleagues.

I would like to express my gratitude to Malaysia Genome Institute (MGI) for

the financial aid since the research was part of a project under Genomics and

Molecular Biology Initiatives Programmes (07-05-16-MGI-GMB12).

Last but not least, I would like to convey my absolute appreciations to my

parents and families for their continual support, love and patience.

v

ABSTRACT

This study was carried out for the expression and characterization of

maltogenic amylase (MAG1) from Bacillus lehensis G1. Amplification of 1741 base

pair gene fragments encoding MAG1 and expression in Escherichia coli have been

successful. The expression of MAG1 was optimized at 30°C and 0.5 mM isopropyl

β-D-1-thiogalactopyranoside (IPTG) for a period of 12 hour post-induction time.

Purification of the crude enzyme was done using the ACTAprime System which uses

the concept of affinity chromatography. The optimum temperature and pH of the

purified MAG1 were 40 °C and pH 7.0 respectively. The enzyme did not show

potent thermostability and was stable at pH ranging from 7.0 to 9.0. The purified

MAG1 has a preference towards cyclodextrin (CD) specifically β-CD. Starches were

least favored by MAG1 followed by pullulan. Only the metal ion Mn2+

increased the

activity of MAG1 while K2+

, Li2+

and Mg2+

slightly affect its activity. The metal ion

Ca2+

significantly reduced MAG1 activity while Fe2+

, Co2+

, Zn2+

, Cu2+

, Pb2+

and Ni2+

drastically reduced the activity of MAG1. In terms of additives, only 2-

mercaptoethanol (2-ME) managed to enhance the activity of MAG1 while

ethylenediaminetetraacetic acid (EDTA) and Tween20 did not affect its activity.

Drastic reduction of MAG1 activity was caused by phenylmethylsulfonyl fluoride

(PMSF), sodium dodecyl sulfate (SDS), methanol and ethanol. The hydrolysis

pattern of MAG1 was studied using CDs and maltooligosaccharides. The hydrolysis

of CDs resulted in the formation of maltose but no glucose was detected. MAG1 was

also able to linearize the CDs. MAG1 did not react with glucose, maltose and

maltotriose but did react with maltotetraose, maltopentaose, maltohexaose and

maltoheptaose to produce mainly maltose and maltotriose. The Km and Vmax of

MAG1 towards β-CD were 6.358 mg/mL and 91.63 µmol/min respectively.

vi

ABSTRAK

Penyelidikan ini telah dijalankan untuk ekspresi dan mencirikan enzim

maltogenic amylase (MAG1) yang diperolehi daripada Bacillus lehensis G1.

Amplifikasi sebanyak 1741 pasang bes fragmen yang mengkodkan MAG1 dan

ekspresi dalam Escherichia coli telah berjaya. Ekspresi MAG1 adalah optimum pada

suhu 30°C dengan induksi 0.5 mM isopropil β-D-1-tiogalaktopiranosid (IPTG)

selama 12 jam. Penulenan enzim telah dijalankan menggunakan sistem ACTAprime

yang menggunakan konsep kromatografi afiniti. Suhu dan pH optimum bagi enzim

yang telah ditulenkan adalah pada 40 °C dan pH 7.0. Enzim ini tidak menunjukkan

kestabilan yang positif pada suhu tinggi dan stabil pada pH dari 7.0 ke 9.0. MAG1

yang telah ditulenkan lebih cenderung kepada siklodekstrin (CD) terutamanya β-CD.

Kanji kurang digemari oleh MAG1 diikuti oleh pullulan. Aktiviti MAG1 telah

dipertingkatkan oleh Mn2+

manakala K2+

, Li2+

dan Mg2+

tidak terlalu memberi kesan

kepada aktiviti MAG1. Aktiviti MAG1 telah direncat oleh Ca2+

dan direncat dengan

mendadak oleh Fe2+

, Co2+

, Zn2+

, Cu2+

, Pb2+

and Ni2+

. Selain daripada itu, 2-

merkaptoetanol (2-ME) juga meningkatkan aktiviti MAG1 tetapi aktivitinya tidak

dipengaruhi oleh asid atelindiamintetraasetik (EDTA) dan Tween20. Perencatan

yang mendadak pada aktiviti MAG1 adalah disebabkan oleh fenilmetilsulfonil

florida (PMSF), natrium dodecil sulfat (SDS), metanol dan etanol. Hasil hidrolisis

oleh MAG1 dikaji dengan menggunakan CD dan maltooligosakarida. Hidrolisis CD

menghasilkan maltosa sebagai produk utamanya tetapi tiada penghasilan glukosa

dapat dikesan. MAG1 juga mampu menukar CD kepada bentuk linearnya. MAG1

tidak bertindak balas dengan glukosa, maltosa dan maltotriosa tetapi bertindak balas

dengan maltotetraosa, maltopentosa, maltoheksosa dan maltoheptosa untuk

menghasilkan maltosa dan maltotriosa. Nilai Km dan Vmax bagi MAG1 terhadap β-

CD adalah 6.358 mg/mL dan 91.63 µmol/min.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

