Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

69
Problems Section 9-2: Differential Equations for Circuits with Two Energy Storage Elements P9.2-1 KCL: i v R C dv dt KVL: V Ri L di dt L 2 s 1L L = + = + + v v R v R C dv dt L R dv dt LC dv dt v R R 1 v+ R C+ L R dv dt LC] dv dt R R L = 1mH, C = 10 F v dv dt dv dt v v + 3000 dv dt dv dt s 1 2 2 2 2 s 1 2 1 2 2 2 1 2 s 2 2 s 2 2 = + L N M O Q P + + + = + L N M O Q P L N M O Q P + = = = + + × × = × + v v [ , , . . . 2 100 102 00003 1 10 1 10 102 10 8 8 8 Ω Ω μ P9.2-2 KCL: i v R i Csv KVL: v = R i Lsi s 1 L 2L L = + + + Solving Cramer's rule for i i i R R Ls R R Cs + LCs +1 R R i L R R C si LCsi i R R L = 1mH, C = 10 F 1.1i si si i i si si i L L s 2 1 1 2 2 2 1 L 1 2 L 2 L s 1 2 L L 2 L s L L 2 L s : , , . . = + + + L N M O Q P + + L N M O Q P + = = = + + × = × + + = × 1 100 10 00011 1 10 11 10 11000 1 10 8 8 8 Ω Ω μ

description

Introdução Aos Circuitos Elétricos - 7th ed - Dorf Svoboda - Resolução - Capitulo 9

Transcript of Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

Page 1: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

Problems

Section 9-2: Differential Equations for Circuits with Two Energy Storage Elements P9.2-1

KCL: i vR

C dvdt

KVL: V R i Ldidt

L2

s 1 LL

= +

= + + v

v R vR

C dvdt

LR

dvdt

LC d vdt

v RR

1 v + R C + LR

dvdt

LC] d vdt

R R L = 1mH, C = 10 F

v dvdt

d vdt

v v + 3000 dvdt

d vdt

s 12 2

2

2

s1

21

2

2

2

1 2

s

2

2

s

2

2

= +LNM

OQP+ + +

= +LNMOQPLNM

OQP

+

= =

= + + ×

× = × +

v

v

[

, ,

. .

.

2 100

102 00003 1 10

1 10 102 10

8

8 8

Ω Ω

μ P9.2-2

KCL: i v

Ri Csv

KVL: v = R i Lsi

s1

L

2 L L

= + +

+

Solving Cramer's rule for i

i i

RR

LsR

R Cs + LCs +1

RR

i LR

R C si LC s i i

R R L = 1mH, C = 10 F

1.1i si s i i

i si s i i

L

Ls

2

1 12

2

2

1L

12 L

2L s

1 2

L L2

L s

L L2

L s

:

, ,

.

.

=+ +

+LNMOQP

+ +LNM

OQP

+ =

= =

+ + × =

× + + = ×

1

100 10

00011 1 10

11 10 11000 1 10

8

8 8

Ω Ω

μ

Page 2: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

P9.2-3 t > 0

KCL: idvdt

v + vR

Lc s c

2+ + =C 0

KVL: R i R i Ldidt

= 01 s 1 LL

c s+ + − −v v

LSolving for :i 2

s sL 1 L 1 1 1L s2

2 2 2

1 1 di dvd i R di R R Ri idt L R C dt LR C LC LCR L dt L dt

⎡ ⎤ ⎡ ⎤ −+ + + + = − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

1

P9.2-4 After the switch opens, apply KCL and KVL to get

( ) ( ) ( )1 sdR i t C v t v t Vdt

⎛ ⎞+ + =⎜ ⎟⎝ ⎠

Apply KVL to get

( ) ( ) ( )2dv t L i t R i tdt

= +

Substituting v t into the first equation gives ( )

