EMLAB 1 Chapter 2. Resistive circuits 2014. 9. 12.

26
EMLAB 1 Chapter 2. Resistive circuits 2014. 9. 12.

Transcript of EMLAB 1 Chapter 2. Resistive circuits 2014. 9. 12.

Page 1: EMLAB 1 Chapter 2. Resistive circuits 2014. 9. 12.

EMLAB

1

Chapter 2. Resistive circuits

2014. 9. 12.

Page 2: EMLAB 1 Chapter 2. Resistive circuits 2014. 9. 12.

EMLAB

2Contents

1. Ohm’s law

2. Kirchhoff’s laws

3. Series and parallel resistor combinations

4. Y-Δ transformation

5. Circuits with dependent sources

Page 3: EMLAB 1 Chapter 2. Resistive circuits 2014. 9. 12.

EMLAB

3

Entering resistive material, charges are decelerated, which decrease current flow.

Resistors : microscopic view

nucleus

electrons

Page 4: EMLAB 1 Chapter 2. Resistive circuits 2014. 9. 12.

EMLAB

4Types of resistors

(1), (2), and (3) are high power resistors. (4) and (5) are high-wattage fixed resistors. (6) is a high precision resistor. (7)–(12) are fixed resistors with different power ratings.

Page 5: EMLAB 1 Chapter 2. Resistive circuits 2014. 9. 12.

EMLAB

5

Rtit )()(

1. Ohm’s law

)0( R

RRitittp

22)()()(

Power absorption :

resistance

RG

1 ; conductance

Page 6: EMLAB 1 Chapter 2. Resistive circuits 2014. 9. 12.

EMLAB

6Example 2.1

Determine the current and the power absorbed by the resistor.

][62

12mA

kI

kRV

kRI

WVIP

2/)12(/

)2()106(

][072.0)106)(12(

22

232

3

Page 7: EMLAB 1 Chapter 2. Resistive circuits 2014. 9. 12.

EMLAB

7Glossary

(1) Node A node is simply a point of connection of two or more circuit elements.

node

Although one node can be spread out with perfect con-ductors, it is still only one node

Page 8: EMLAB 1 Chapter 2. Resistive circuits 2014. 9. 12.

EMLAB

8

(3) branch

(2) loop A loop is simply any closed path through the circuit in which no nodeis encountered more than once

 a branch is a single or group of components such as resistors or a source which are connected between two nodes

Page 9: EMLAB 1 Chapter 2. Resistive circuits 2014. 9. 12.

EMLAB

92. Kirchhoff’s law

(1) Kirchhoff ’s current law (KCL) : the algebraic sum of the currents entering(out-going) any node is zero→ the sum of incoming currents is equal to the sum of outgoing currents.

(2) Kirchhoff’s voltage law (KVL), the algebraic sum of the voltages around any loop is zero

0)()()( 54321 IIIII

54321 IIIII

Page 10: EMLAB 1 Chapter 2. Resistive circuits 2014. 9. 12.

EMLAB

10Kirchhoff’s Current law

0)( n

n tI

)(0 t

)(2 ti)(1 ti

)(3 ti3

303

2

202

1

101

321

-)(,

-)(,

-)(

0)()()()(

Rti

Rti

Rti

titititIn

n

Ri ba

ab

R

Current definition • The direction of a current can be chosen ar-bitrarily.

• The value of a current can be obtained from a voltage drop along the direction of current divided by a resistance met.

R2

)(1 t )(2 t

)(3 t

R1

R3

0---

3

30

2

20

1

10 RRR

Page 11: EMLAB 1 Chapter 2. Resistive circuits 2014. 9. 12.

EMLAB

11Kirchhoff’s Voltage law

-(t)1 -(t)2

-

(t)s

0)( n

n t

Sum of voltage drops along a closed loop should be equal to zero!

0)(-)()( 21 ttt s

R1 C1

Voltage convention

baab VVV

Page 12: EMLAB 1 Chapter 2. Resistive circuits 2014. 9. 12.

EMLAB

12Example 2.6

Find the unknown currents in the network.

020601 mmINode 1 :

Node 2 : 0614 III

Node 3 : 0406054 mmII

030205 mmINode 4 :

Node 5 : 030406 mmI

][801 mAI ][505 mAI ][106 mAI ][704 mAI

Page 13: EMLAB 1 Chapter 2. Resistive circuits 2014. 9. 12.