TITLE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xi

LIST OF FIGURES xiii

LIST OF SYMBOLS/ABBREVIATIONS xvii

LIST OF APPENDICES xx

1 INTRODUCTION 1

1.1 Introduction 1

1.2 Objectives of Research 3

1.3 Scopes of Research 3

2 LITERATURE REVIEW 4

2.1 Starch 4

2.2 Starch Degrading Enzyme 7

2.3 Amylases 8

viii

2.4 Alpha-amylase 9

2.5 Maltogenic Amylase 13

2.6 Biochemical Characteristics of

Maltogenic Amylase 17

2.7 Reaction Patterns of Maltogenic Amylase 19

2.7.1 Hydrolysis Pattern of Maltogenic

Amylase 19

2.7.2 Transglycosylation Pattern of Maltogenic

Amylase 20

2.7.3 Coupled Reactions of Maltogenic Amylase 22

2.8 Maltogenic Amylase as an Anti-Staling Agent 24

3 METHODOLOGY 26

3.1 Bacterial Strains 27

3.2 Chemicals 27

3.3 Preparation of Bacterial Glycerol Stock 27

3.4 Medium and Agar Preparation 28

3.4.1 Horikoshi Broth and Agar 28

3.4.2 Luria-Bertani Broth and Agar 28

3.5 General DNA Technique 29

3.5.1 Agarose Gel Preparation 29

3.5.2 Genomic DNA Extraction 29

3.5.3 Quantification of DNA using

Spectrophotometer 30

3.6 Polymerase Chain Reaction (PCR) for the

Gene of Maltogenic Amylase 31

3.6.1 Primer Design 31

3.6.2 PCR Mixture and Protocol 31

3.6.3 Purification of PCR Product 32

3.7 Plasmid Extraction 33

3.8 Digestion of DNA and Plasmid 34

3.9 Ligation of DNA to Plasmid 34

3.10 Preparation of Competent Cell using TSS Method 34

ix

3.11 Transformation into E. coli Hosts 35

3.12 Screening for Positive Transformant 36

3.13 Expression of Recombinat Maltogenic Amylase 36

3.14 Cell Lysis using Sonicator 36

3.15 Purification of Recombinant Maltogenic Amylase 37

3.15.1 System Wash 37

3.15.2 Connecting Column 38

3.15.3 Selecting the Program for Purification 38

3.15.4 Collecting Samples 38

3.16 Analysis of the Purification Result using

SDS-PAGE 39

3.17 Western Blot 39

3.18 Protein Determination 40

3.19 Assay for Maltogenic Amylase 41

3.20 Biochemical Characterization of Recombinant

Maltogenic Amylase 41

3.20.1 Optimum Temperature and pH 41

3.20.2 Thermal and pH Stability 41

3.20.3 Susbstrate Specificity 42

3.20.4 Effect of Metal Ions and Additives 42

3.20.5 Hydrolysis Pattern of the Recombinant

Maltogenic Amylase 43

3.20.6 Analysis of Hydrolysis Pattern using TLC 43

3.20.7 Determination of Kinetic Parameters 43

4 RESULTS AND DISCUSSION 45

4.1 Cloning of Recombinant Maltogenic Amylase 45

4.1.1 Amplification of Maltogenic

Amylase Gene 45

4.1.2 Cloning of Maltogenic Amylase Gene 46

4.2 Bioinformatic Analysis of Maltogenic

Amylase Gene 47

4.2.1 Full Sequence Analysis of Maltogenci

x

Amylase Gene 47

4.2.2 Hydrophobicity of the Recombinant

Maltogenic Amylase 57

4.3 Expression of Maltogenic Amylase 59

4.3.1 Expression at Different Temperature and

Different Concentration of IPTG 60

4.3.2 Expression in Different Expression Hosts 64

4.4 Western Blot 66

4.5 Purification of the Crude Recombinant

Maltogenic Amylase 67

4.6 Biochemical Characterization 70

4.6.1 Effect of Temperature and Temperature

Stability 70

4.6.2 Effect of pH and pH Stability 72

4.6.3 Substrate Specificity 74

4.6.4 Effect of Metal Ion 76

4.6.5 Effect of Additives 77

4.6.6 Hydrolysis Pattern 78

4.6.6.1 Hydrolysis of Cyclodextrin (CD) 78

4.6.6.2 Hydrolysis of

Maltooligosaccharides 80

4.7 Kinetic Parameter of Recombinant

Maltogenic Amylase 82

5 CONCLUSION 83

5.1 Conclusions 83

5.2 Recommendations 84

REFERENCES 85

Appendices A - E 93 - 105

xi

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Differences of amylose and amylopectin 6