( ) ( ) ( ) ( ) ( )1 2d d d

2 sR i t C L i t R i t L i t R i t Vdt dt dt

⎛ ⎞⎛ ⎞+ + + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=

then

( ) ( ) ( ) ( ) ( )2

1 1 2 1 22d d

sR C L i t R C R L i t R R i t Vdtdt

+ + + + =

Dividing by : 1R C L

( ) ( ) ( )2

1 2 1 2 s2

1 1

R C R L R R Vd di t i t i t1R C L dt R C L R C Ldt

⎛ ⎞ ⎛ ⎞+ ++ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

=

Page 3: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

P9.2-5

After the switch closes, use KCL to get

( ) ( ) ( )2

v t di t C v tR dt

= +

Use KVL to get

( ) ( ) ( )s 1dv R i t L i t v tdt

= + +

Substitute to get

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

21

s 1 22 2

21 2

122 2

R d L d dv v t R C v t v t CL v t vR dt R dt dt

R Rd L dCL v t R C v t v tdt R dt R CL

= + + + +

⎛ ⎞ += + + +⎜ ⎟⎜ ⎟

⎝ ⎠

t

Finally,

( ) ( ) ( )2

s 1 12

2 2

1v R Rd dv t v t v tCL dt L R C dt R CL

⎛ ⎞ += + + +⎜ ⎟⎜ ⎟

⎝ ⎠

2R

P9.2-6

After the switch closes use KVL to get

( ) ( ) ( )2dR i t L i t v tdt

+ =

Use KCL and KVL to get

Page 4: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

( ) ( ) ( )s 1dv R i t C v t v tdt

⎛ ⎞= + +⎜ ⎟⎝ ⎠

Substitute to get

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

s 1 1 2 1 22

2

1 1 2 1 22

d dv R i t R CR i t R CL i t R i t L i tdt dt dt

d dR CL i t R R C L i t R R i tdt dt

= + + + +

= + + + +

d

Finally

( ) ( ) ( )2

s 2 12

1 1

1v R Rd di t i t i tR CL dt L R C dt R CL

⎛ ⎞ += + + +⎜ ⎟⎜ ⎟

⎝ ⎠

2

1

R

P9.2-7

After the switch opens, KVL gives

( ) ( ) ( )1 1 2 2 2 2d dL i t R i t L i tdt dt

= +

KVL and KCL give

( ) ( ) ( )( )1 1 1 1 2 0dL i t R i t i tdt

+ + =

Use the operator method to get

( )1 1 2 2 2 2

1 1 1 1 2 0

L s i R i L s i

L s i R i i

= +

+ + =

( ) ( )

21 1 1 1 1 2

12 2 2 2 2 2 2 2 1 2

1

2 1 222 2 2 1 1 2 2

1 1

2 1 1 1 222 2 2

2 2 1 1 2

0

0

0

0

L s i R s i R s i

Rs R i L s i R i L s i R s i

L

L R RL s i R R R s i i

L L

R R R R Rs i s i i

L L L L L

+ + =

+ + + +

⎛ ⎞+ + + + =⎜ ⎟⎜ ⎟⎝ ⎠

⎛ ⎞+ + + + =⎜ ⎟⎜ ⎟⎝ ⎠

=

Page 5: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

so

( ) ( ) ( )2

2 1 1 1 22 22

2 2 1 1 2

0R R R R Rd di t i t i t

dt L L L dt L L⎛ ⎞

+ + + + =⎜ ⎟⎜ ⎟⎝ ⎠

2

P9.2-8

After the switch closes, KVL and KCL give

( ) ( ) ( )1 3 1 1 2 2d dv t R C v t C v t vdt dt

⎛ ⎞+ +⎜ ⎟⎝ ⎠

s=

KVL gives

( ) ( ) ( )1 2 2 2 2dv t R C v t v tdt

= +

Using the operator method ( )1 3 1 1 2 2v R C sv C sv v s+ + =

1 2 2 2v R C sv v 2= + so

( )1 2 21v R C s= + 2v

( ) ( )2 2 2 3 1 2 2 2 3 2 2 s1 1R C s v R C s R C s v R C sv v+ + + + = Then

( )22 3 1 2 2 2 2 3 1 3 2 2 2 sR R C C s v R C R C R C sv v v+ + + + =

2 2 3 1 3 2 s2

2 2 22 3 1 2 3 2 1 2 2 3 1 2

1R C R C R C vs v sv v

R R C C R R C C R R C C+ +

+ + =

s22 2 2

3 1 2 2 2 1 2 3 1 2 2 3 1 2

1 1 1 1 vs v sv v

R C R C R C R R C C R R C C⎛ ⎞

+ + + + =⎜ ⎟⎜ ⎟⎝ ⎠

Page 6: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

so

( ) ( ) ( )2

s22

2 3 1 2 3 1 2 2 2 1 2 3 1 2

1 1 1 1v d dv t v t v tR R C C dt R C R C R C dt R R C C

⎛ ⎞= + + + +⎜ ⎟⎜ ⎟

⎝ ⎠

P9.2-9 After the switch closes

( ) ( )di t C v tdt

=

KCL and KVL give

( ) ( ) ( ) ( ) ( )s 21

1 d dv R i t L i t v t L i t v tR dt dt

⎛ ⎞⎛ ⎞= + + + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

Substituting gives

( ) ( ) ( )

( ) ( ) ( )

22 2

s 221 1

22 2

221 1

1 1

1 1

R Rd dv LC v t R C v tR dt dt R

R Rd dLC v t R C v t v tR dt dt R

⎛ ⎞ ⎛ ⎞= + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎛ ⎞ ⎛ ⎞

= + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

v t

Finally

( ) ( ) ( ) ( ) ( )2

1 s 1 2

1 2 1 2

1R v R Rd dv t v t v tdt dt LCLC R R L R R

= + ++ +

P9.2-10 Find the Thevenin equivalent circuit for the part of the circuit to the left of the inductor.

( )( )

s oca

1 s 2oc

oc 1 2a a

2

11

v vi

R v R bv

v R R bi bi

R

− ⎫= ⎪

+⎪ ⇒ =⎬ + +⎪+ = ⎪⎭

Page 7: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

( ) ( )ssc a

11 1

vi i b b

R= + = +

( )( )

( ) ( )

s 2

oc 1 2 1 2t

ssc 1 2

1

11

11

v R bv R R b R R

R vi RbR

+

+ += = =

+ ++

R b

( ) ( ) ( )t o 0d i t

R i t L v t vd t c+ + − =

( ) ( )d v ti t C

d t=

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2

tt oc2 2

1Rd v t d v t d v t d v t v tR C LC v t v v t

d t d t d t L d t LC LC+ + = ⇒ + + =

Finally, ( )