EMLAB

13Example E2.6

Find the current ix in the circuits in the figure.

04410 mii xx

][4 mAix

01212010 mmii xx

][12 mAix

Page 14: EMLAB 1 Chapter 2. Resistive circuits 2014. 9. 12.

EMLAB

14

Find Vad and Veb in the network in the figure.

Example E2.8

][266424 VVad

][102468 VVeb

Page 15: EMLAB 1 Chapter 2. Resistive circuits 2014. 9. 12.

EMLAB

15Example 2.15

Given the following circuit, let us find I, Vbd and the power absorbed by the 30kΩ resistor. Finally, let us use voltage division to find Vbc .

0301220106 kIkIkI

][1.060

6mA

kI

][101221220 VkIVbd

][3.0301001.030 6230 mWkkIP k

][2)6(4020

20V

kk

kVbc

Page 16: EMLAB 1 Chapter 2. Resistive circuits 2014. 9. 12.

EMLAB

16Series resistors

equivalent

NS RRRR 21

Page 17: EMLAB 1 Chapter 2. Resistive circuits 2014. 9. 12.

EMLAB

17Parallel resistors

NP RRRR

1111

21

equivalent

Page 18: EMLAB 1 Chapter 2. Resistive circuits 2014. 9. 12.

EMLAB

18Example 2.19

Given the circuit, we wish to find the current in the 12-kΩ load resistor.

equivalent

][25.0)1(13

1)1(

121

41

121

mAmm

kk

kIL

Page 19: EMLAB 1 Chapter 2. Resistive circuits 2014. 9. 12.

EMLAB

19Example 2.20We wish to determine the resistance at terminals A-B in the network in the figure.

Page 20: EMLAB 1 Chapter 2. Resistive circuits 2014. 9. 12.

EMLAB

20Y-Δ transformation

equivalent

321

312 )(

RRR

RRRRR ba

321

213 )(

RRR

RRRRR cb

321

321 )(

RRR

RRRRR ac

Y

RRR

RRR

RRR

RRR

RRR

RRR

c

b

a

321

13

321

32

321

21

Y

R

RRRRRRR

R

RRRRRRR

R

RRRRRRR

a

accbba

c

accbba

b

accbba

3

2

1

ΔY

321 RRRR 3

RRY

Page 21: EMLAB 1 Chapter 2. Resistive circuits 2014. 9. 12.

EMLAB

21Example 2.26

Given the network in Fig. 2.36a, let us find the source current IS .

][661812

1812

kkkk

kkRa

][361812

618

kkkk

kkRb

][261812

612

kkkk

kkRc

][4612

612

kkk

kkRP

][2.146

12mA

kkIS

Page 22: EMLAB 1 Chapter 2. Resistive circuits 2014. 9. 12.

EMLAB

222.8 Circuits with dependent sources

Example 2.27

052000312 111 kIIkI

][2523

121 mA

kkkI

][10510 VkIV

Let us determine the voltage Vo in the circuit in the figure.

Page 23: EMLAB 1 Chapter 2. Resistive circuits 2014. 9. 12.

EMLAB

23Example 2.28

Given the circuit in the figure containing a current-controlled current source, let us find the voltage Vo.

k

VIII

k

Vm ss

3,04

610 000

0560016

10 sss Vk

V

k

Vm

][8],[12 0 VVVVs

Page 24: EMLAB 1 Chapter 2. Resistive circuits 2014. 9. 12.

EMLAB

24Example 2.30

An equivalent circuit for a FET common-source amplifier or BJT common-emitter amplifier can be modeled by the circuit shown in the figure. We wish to determine an expression for the gain of the amplifier, which is the ratio of the output voltage to the input voltage.

543 |||| RRRRL

02111 RiRii

ig RR

R

21

2

Lgm Rg 0

21

20)(RR

RRg

RggainG Lm

i

gLm

i

GND can be arbitrarily set.

V0

V0

Page 25: EMLAB 1 Chapter 2. Resistive circuits 2014. 9. 12.

EMLAB

25

Transistor

Transistor amplifier

Page 26: EMLAB 1 Chapter 2. Resistive circuits 2014. 9. 12.

EMLAB

262.10 Application examples

Example 2.33 : The Wheatstone bridge circuit.

xx

x

R

R

R

R

RR

R

RR

R 2

3

1

231

3

1

32 R

RRRx