2.2 The members in the α-amylase family 10

2.3 Recently discovered maltogenic amylase from different

sources with its basic biochemical characteristic 18

2.4 Example of donor, acceptor and products that have been

studied for the transglycosylation reaction of

maltogenic amylase 21

3.1 PCR primers for the amplification of maltogenic amylase

from B. lehensis G1 31

3.2 PRC components used to obtain the gene of

maltogenic amylase 32

4.1 Nucleotides distribution table of MAG1 50

4.2 Amino acids distribution table of MAG1 51

4.3 Identity comparison of MAG1 with other maltogenic

amylase from different sources 55

xii

4.4 Hydrophobicity scores at the conserved regions

of MAG1 58

4.5 Activity of MAG1 expressed in E. coli BL21 at

different temperature and IPTG concentration 62

4.6 Activity of MAG1 expressed in different host 65

4.7 Purification table of recombinant maltogenic

amylase expressed at the optimized conditions 69

xiii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 General structure of starch 5

2.2 Schematic representation of the action pattern of

amylolytic enzymes on starch (amylopectin) polymers 11

2.3 Conserved sequence regions in the α-amylase family 12

2.4 The first three dimensional structure of the α-amylase 13

2.5 Structure of cyclodextrin 14

2.6 Schematic diagram on substrate preference of dimeric

maltogenic amylase 15

2.7 Ribbon diagram for a monomer of maltogenic amylase

from Thermus sp. 16

2.8 The ribbon diagram representation of dimeric maltogenic

amylase from Thermus sp. 16

2.9 Differences of amino acids in conserve regions for

TpMA and ThMA 20

xiv

2.10 Proposed models of coupled hydrolysis and

transglycosylation by maltogenic amylase from

Bacillus stearothermophilus ET1 22

2.11 Schematic drawings of products from reaction of acarbose

with maltogenic amylase from Thermus sp. 23

3.1 Overview of methodology 26

4.1 Gel electrophoresis of genomic DNA of

B. lehensis G1 extraction 46

4.2 Gel electrophoresis of amplified PCR product of the

maltogenic amylase gene 46

4.3 Gel electrophoresis of double-digestion

(Bam HI and Xho I) of the cloning vector pET21a 47

4.4 Nucleotide and deduced amino acid sequence of MAG1 50

4.5 Multiple alignment MAG1 with other amylolytic enzymes 54

4.6 Phylogenetic analysis of MAG1 based on amino

acid sequences 56

4.7 Hydrophobicity analysis of MAG1 57

4.8 SDS-PAGE electrophoresis of MAG1 expressed in

E. coli BL21 at 37 °C with 1 mM IPTG 60

4.9 SDS-PAGE of MAG1 expressed at 30°C with

different concentration of IPTG 62

4.10 SDS-PAGE of MAG1 expressed at 25°C with different

xv

concentration of IPTG 63

4.11 SDS-PAGE of MAG1 expressed at 20°C with

different concentration of IPTG 63

4.12 SDS-PAGE of MAG1 expressed in Origami 2 at 30°C

with different concentration of IPTG 65

4.13 SDS-PAGE of MAG1 expressed in Origami B at 30°C

with different concentration of IPTG 66

4.14 Western blot of MAG1 expressed at the 30°C and

0.5 mM IPTG 67

4.15 SDS-PAGE of the purified MAG1 68

4.16 Effect of temperature on the activity of MAG1 70

4.17 Temperature stability of MAG1 72

4.18 Effect of pH on the activity of MAG1 73

4.19 pH stability of MAG1 74

4.20 Relative activity of MAG1 on different substrate 76

4.21 Effect of metal ions on the activity of MAG1 77

4.22 Effect of additives on the activity of MAG1 78

4.23 TLC analysis of MAG1 hydrolytic activity on CD 79

4.24 TLC analysis of MAG1 hydrolytic activity on

xvi

Maltooligosaccharides 81

4.25 Partial multiple alignment of MAG1 with other

amylolytic enzymes showing the conserve region IV 81

4.26 Lineweaver-Burk plot for MAG1 using β-CD as

a substrate 82

xvii

LIST OF SYMBOLS/ABBREVIATION

Asn - Asparagine

Asp - Aspartic acid

BCIP - 5-Bromo-4-Chloro-3-Indolyl Phosphate

Blast - Basic Local Alignment Search Tool

Bp - base pair

DNA - Deoxyribonucleic acid

EC - Enzyme Commision

EDTA - ethylene diamine tetraacetic acid

eg. - example

et al. - and frinds

EtOH - Ethanol

g/L - gram per litter

Glu - Glutamate

His - Histidine

HPAEC - High Performance Anion Exchange

Chromatography

HPLC - High Performance Liquid

Chromatography

IPTG - IsoPropyl β-D-1-ThioGalactopyranoside

kb - kilo base

KCl - potassium chloride

KI - potassium iodide

LMW - Low Molecular Weight

MeOH - Methanol

mg/mL - milligram per milliliter

xviii

mM - millimolar

NaCl - sodium chloride

NaOH - sodium hydroxide

NBT - Nitro Blue Tetrazolium chloride

nm - nano meter

PAGE - polyacarylamide gel electrophoresis

PMSF - phenylmethanesulfonyl fluoride

rpm - revolutions per minute

SDS - sodium dedocyl sulphate

Ser - serine

TBE - Tris/Borate/EDTA

TBS - Tris Buffered Saline

TBSTT - Tris Buffered Saline Tween-20 Triton

TE - Tris/EDTA

TLC - Thin Layer Chromatography

TSS - Transformation and Storage Solution