( )( )( ) ( ) ( )2

1 22

1 2

11

R Rd v t d v t v tv t

d t d t LC LCL R R b+ +

+ +=

P9.2-11 KCL gives

( ) ( ) ( ) ( ) ( ) ( )s 11 1 s 1 1 1 1

1

v t v t d dC v t v t R C v t v t

R dt dt−

= ⇒ = +

and ( ) ( ) ( ) ( ) ( ) ( )1 2

2 2 1 2 2 2 22

v t v t d dC v t v t R C v t v t

R dt dt−

= ⇒ = +

Substituting gives

( ) ( ) ( ) ( ) ( )s 1 1 2 2 2 2 2 2 2 2d d dv t R C R C v t v t R C v t v tdt dt dt⎡ ⎤= + +⎢ ⎥⎣ ⎦

+

so

( ) ( ) ( ) ( )2

s 2 221 2 1 2 1 1 2 2 1 2 1 2

1 1 1dv t v t v t v tR R C C dt R C R C R R C C

⎛ ⎞= + + +⎜ ⎟⎜ ⎟

⎝ ⎠2

1

Page 8: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

P9.2-12 KVL gives

( ) ( ) ( )s 1 1 1 1dv t R C v t v tdt

= +

KCL gives

( ) ( ) ( )21 1 2 2

2

0v td dC v t C v t

dt dt R+ + =

KVL gives ( ) ( )o 2v t v t=

Using the operator method s 1 1 1 1

21 1 2 2

2

0

v R C sv v

vC sv C sv

R

= +

+ + =

Solving

( )

21 2 2

1 2 1

2s 1 1 o

1 2 1

2s o o

1 2 1 1 2 2 1 2 1 2

1

11

1 1 1

Cv v v

C R C s

Csv sR C s v

C R C

sv s v sv vR C R C R C R R C C

⎛ ⎞= − +⎜ ⎟⎜ ⎟

⎝ ⎠⎛ ⎞

= + +⎜ ⎟⎜ ⎟⎝ ⎠⎛ ⎞

= + + +⎜ ⎟⎜ ⎟⎝ ⎠

o1

The corresponding differential equation is

( ) ( ) ( ) ( )2

s o o21 2 1 1 2 2 1 2 1 2

1 1 1d d dv t v t v t v tR C dt dt R C R C dt R R C C

⎛ ⎞= + + +⎜ ⎟⎜ ⎟

⎝ ⎠o

1

P9.2-13 After the switch opens, KCL gives

( ) ( )s

1

0v t dC v t

R dt+ =

KVL gives

( ) ( ) ( )odv t v t L i tdt

− =

and Ohm’s law gives ( ) ( )o 2v t R i t=

so

Page 9: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

( ) ( )s1

1d v t v tdt R C

= −

and

( ) ( ) ( )2

o 2

d d dv t v t L i tdt dt dt

− =

Then

( ) ( ) ( ) ( )2

s 221

1 d d dv t v t L i t R i tR C dt dt dt

− = = +

or

( ) ( ) ( )2

2s 2

1

1 Rd dv t i t i tR CL dt L dt

− = +

P9.2-14 KCL gives

( ) ( ) ( )s 11 1

1 2

v t v t dC v tR R dt

= +

and ( ) ( ) ( )2 1

2 23

0v t v t dC v t

R dt+

+ =

so

( ) ( ) ( )21 2 1 1 s

1

Rdv t R C v t v tdt R

+ =

and

( ) ( ) ( )1 2 3 2 2dv t v t R C v tdt

⎛ ⎞= − +⎜ ⎟⎝ ⎠

Substituting gives

( ) ( ) ( ) ( ) ( )22 3 2 2 2 1 2 3 2 2 s

1

Rd d dv t R C v t R C v t R C v t v tdt dt dt R

⎡ ⎤⎡ ⎤+ + + = −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

or

( ) ( ) ( ) ( )2

2 2 222 1 3 2 2 3 1 2 1 3 1 2

1 1 1 1d dv t v t v t v tdt R C R C dt R R C C R R C C

⎛ ⎞+ + + = −⎜ ⎟⎜ ⎟⎝ ⎠

s

Page 10: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

P9.2-15

1 1 2Apply KVL to the left mesh : ( ) (1)

where

si s i i v

ds dt

+ − =

=

2 2 2 1

1 2 2 22

1Apply KVL to the right mesh : 2 2 ( ) 0

1 1 2 2 (

i i s i is

i i i is s

⎛ ⎞+ + − =⎜ ⎟⎝ ⎠

⎛ ⎞ ⎛ ⎞⇒ = + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2)

Plugging (2) into (1) yields

222 2 2 23 4 2 3 4 2 2 2 2 22 2

d vd i di ss i si i s v or is dtdt dt+ + = + + =

Page 11: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

Section 9-3: Solution of the Second Order Differential Equation - The Natural Response P9.3-1 From Problem P 9.2-2 the characteristic equation is