U/mL - unit per milliliter

UV - ultraviolet

UV-Vis - ultraviolet visible

v/v - volume per volume

w/v - weight per volume

α - alpha

β - beta

γ - gamma

µL - micro litter

% - percentage

°C - degree Celsius

Ca2+

- calcium ion

Co2+

- cobalt ion

Cu2+

- copper ion

Fe2+

- iron ion

K+

- potassium ion

Li2+

- lithium ion

Mg2+

- magnesium ion

xix

Mn2+

- manganese ion

Ni2+

- nickel ion

Pb2+

- lead ion

Zn2+

- zinc ion

H2SO4 - sulfuric acid

KH2PO4 - monopotassium phosphate

MgSO4 - magnesium sulfate

Tm - melting temperature

xx

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Medium and Buffer 92

B Standard Curve for Maltogenic Amylase Assay 102

C Standard Curve for Bradford Assay 103

D pET-21a(+) VECTOR (PROMEGA) 104

E Publication 105

CHAPTER 1

INTRODUCTION

1.1 Introduction

Alpha-amylase (EC 3.2.1.1.) is one of the enzymes that have been

investigated most thoroughly and used most widely in the starch hydrolytic industry.

These amylase are endo-acting amylases which means the enzyme hydrolyze α-1,4-

glycosidic linkage of internal starch polymer randomly. This in turn resulted in

oligosaccharides with varying lengths and α-dextrins that retains its α-1,6-glycosidic

linkages. There are various amylolytic enzymes such as pullulanase (EC 3.2.1.41;

Kuriki et al., 1988), cyclodextrin glucanotransferase (EC 2.4.1.19; Sakai et al,.

1987), cyclodextrinase (EC 3.2.1.54; Kitahata et al, 1983), and maltogenic amylase

(EC 3.2.1.133; MAase; Kim et al,. 1992) in which these enzymes exhibits novel

enzymatic properties that clearly differentiate it from those of α-amylase, being

capable of hydrolyzing poly- and/or maltooligosaccarides such as pullulan and

cyclodextrins (CDs) as well as its extensive transglycosylation activity.

Maltogenic amylases which belong to the glycoside hydrolase family 13

(GH13) are very unique where these enzymes have multi-substrate specificity

towards starch, pullulan, and CDs, which is modulated by dimerization of the

2

enzyme. Other than its typical-α-amylase hydrolytic activity, maltogenic amylase is

also able to perform a transglycosylation activity via formation of various glycosidic

linkages such as α-1,3- and α-1,6-linkages to produce branched oligosaccharides

from substrate such as liquefied starch (Park et al., 2000). This enzyme is named

maltogenic amylase because in general it will hydrolyze CD into mainly maltose and

glucose.

The enzyme activity was found to be cell-bounded which means that the

enzyme is intracellular (Kolcuoğlu et al., 2010). It was proven by the predicted

amino acid sequence with no sign of signal sequence necessary for secretion of the

enzyme outside the cell. In order to exploit its benefits, maltogenic amylase has long

been discovered and isolated such as from B. licheniformis (Kim et al., 1992), B.

stearothermophilus (Cha et al., 1998), and a Thermus species (Kim et al., 1999).

From previous researches on maltogenic amylase, it has been proven that

maltogenic amylase is able to produce branched side chains when reacted with

amylopectin cluster (Kim et al., 2006). Moreover, this enzyme hydrolyzes acarbose,

a potent α-amylase inhibitor (Park et al., 1998). The combined activities of

maltogenic amylase which are hydrolysis and transglycosylation have been utilized

in the production of branched oligosaccharides and various modified sugars (Kim et

al., 1994; Lee et al., 1995). Maltogenic amylase is also a highly effective anti-staling

agent used for bread making in industrial bakeries.

Different source of enzymes exhibits their own unique characteristic even

though they have some similarities in terms of function, substrate they act upon or

their structure. Finding the enzymes of highly useful characteristic is very important

as it can contribute in variety of industries. This is where maltogenic amylase from

Bacillus lehensis G1 becomes an interest. Maltogenic amylase has very useful

industrial applications and exploring another source of this enzyme can give us more

option to consider.

3

Amount of this enzyme that can be obtained from the wild microorganism is

normally limited and their characteristics are unknown. Therefore, their applicability

to meet with the conditions of a reaction criteria such as high temperature is still

unclear. We intend to clone and over-expressed the maltogenic amylase in

expression system such as Escherichia coli (E. coli) and characterize the

recombinant enzyme. This will contribute in research to improve the characteristic of

the enzyme such as thermostability by protein engineering. It is an important

characteristic for industrial application where a thermostable enzyme is preferred.

Other than that, an efficient way to produce this enzyme is crucial in order to obtain a

low cost production.