1 2

2 811000 (11000) 4(1.1 10 )8 21.1 10 11000 0 , 5500 8930 2

s s s s j− ± − ×

× + + = ⇒ = = − ±

P9.3-2

KVL: 40(i i ) = 100mdi

dt

i i m dv

dt

s LL

c

L cc

− +

= =

−v where m 1

1

3

3 = 0 240 di 40 di 100 d i2s L Li m mL 23 dt 3 dt 3 dt

2d i di diL L s400 30000i 400L2 dt dtdt2s +400s+30000 = 0 (s+100)(s+300) = 0 s = 100, s = 3001 2

m= − −

+ + =

⇒ ⇒ −

P9.3-3

KCL: v

1i dv

dt

KVL:

v = 2i +1mdidt

sL

LL

−+ + = =

=

vwhere

where m

10 0 10

10

6

3

μ μ

i mdidt

ididt

md i

dt

v ididt

d idt

d idt

didt

i v

s s + 3 10 s s

LL

s LL

2L

s LL

2L

2

2L L

L s

2 81 2

0 2 1 10 2 10 1

3 00102 1 10

102000 3 10 1 10

102000 0 3031 98969

8

8 8

= + − + + ⋅ + ⋅

= + + ×

+ + × = ×

+ × = ∴ = = −

v μ μ

.

, ,

Page 12: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

P9.3-4 Assume zero initial conditions

1 21

1 22

2

1 1loop 1 : 10 10 72 2

1 1loop 2 : 200 72 2

1 110 2 2

determinant : 1 1 200 2 2

20 400 0, 10 17.3

di diidt dt

di di i dtdt dt

s s

s ss

s s s j

+ − = −

− + + =

⎡ ⎤⎛ ⎞+ −⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎢ ⎥⎛ ⎞− +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

+ + = ∴ = − ±

Page 13: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

Section 9.4: Natural Response of the Unforced Parallel RLC Circuit

v 0 = 6, dv 0

dt = b g b g

− 3000 P9.4-1 ( )v vv L2sUsing operators, the node equation is: Csv+ 0 or LCs s+ 1 v = v sR sL R

− ⎛ ⎞+ = +⎜ ⎟⎝ ⎠

So the characteristic equation is: s

RCs + 1

LC

s = 250 =

2

1,22

+ =

⇒ − ± − − −

1 0

250 40 000 100 400, ,

So v t Ae Be

v 0 6 = A + B

dv 0dt

A B A =

B = 8

v t e 8e t > 0

t t

t t

b gb gb g

b g

= +

=

= − = − −UVW

∴ = − +

− −

− −

100 400

100 400

3000 100 4002

2

P9.4-2

v 0 2, i 0 0

Characteristic equation sRC

s + 1LC

s s + 3 = 0 s =

v t Ae Be

Use eq. .5 s A + s B = v 0RC

i 0C

1A B = = 8 1

also have v 0 2 = A + B 2

From 1 & 2 get A = 1, B = 3

v t 1e 3e V

2 2

t t

1 2

t 3t

b g b g

b gb g b g

b g

b g b gb g b gb g

= =

+ = ⇒ + ⇒ −

= +

− ⇒ − −

− − − − −

=

− +

− −

− −

1 0 4 1 3

9 12

3 21

40

3

,

∴ =

P9.4-3

KVL : ididt

didt

0 1

KVL : didt

didt

i 2

11 2

1 22

+ − =

− + + =

5 3

3 3 2 0

b g

b g

( ) ( )( ) ( )

( ) ( )

in operator form

1+5s i 3s i 0 21 2 2 1 thus = 1+5s 3s+2 9 = + s = 2 6s 13s+ 2 = 0 6,3s i + 3s+2 i 01 2s

⎫+ − = ⎪Δ − ⇒ −⎬

− = ⎪⎭

Page 14: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

Thus i t Ae Be

i t = Ce + De

1t6 t

2t6 t

b gb g

= +− −

− −

2

2

Now i 0 = 11 = A + B;i 0 = 11 = C + D

from 1 & 2 get

di

dt A

6B ;

di 0

dt C

6which yields A = 3, B = 8, C = 0 = 12

i (t) = 3e e A & i t) = e +12e A

1 2

1 2

1t /6 t

2t /6 t

b g b gb g b gb g b g0 33

22 143

620

1

8 2 2

= − = − − = − = − −

+ −− − − −

,

(

P9.4-4 Represent this circuit by a differential equation. (R1 = 50 Ω when the switch is open and R1 = 10 Ω when the switch is closed.) Use KCL to get

( ) ( ) ( )2

v t di t C v tR dt

= +

Use KVL to get

( ) ( ) ( )s 1dv R i t L i t v tdt

= + +

Substitute to get

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

21

s 1 22 2

21 2

122 2

R d L d dv v t R C v t v t CL v t vR dt R dt dt

R Rd L dCL v t R C v t v tdt R dt R

= + + + +

⎛ ⎞ += + + +⎜ ⎟⎜ ⎟

⎝ ⎠

t

Finally,

( ) ( ) ( )2

s 1 12

2 2

1v R Rd dv t v t v tCL dt L R C dt R CL

⎛ ⎞ += + + +⎜ ⎟⎜ ⎟

⎝ ⎠

2R

Compare to

( ) ( ) ( )2

202 2 (d dv t v t v t f t

dtdtα ω+ + = )

to get

Page 15: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

1

2

12RL R C

α = + and 1 22

02

R RR CL

ω+

=

(a) When the switch is open α = 14.5 , 0ω = 14.14 rad/s and dω = j3.2 (the circuit is overdamped). (b) When the switch is closed α = 4.5 , 0ω = 10.954 rad/s and dω = 9.987 (the circuit is underdamped). P9.4-5

2

2

1 1

40 100 0 2.7 , 37.3

s sRC LC

s ss

+ + =

+ + == − −

0

The initial conditions are . (0) 0 , (0) 1 Av i=

2.7 37.31 2 1 2

1 2

1

, (0) 0 (1)

(0 ) 1 (0 )KCL at 0 yields : (0 ) 01 40

(0 ) 40 (0 ) 40 (0 ) 40(1) 2.7 37.3 (2)

from (1) and (2) 1.16 ,

t tnv A e A e v A A

v dvt idt

dv v i A Adt

A

− −

+ ++ +

++ +

= + = = +

= + + =

∴ = − − = − = − −

⇒ = − 22.7 37.3

1.16So ( ) ( ) 1.16 1.16t t

n

Av t v t e e− −

=

= = − +

Page 16: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

Section 9.5: Natural Response of the Critically Damped Unforced Parallel RLC Circuit P9.5-1 t > 0

KVL : 100i didt

v i dvdt

d vdt

dvdt

v

s s + 4 10 s = v t A e A te

cc

c cc

2c

2c

c

2 6c 1

t2

t

a + + = =

∴ + + × =

+ × = ⇒ − − ∴ = +

− −

. ,

,

025 0 10

4000 4 10 0

4000 0 2000 2000

5

6

2000 2000b g

t = −−0 (Steady State)

i = i 0 = 0 = i 0 dv

dt = 0

v 0 = 3 V = v 0

L c c+ c

c c+

−+

⇒e j e j e j

e j e j

0

so v 0 = 3 = A

dv

dt = 0 = A + A A = 6000

v t t e V

c+

1

c1 2 2

ct

e je j

b g b g

02000

3 6000 2000

+

− ⇒

∴ = +

P9.5-2

KCL at v v dtdvdt

ddt

d vdt

dvdt

c ct

cc

2c c

c

:−∞z + + =

⇒ + + =

v

v

14 0

4 4 0

t > 0

s + 4 = 0, s = t A e A te2c 1

t2

t+ − − ∴ = +− −4 2 2 2 2s v, b g

Page 17: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

t Steady State= −−0 ( )

v v & i V

10 A = i

Since v then i i A

dv

dt

i V

S

c c L

c c L

c c

0 0 0 020

2 0

0 0 0 0 2

0 01

48

− + −

+ + +

+ +

= = = =

= = − = −

∴ = = −

e j e j e j e j

e j e j e je j e j

Ω L+

So v A

dv

dt A

v t te V

c

c2

ct

0 0

08

8

1

2

+

+

= =

= − =

∴ = −

e je j

b g

P9.5-3

Assume steady state at t = 0 v 0 10 V & i 0 0c4

L− ∴ =− − −e j e j = t > 0

KVL : v 01didt

i 1

Also : i Cdvdt C 01 d i

dtdidt

2

cL

L

Lc

2L

2L

a − + + =

= − = − +LNMM

OQPP

.

.

10 0

10

6

6

b g

b g

∴ + + =

⇒ + ⇒− ± −

⇒ ∴ − × − ×

= +

⇒ = −

=

− × − ×

+ + +

.01Cd idt

Cdidt

i

Characteristic eq. .01C s s +1 = 0 s = C C

C

for critically damped: 10 C 04C = 0

C = 0.04pF s =

So i t A e A te

Now from didt

v i = 10 As

So i

2L

2L

L

2

12 2

L 1t

2t

Lc L

6

L

10 0

1010 10 4 01

2 01

5 10 5 10

1 0 100 0 10 0

0 0

6

66 6 2

7 7

5 10 5 10

6

7 7

e j b gb g

b ge j e j e j

b g

.

.

.

,

( )

C

A and di

dt A i t te A

Now v t i t 10 te V

1L 0

2 Lt

L12 t

= = = ∴ =

= =

− ×

− ×

b g b gb g b g

10 10

10

6 6 5 10

6 5 10

7

7

Page 18: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

P9.5-4 2 31 1 1 10 with 500 and 62.5 10 yields 250, 250s s s

RC LC RC LC+ + = = = × = − −

( )( )( )

( )

250 250

250 250

0 6

03000 250 1500

6 1500

t t

t t

v t Ae Bte

v A

dvA B B

dtv t e te

− −

− −

= +

= =

= − = − + ⇒ = −

∴ = −

P9.5-5

( )( )

( )

( )

( )

KVL : 2 4 6 10

2taking the derivative with respect to : 4 02

2Characteristic equataion: 4 0

2Let 4 for critical damping 2 0

2 2So

0

di tRi idtdt

v t

d i dit R idtdt

s Rs

R s

t ti t Ate Be

i

+ + + =∫

+ + =

+ + =

= ⇒ + =

− −= +

( ) ( ) ( )( ) ( )

( )

0 0

0from 1 4 0 4 0 4

2 4 A

B

diR i R A

dtti t te

= ⇒ =

= − = − = =

−∴ =

Page 19: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

Section 9-6: Natural Response of an Underdamped Unforced Parallel RLC Circuit P9.6-1 t > 0

KCL at v v250 i dv

dt 1

also : v .8didt

2

cc

Lc

cL

: + + × =

=

−5 10 06 b g

b g

( ) ( )

( )

Solving for i in 1 & plugging into 2L 2d v dv 5 2 c c800 2.5 10 v 0 s 800 +250,000 = 0, s = 400 j 300c2 dtdt