1.2 Objectives of Research

The objectives of this research are to clone and express maltogenic amylase

from Bacillus lehensis G1 (MAG1) in E. coli and to characterize the purified

recombinant maltogenic amylase.

1.3 Scopes of Research

1.3.1 Amplification of maltogenic amylase gene using polymerase chain

reaction (PCR) method

1.3.2 Cloning and expression of maltogenic amylase gene in E. coli

expression system

1.3.3 Purification and characterization of recombinant maltogenic

amylase

REFERENCES

Aiyer, P. V. (2005). Amylases and their applications. African Journal of

Biotechnology. 4(13): 1525-1529.

Ao, Z., Simsek, S., Zhang, G., Venkatachalam, M., Reuhs, B. L. and Hamaker, B. R.

(2007). Starch with a slow digestion property produced by altering its chain

length, branch density, and crystalline structure. Journal of Agricultural and

Food Chemistry. 55(11): 4540-4547.

Banks, W. and Greenwood. (1975). Starch and its components. Edinberg

University Press.

Baneyx, F. (1999). Recombinant protein expression in Escherichia coli. Current

Opinion in Biotechnology. 10: 411-421.

Barfoed, H. C. (1976). Enzymes in starch processing. Cereal Food World. 21: 588-

604.

Bessette, P. H., Åslund, F., Beckwith, J. and Georgiou, G. (1999) Efficient folding of

proteins with multiple disulfide bonds in the Escherichia coli cytoplasm.

Proceedings of the National Academy of Sciences. 96(24): 13703-13708.

Buedenbender, S. and Schulz, G. E. (2009). Structural base for enzymatic

cyclodextrin hydrolysis. Journal of Molecular Biology. 385: 606–617

Cha, H. J., Yoon, H. G., Kim, Y. W., Lee, H. S., Kim, J. W., Kweon, K. S., Oh, B. H.

and Park, K. H. (1998). Molecular and enzymatic characterization of a

maltogenic amylase that hydrolyzes and transglycosylates acarbose. European

Journal of Biochemistry. 253: 251–262.

Cho, H. Y., Kim, Y. W., Kim, T. J., Lee, H. S., Kim, D. Y., Kim, J. W., Lee, Y. W.,

Lee, S. B. and Park, K. H. (2000). Molecular characterizationof a dimeric

intracellular maltogenic amylase of Bacillus subtilis SUH4-2. Biochimica et

Biophysica Acta. 1478: 333–340.

86

Coutinho, P. M. and Henrissat, B. (1999). Recent advances in charbohydrate

engineering. Cambridge: Royal Society of Chemistry. 3-12.

Donovan, R. S., Robinson, C. W. and Glick, B. R. (1996). Review: Optimizing

inducer and culture conditions for expression of foreign proteins under the

control of the lac promoter. Journal of Industrial Microbiology. 16: 145-154.

Fogarty, W. M. (1983). Microbial amylases. In Fogarty, W.M. Microbial Enzymes

and Biotechnology. (Ed.) (pp. 1-92). London: Applied Science Publishers.

Fogarty, W. M. and Kelly, C. T. (1980). Amylase, amyloglucosidase and related

glucanases. Microbial Enzymes and Bioconversions. Rose, A.H(Ed). (pp. 115-

170). London: Academic Press.

Fogarty, W. M. and Kelly, C. T. (1990). Recent advances in microbial amylases. In

Fogarty, W. M. and Kelley, C. T. Microbial Enzymes and Biotechnology. (pp.

71-132). London: Elsevier Applied Science Publishers.

Gasser, B., Maurer, M., Rautio, J., Sauer, M., Bhattacharyya, A., Saloheimo, M.,

Penttilä, M. and Mattanovich, D. (2007). Monitoring of transcriptional

regulation in Pichia pastoris under protein production conditions. BMC

Genomics. 8: 179.

Gerrard, J. A., Every, D., Sutton, K. H. and Gilpin, M. J. (1997). The role of

maltodextrins in the staling of bread. Journal of Cereal Science. 26: 201.

Goesaert, H., Slade, L., Levine, H. and Delcour, J. A. (2009). Amylase and bread

firming – an integrated view. Journal of Cereal Science. 1-8.

Gomes-Ruffi, C. R., da Cunha, R. H., Almeida, E. L., Chang, Y. K. and Steel C. J.

(2012). Effect of the emulsifier sodium stearoyl lactylate and of the enzyme

maltogenic amylase on the quality of pan bread during storage. LWT – Food

Science and Technology. 49(1): 96-101.

Gray, J. A., and BeMiller, J. N. (2003). Bread staling: molecular basis and control.

Food Science and Food Safety. 2: 1–21.

Hong, F., Meinander, N. Q. and Jönsson, L. J. (2002). Fermentation strategies for

improved heterologous expression of laccase in Pichia pastoris. Biotechnology

and Bioengineering. 79(4): 438-449.

Horikoshi, K. (2006). Starch-degrading Enzymes. In Horikoshi, K. (Ed).

Alkaliphiles. (pp. 143-174). Japan: Springer Berlin Heidelberg.