400t v t = e A cos300t+A sin300t1 2c

s+ + × = ⇒ + − ±

− ⎡ ⎤∴ ⎣ ⎦

t Steady State= −−0 ( )

i

500 A = i

v V = v

Now from 1 dv

dt 2 10 i 0 = 0

So v 0 = 3 = A

dv

dt = 0 = A + 300A A = 4

v t e t + 4sin 300t V

L L

c c

c 5L c

+

c+

1

c1 2 2

ct

0 6 6500 0

0 250 6500 6 3 0

00 800

0400

3 300400

− +

− +

++

+

=−

= −

= − + =

= − × −

− ⇒

∴ =

e j e je j e j e j

b g e j e j e je je j

b g

V

v

Ω

:

cos

P9.6-2

t = −0

i A

v

0 2

0 0b gb g

=

=

t = −0 KCL at node a:

v1

C dvdt L

vdt i 0 10

t

+ + + =z1 0b g b g

Page 20: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

in operato v i

s j

r form have v + Csv + 1Ls

or sC

s + 1LC

v = 0

with s s =

2

2

+ = +FHGIKJ

+ + = ⇒ − ±

0 0 1

4 8 0 2 2

b g

v t e B cos2t + B sin 2t

v 0 = B

dv 0

dt C i 0 v 0 B or B

So v t e sin 2tV

t1 2

1

2 2

t

b gb gb g b g b g b gb g

=

=

= − − = − = − = = −

= −

2

2

0

1 1 4 2 8 2 4

4

From ,

P9.6-3 t > 0 KCL at v 1

4dvdt

+ v2

+ i = 0 1

KVL : v = 4didt

i 2

cc c

L

cL

L

: b g

b g+ 8

( ) ( )

( )

2d i di 2L L2 into 1 yields 4 5i 0 s 4s+ 5 = 0 s = 2 iL2 dtdt2ti t e A cos t+A sin t1 2L

+ + = ⇒ + ⇒ −

− ⎡ ⎤∴ = ⎣ ⎦

±

t = 0 Steady State− −b g v

c 0

27

4 84 8 2

=+

FHG

IKJ

e j

⇒ =

=−

= −

− +

− +

v V = v

i V2

A = i

c c

L L

0 8 0

0 8 4 0

e j e je j e jΩ

∴ = − = − −+ +

+ from 2 di

d=

t

v2i 8 V

4 10 A

sL c

Lb g e j e j e j b g0 0

40 2 4

So i A

di

dt 10 = A A A

i t e cos t + 2 sin t A

L 1

L1 2 2

Lt

0 4

02 2

42

+

+

= − =

= − + ⇒ =

∴ = −

e je j

b g

Page 21: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements
Page 22: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

P9.6-4 The response is underdamped so

( )( ) ( )

( )

cos sin 1 2 0 0, 0 0 03 1

sin2

tv t e k t k t k

v k v k

tv t k e t

3α ω ω

α ω

− ⎡ ⎤∴ = + +⎣ ⎦∞ = ⇒ = = ⇒ =

−∴ =

From Fig. P 9.6-6

t ≈ 5ms ↔ v ≈ 260mV (max) t ≈ 7.5ms ↔ v ≈ −200 mV (min)

∴ distance between adjacent maxima is ≈ 2 rad 1257 sTπω = =

so ( ) ( ) (( ) ( ) (

.005 0.26 sin 1257 .005 12 .00750.2 sin 1257 .0075 22

k e

k e

α

α

−=

−− =

)

)

Dividing (1) by (2) gives ( ) ( )

( )sin 6.29 .0025 0025 1.3 1.95 267sin 9.43

rade e

radα α α⋅− = ⇒ = ⇒ =

From (1) so 2 544k =

( ) ( )267 544 sin1257 approx. answertv t e t−=

Page 23: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

P9.6-5 v 0 2V

i 0 110A

b gb g

=

=

1 12 2Char. eq. s s+ 0 or s 2 +5 = 0 thus roots are s = 1 2RC LC

s j⇒ + = + − ± So have v(t) = e B cos2t + B sin 2t

now v(0 ) = 2 = B

t1 2

+1

Need dv 0

dt 1

Ci KCL yields i

v 0i 0 = V

s

So dv 0

dt 10 B B B

+

c c

++

+

1 2 2

e j e j e j e j e je j

= = − −

= −FHGIKJ = − + ⇒ = −

+ +0 05

12

12

2 32

Finally, have v t e cos2t e sin2t V t > 0t tb g = −− −2 32

Page 24: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

Section 9-7: Forced Response of an RLC Circuit P9.7-1

KCL : i vR

i C dvdt

KVL :v = L didt

s L

L

= + +

i LR

didt

i LC d idts

LL

2L

2= + +

(a) i = l u(t) assume i

d idt RC

didt LC

i i

A 1.01 1 10

A = 1 10 i

s f2

L2

LL s

f

∴ =

+ + =

+ +×

=

× =

A

1 1

0 0 13

5

b ge j

i = .5t u(t) assume i

0 + A 65100 .001

+ At + B 1.01

= .5t

650A +100000B = 0100000At = .5t

s f∴ = +At B

b g b g b g b gb g.001

(b)

A = 5

B = 3.25

i tf

×

×

= × − ×

− −

10

10

5 10 3 25 10

6

8

6 8. A

(c) i e assume i Ae

This does not work i Btes

tf

t

ft

= ∴ =

∴ =

− −

2 250 250

250

BeRC

BteRC

BteLC

e

150 B = 2B = .0133

i = .0133 te A

t t tt

f

− − −−

+−

+ =250 250 250

250

250

250 2

t

Page 25: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

P9.7-2

d vdt

RL

dvdt LC

v = v2

s+ +1

v assume v A

0 + 0 +12000A = 2

A = 16000 v

s f

f

= ∴ =

=

2

(a) v t assume v At + B

70A +12000At +12000B = .2t70A +12000 B = 012000 At = .2t

s f= ∴ =.2(b)

A = 160000

, B = 70A12000

, B = 350

v t60000

Vf∴ = + 350

(c)

v e assume Ae

900A Ae +12000Ae = e

10800Ae = e

A = 110800

v = e V

st t

t t t

t t

f

t

= ∴

− −

− − −

− −

30 30

30 30 30

30 30

30

2100

10800

Page 26: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

P9.7-3 (a)

f f

" 5 ' 6 8 Try & plug into above 6 8 8 / 6 Vv v v

v B B v+ + == ⇒ = ∴ =

(b) 4

4f

2

4f

" 5 ' 6 3Try & plug into above

( 4) 5( 4) 6 3 3 / 2 3 / 2

t

t

t

v v v ev Be

B B B Bv e

+ + =

=

⇒ − + − + = ⇒ =

∴ =

(c) 2

2f

2f

" 5 ' 6 2Try (since 2 is a natural frequency)

(4 4) 5 (1 2 ) 6 2 2 2

t

t

t

v v v ev Bte

t B B t Bt Bv te

+ + =

= −⇒ − + − + = ⇒ =

∴ =

Page 27: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

Section 9-8: Complete Response of an RLC Circuit P9.8-1

First, find the steady state response for t < 0, when the switch is open. Both inputs are constant so the capacitor will act like an open circuit at steady state, and the inductor will act like a short circuit. After a source transformation at the left of the circuit:

( )L22 40 63000

i −= = mA

and ( )C 0 4 Vv =

After the switch closes Apply KCL at node a:

CC L 0

v dC v iR dt+ + =

Apply KVL to the right mesh:

L s C C L s0d dL i V v v L i Vdt dt

+ − = ⇒ = +

After some algebra:

( )2 2

3 6sL L L L L L2 2

1 1 4 1610 10 1025 25

Vd d d di i i i i idt R C dt L C R L C dt dt

⎛ ⎞+ + = − ⇒ + + × = − ×⎜ ⎟⎝ ⎠

3

The characteristic equation is

Page 28: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

( )2 3 61,2

410 10 0 200, 800 rad/s25

s s s⎛ ⎞+ + × = ⇒ = − −⎜ ⎟⎝ ⎠

After the switch closes the steady-state inductor current is iL(∞) = -4 mA so

( ) 200 8001 20.004 t t

Li t A e A e− −= − + +

( ) ( ) ( ) ( )

( ) ( )

200 8001 2

200 8001 2

4 44 200 800 425 25

32 128 4

t tC L

t t

dv t i t A e A edt

A e A e

− −

− −

⎛ ⎞ ⎡ ⎤= + = − + −⎜ ⎟ ⎣ ⎦⎝ ⎠= − + − +

+

2

Let t = 0 and use the initial conditions:

1 2 10.006 0.004 0.01A A A= − + + ⇒ = + A

( ) ( ) ( )1 2 14 32 128 4 4 2A A A= − + − + ⇒ = − A

So A1 = 8.01 and A2 = 2.00 and

( ) 200 8000.004 8.01 2.00 At tLi t e e− −= − + +

( ) ( ) ( )4 200 4 80010 10 4 Vt t

Cv t e e− −= − + +

( ) ( ) ( ) ( )200 80010 10 0.004 A1000

C t tv ti t e e− −= = − + +

P9.8-2 First, find the steady state response for t < 0. The input is constant so the capacitor will act like an open circuit at steady state, and the inductor will act like a short circuit.

( ) 10 0.2 A1 4

i −= =

+

and

( ) ( )40 1 0.1 4

v = − = −+

8 V

For t > 0

Page 29: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

Apply KCL at node a:

s

1

0v V dC v iR dt−

+ + =

Apply KVL to the right mesh:

2 20d dLR i L i v v R i L i

dt dt+ − = ⇒ = +

After some algebra:

2 21 2 1 2 s

2 21 1 1

5 5L R R C R R Vd d d di i i i i

dt R L C dt R L C R L C dt dt+ +

+ + = ⇒ + 1i+ =

The forced response will be a constant, if = B so 2

21 5 5 0.2 Ad dB B B Bdt dt

= + + ⇒ = .