87

Jahic, M., Wallberg, F., Bollok, M., Garcia, P. and Enfors, S. O. (2003). Temperature

limited fed-batch technique for control of proteolysis in Pichia pastoris

bioreactor cultures. Microbial Cell Factories. 2: 6.

Jakubovics, N. S., Smith, A. W. and Jenkinson, H. F. (2002). Oxidative stress

tolerance is manganese (Mn2+

) regulated in Streptococcus gordonii.

Microbiology. 148: 3255–3263.

Janeček, S. (1997). α-Amylase family: molecular biology and evolution. Progress in

Biophysics and Molecular Biology. 67: 67-97.

Jespersen, H.M., MacGregor, E.A., Henrissat, B., Sierks, M.R. and Svensson, B.

(1993). Starch- and glycogen-debranching and branching enzymes: Prediction

of structural features of the catalytic (β/α)8-barrel domain and evolutionary

relationship to other amylolytic enzymes. Journal of Protein Chemistry. 12(6):

791-805.

Kim, I.C., Cha, J.H., Kim, J.R., Jang, S.Y., Seo, B.C., Cheong, T.K., Lee, D.S., Choi,

Y.D. and Park, K.H. (1992). Catalytic properties of the cloned amylase from

Bacillus licheniformis. The Journal of Biological Chemistry. 31: 22108–22114.

Kim, I. C., Yoo, S. H., Lee, S. J., Oh, B. H., Kim, J. W. and Park, K. H. (1994).

Synthesis of branched oligosaccharides from starch by two amylases cloned

from Bacillus licheniformis. Bioscience, Biotechnology and Biochemistry. 58:

416–418.

Kim, J. W., Kim, Y. H., Lee, H. S., Yang, S. J., Kim, Y. W., Lee, M. H., Kim, J. W.,

Seo, N. S., Park, C. S. and Park K. H. (2007). Molecular cloning and

biochemical characterization of the first archaeal maltogenic amylase from the

hyperthermophilic archaeon Thermoplasma volcanium GSS1. Biochimica et

Biophysica Acta. 1774: 661–669.

Kim, J. S., Cha, S. S., Kim, H. J., Kim, T. J., Ha, N. H., Oh, S. T.,Cho, H. S., Cho,

M. J., Kim, M. J., Lee, H. S., Kim, J. W., Choi, K. Y., Park, K. H. and Oh, B.

H. (1999). Crystal structure of a maltogenic amylase provides insights into a

catalytic versatility. The Journal of Biological Chemistry. 274: 26279–26286.

Kim, T. J., Kim, M. J., Kim, B. C., Kim, J. C., Cheong, T. K. and Kim, J. W. (1999).

Modes of action of acarbose hydrolysis and transglycosylation catalyzed by a

thermostable maltogenic amylase, the gene for which was cloned from a

Thermus strain. Applied and Environmental Microbiology. 65:1644–51.

88

Kim, T. J., Nguyen, V. D., Lee, H. S., Kim, M. J., Cho, H. Y., Kim, Y.W., Moon, T.

W., Park, C. S., Kim, J. W., Oh, B. H., Lee, S. B., Svensson, B. and Park, K. H.

(2001). Modulation of the multisubstrate specificity of Thermus maltogenic

amylase by truncation of the N-terminal domain and by a salt-induced shift of

the monomer/dimer equilibrium. Biochemistry. 40: 14182–14190.

Kim, T. J., Park, C. S., Cho, H. Y., Cha, S. S., Kim, J. S., Lee, S. B., Moon, T. W.,

Kim, J. W., Oh, B. H. and Park, K. H. (2000). Role of the glutamate 332

residue in the transglycosylation activity of Thermus maltogenic amylase.

Biochemistry. 39: 6773–6780.

Kim, Y. H. (2006). Cloning, characterization and application of Thermoplasma

volcanium GSS1 maltogenic amylase. Masters thesis. Seoul National

University, Seoul, Korea.

Kitahata, S. (1988). Handbook of amylases and related enzymes. Pergamon, Tokyo.

154-163.

Kolcuoğu, Y., Colak, A., Faiz, O. and Belduz, A. O. (2010). Cloning, expression and

characterization of high thermo- and pH-stable maltogenic amylase from a

thermophilic bacterium Geobacillus caldoxylosilyticus TK4. Process

Biochemistry.

Kuriki, T., Park, J. H., Okada, S. and Imanaka, T. (1988). Purification and

characterization of thermostable pullulanase from Bacillus stearothermophilus

and molecular cloning and expression of the gene in Bacillus subtilis. Applied

and Environmental Microbiology. 54 (11): 2881-2883.

Kyte, J. and Doolittle, R. (1982). A simple method for displaying the hydrophatic

character of a protein. Journal of Molecular Biology.157: 105-132.

Lee, H. S., Auh, J. H., Yoon, H. G., Kim, M. J., Park, J. H., Hong, S. S., Kang, M.

H., Kim, T. J., Moon, T. W., Kim, J. W., and Park, K. H. (2002). Cooperative

action of α-glucanotransferase and maltogenic amylase for an improved

process of isomaltooligosaccharide (IMO) production. Journal of Agricultural

and Food Chemistry. 50: 2812–2817.

Lee, H. S., Kim, M. S., Cho, H. S., Kim, J. I., Kim, T. J., Choi, J. H., Park, C., Lee,

H. S., Oh, B. H. and Park, K. H. (2002). Cyclomaltodextrinase, neopullulanase,

and maltogenic amylase are nearly indistinguishable from each other. Journal

of Biological Chemistry. 277: 21891–21897.

89

Lee, S. J., Yoo, S. H., Kim, M. J., Kim, J. W., Seok, H. M. and Park, K. H. (1995).

Production and characterization of branched oligosaccharides from liquefied

starch by the action of Bacillus licheniformis amylase. Starch. 47: 127–134.

Lee, Y. H., Kim, M. J., Baek, J. S., Lee, H. S., Cha, H. J., and Lee, S. B. (2003).

Preparation and characterization of maltosyl-sucrose isomers produced by

transglycosylation of maltogenic amylase from Bacillus stearothermophilus. .

Journal of Molecular Catalysis B: Enzymatic. 26: 293–305.

Li, D., Park, J. T., Li, X., Kim, S., Lee, S., Shim J. H., Park, S. H., Cha, J., Lee, B.

H., Kim, J. W. and Park, K. H. (2010). Overexpression and characterization of

an extremely thermostable maltogenic amylase, with an optimal temperature of

100 °C, from the hyperthermophilic archaeon Staphylothermus marinus. New

Biotechnology. 27(4): 300-307.

Li, D., Park, S. H., Shim, J. H., Lee, H. S., Tang, S. Y., Park, C. S. and Park, K. H.

(2004). In vitro enzymatic modification of puerarin to puerarin glycosides by

maltogenic amylase. Carbohydrate Research. 339: 2789–2797.

Li, X., Li, D., Yin, Y. and Park, K. H. (2009). Characterization of a recombinant

amylolytic enzyme of hyperthermophilic archaeon Thermofilum pendens with

extremely thermostable maltogenic amylase activity. Applied Microbiology

and Biotechnology. 85: 1821-1830.

Lin, H., Kim, T., Xiong, F. and Yang, X. (2007). Enhancing the production of Fc

fusion protein in fed-batch fermentation of Pichia pastoris by design of

experiments. Biotechnology Progress. 23: 621–625.

Liu, B., Wang,Y. and Zhang, X. (2006). Characterization of a recombinant

maltogenic amylase from deep sea thermophilic Bacillus sp. WPD616. Enzyme

and Microbial Technology. 39: 805–810.

Mabrouk, S. B., Messaoud, E. B., Ayadi, D., Jemil, S., Roy, A., Mezghani, M. and

Bejar, S. (2007). Cloning and sequencing of an original gene encoding a

maltogenic amylase from Bacillus sp. US149 strain and characterization of the

recombinant activity. Molecular Biotechnology. 38: 211-219.

Machovič, M. and Janeček, Š. (2007). Amylolytic Enzymes: Types, Structures and

Specificities. In Polaina, J. and MacCabe, A. P. (Eds). Industrial Enzymes. (pp.

3-18). Slovakia: Springer Netherlands.

Matsuzaki, H., Yamane, K., Yamahuchi, K., Nagata, Y. and Maruo, B. (1974).

Hybrid α-amylases produced by transformants of Bacillus subtilis. I.

90

Purification and characterization of extracellular α-amylases produced by the

parental strains and transformants. Biochimica et Biophysica Acta (BBA) –

Protein Structure. 365(1): 235-247.

Mergulhão, F. J. and Gabriel A. M. (2005). Analysis of factors affecting the

periplasmic production of recombinant proteins in Escherichia coli. Journal of

Microbiology and Biotechnology. 17(8): 1236-1241.

Novagen. (2005). pET System Manual. (11th ed.). Germany: EMD Bioscience Inc.

Oh, K. W., Kim, M. J., Kim, H. Y., Kim, B. Y., Baik, M. Y., Auh, J. H. and Park, C.

S. (2005). Enzymatic characterization of a maltogenic amylase from

Lactobacillus gasseri ATCC 33323 expressed in Escherichia coli. FEMS

Microbiology Letters. 252:175–181.

Pandey, A., Nigam, P., Soccol, C. R., Singh, D. and Mohan, R. (2000). Advances in

microbial amylases. Biotechnology and Applied Biochemistry. 2: 135-152.

Pardi, Norlela (1999). Pengesanan Mikroorganisma Penghasil β-siklodekstrin

glukanotransferase (β-CGTase) Daripada Mikroorganisma Jenis Alkalopilus.

Universiti Teknologi Malaysia: Tesis Ijazah Sarjana Muda.

Park, K. H., Kim, M. J., Lee, H. S., Han, N. S., Kim, D. M. and Robyt, J. F. (1998).

Transglycosylation reactions of Bacillus stearothermophilus maltogenic

amylase with acarbose and various acceptors. Carbohydrate Research. 313:

235–246.

Park, K. H., Kim, T., Cheong, T. K., Kim, J. W., Oh, B. H. and Svensson, B. (2000).

Structure, specificity and function of cyclomaltodextrinase, a multispecific

enzyme of the α-amylase family. Biochimica et Biophysica Acta. 1478: 165–

185.

Purhagen, J. K., Sjöö, M. E. and Eliasson A. C. (2011). Starch affecting anti-staling

agents and their fuction in freestanding and pan-backed bread. Food

Hydrocolloids. 25(7): 1656-1666.

Robyt, J. F. (1995). Mechanisms in the glucansucrase synthesis of polysaccharides

and oligosaccharides from sucrose. Advances in Carbohydrates Chemistry and

Biochemistry. 51: 151–157.

Roh, H. J., Kang, S. C., Lee, H. S., Kim, D. K., Byun, S. B., Lee, S. J. and Park, K.

H. (2004). Transglycosylation of tagatose with maltotriose by Bacillus

stearothermophilus maltogenic amylase (BSMA). Tetrahedron: Asymmetry.

16(1): 77-82.

91

Sakai, S., Kubota, M., Yamamoto, K., Nakada, T., Torigoe, K., Ando, O., and

Sugimoto, T. (1987). Cloning of cyclodextrin glucanotransferase genes from

Bacillus stearothermophilus and Bacillus macerans. Journal of the Japanese

Society if Starch Science. 34: 140-147.

Si, J. Q. and Drost-lustenberger, C. (2001). Novamyl - A true anti-staling enzyme.

Madrid: The Meeting at IATA.

Sindhu, G. S., Sharma, P., Chakrabarti, T. and Gupta, J. K. (1997). Strain

improvement for the production of a thermostable α-amylase. Enzyme and

Microbial Technology. 24: 584-589.

Svensson, B., Jensen, M. T., Mori, H., Bak-Jensen, K. S., Bønsager, B., Nielsen, P.

K., Kramhøft, B., Prætorius-Ibba, M., Nøhr, J., Juge, N., Greffe, L.,

Williamson, G., and Driguez, H. (2002). Facinating facets of function and

structure of amylolytic enzymes of glycoside hydrolase family 13. Biologia. 57

(11): 5–19.

Takaku, H. (1988). Handbook of amylase and related enzymes. The Amylase

Research Society of Japan. (pp. 215-217). Oxford: Pergamon Press.

Takata, H., Kuriki, T., Okada, S., Takesada, Y., Iizuka, M., Minamiura, N. and

Imanaka, T. (1992). Action of neopullulanase. Journal of Biological

Chemistry. 267: 18447-18452.

Towbin, H., Staehelin, T. and Julian, G. (1979). Electrophoretic transfer of proteins

from polyacrylamide gels to nitrocellulose sheets: Procedure and some

applications. Proceedings of the National Academy of Science. 76(9): 4350-

4354.

Underkofler, L. A, Danault, L. J. and Hou, E. F. (1965). Enzymes in starch in dustry.

Die Starke. 17: 179-184.

Vandeputte, G. E., Vermeylen, R., Geeroms, J. and Delcour, J. A. (2003). Rice

starches. III. Structural aspects provide insight in amylopectin retrogradation

properties and gel texture. Journal of Cereal Science. 38: 61–68.

Vihinen, M., and Mäntsala, P. (1989). Microbial amylolytic enzymes. Critical

Reviews in Biochemistry and Molecular Biology. 24: 329–418.

Willey, J. M., Linda S., Christopher J. W., and Lansing M. P. (2008). Prescott,

Harley, and Klein's Microbiology. New York: McGraw-Hill Higher Education.

Whitehurst, R. J. and Law, B. A. (2002). Enzymes in starch modification. Enzymes in

Food Technology. 8: 200-228.

92

Wood, T. K. and Peretti, S. W. (1991). Effect of chemically-induced cloned-gene

expression on protein synthesis in E. coil. Biotechnology and Bioengineering.

38: 397-412.

Würsch, P. and Gumy, D. (1994). Inhibition of amylopectin retrogradation by partial

beta-amylolysis. Carbohydrate Research. 256: 129–137.

Yuuki, T., Nomura, T., Tezuka, H., Tsuboi, A., Yamagata, H., Tsukagoshi, N., and

Udaka, S. (1985). Complete nucleotide sequence of a gene coding for heat-

and pH-stable α-amylase of Bacillus licheniformis: Comparison of the amino

acid sequences of three bacterial liquefying α-amylases deduced from the DNA

sequences. The Journal of Biochemistry. 98: 1147-1156.

Zhao, H. L., Xue, C., Wang, Y., Duan, Q. F., Xiong, X.H., Yao, X. Q. and Liu, Z. M.

(2008). Disruption of Pichia pastoris PMR1 gene decreases its folding capacity

on human serum albumin and interferon-alpha2b fusion protein. Yeast. 25:

279–286.