To find the natural response, consider the characteristic equation:

( ) ( )20 5 5 3.62 1.38s s s s= + + = + + The natural response is

n 1 23.62 1.38t ti A e A e− −= +

so ( ) 1 2

3.62 1.38 0.2t ti t A e A e− −= + + Then

( ) ( ) ( ) 1 23.62 1.384 4 10.48 1.52 0.8t tdv t i t i t A e A e

dt− −⎛ ⎞= + = − − +⎜ ⎟

⎝ ⎠

At t=0+ ( ) 1 20.2 0 0.2i A A− = + = + +

( ) 1 20.8 0 10.48 1.52 0.8v A A− = + = − − + so A1 = 0.246 and A2 = -0.646. Finally

( ) 3.62 1.380.2 0.246 0.646 At ti t e e− −= + −

Page 30: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

P9.8-3 First, find the steady state response for t < 0. The input is constant so the capacitors will act like an open circuits at steady state.

( ) ( )110000 10

1000 1000v = =

+5 V

and ( )2 0 0 Vv =

For t > 0, Node equations:

61 1 2

2

v

v

1

31 1

10 1 10 01000 6 1000

12 10 106

v d vvdt

dv vdt

− −⎛ ⎞+ × + =⎜ ⎟⎝ ⎠⎛ ⎞⇒ + × − =⎜ ⎟⎝ ⎠

61 2

2

31 2

1 101000 16

1 1016

v v d vdt

dv v vdt

− ⎛ ⎞= ×⎜ ⎟⎝ ⎠

⎛ ⎞⇒ − = ×⎜ ⎟⎝ ⎠

2

After some algebra:

( ) ( )2

4 71 1 12 2.8 10 9.6 10 9.6 10d dv v v

dt dt+ × + × = × 8

The forced response will be a constant, vf = B so

( ) ( )2

4 7 82 2.8 10 9.6 10 9.6 10 10 Vd dB B B B

dt dt+ × + × = × ⇒ = .

To find the natural response, consider the characteristic equation:

( ) ( )2 4 7 31,22.8 10 9.6 10 0 4 10 , 2.4 10s s s+ × + × = ⇒ = − × − × 4

+

The natural response is

n 1 2

3 44 10 2.4 10t tv A e A e− × − ×= + so

( )1 1 2

3 44 10 2.4 10 10t tv t A e A e− × − ×= + At t = 0

Page 31: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

(1) ( ) ( ) ( )1 1 2 1 2

3 44 10 0 2.4 10 05 0 10 10v A e A e A A− × − ×= = + + = + +Next

3 41 1 2 1 1 2

12 10 10 12000 6000 6 106

d dv v v v v vdt dt

−⎛ ⎞+ × − = ⇒ = + − ×⎜ ⎟⎝ ⎠

At t = 0

( ) ( ) ( ) ( ) ( )4 41 1 20 12000 0 6000 0 6 10 12000 5 6000 0 6 10 0d v v v

dt= + − × = + − × =

so

( ) ( ) ( )3 41 1 2

3 44 10 2.4 104 10 2.4 10t td v t A e A edt

− × − ×= − × + − ×

At t = 0+

( ) ( ) ( ) ( ) ( ) ( ) (3 4 31 1 2 1 2

3 44 10 0 2.4 10 00 0 4 10 2.4 10 4 10 2.4 10d v A e A e A Adt

− × − ×= = − × + − × = − × + − × )4

so A1 = -6 and A2 = 1. Finally

( )1

4 32.4 10 4 1010 6 V for 0t tv t e e t− × − ×= + − >

Page 32: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

P9.8-4

KCL at top node : .5didt

cost i dvdt 1

KVL at right loop : .5didt

112

dvdt

v 2

LL

L

−FHG

IKJ + + =

= +

5 112 0 b g

b g

t > 0

d

dt of 1 .5d idt

didt

d vdt

sint (3)

ddt of 2 .5

d idt

112

d vdt

dvdt

4

2L

2L

2

2

2L

2

2

2

b g

b g b g

⇒ + + = −

⇒ = +

112

5

Solving for d idt

in 4 and didt

in 2 & plugging into 3

d vdt

dvdt

v = sint s s +12 = 0 s =

2L

2L

2

22

b g b g b g

+ + − ⇒ + ⇒ − −7 12 30 7 3,

4

so v(t) = A e A e v Try v = B cost + B sint & pluginto D.E., equating like terms

yields B = 21 B =

13t

2t

f f 1 2

1 2

− −+ +

4

1733

17,

t = +0

i = 5V 1V1 + 1

= 2A dv(0dt

= 21 = 24 V

sc

+0

12

+ −∴e j Ω Ω

)

So v(0 ) = 1 = A + A + 2117

dv(0 )dt

= 24 = A A

A = 25 A

v(t) = 25e e cost sint V

+1 2

+

1 2

1

2

3t t

− − −

UV|

W|= −

∴ − − +− −

3 4 3317

42917

117 429 21 334e j

Page 33: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

P9.8-5 Use superposition first consider 2u(t) source− KVL at right mesh : v + si + 4(i ) = 0 (1)

also : i = (1/ 3) sv v = (3 / s) i (2)c L L

L c c L

−⇒

2

Plugging (2) into (1) yields (s + 4s + 3) i , roots : s = ,

So i (t) = A e + A e

t = 0 circuit is dead v (0) = i (0) = 0

Now from (1) di (0 )

dti (0 ) v (0 ) = 8 A / s

2L

L 1t

2t

c L

L+

L+

C+

= −

⇒ ∴

= − −

− −

0 1

8 4

3

−3

So i (0) = 0 = A + A

di (0)dt

A A A = 4 , A =

i (t) = 4e e

v (t) = 8 i (t) = 8 e +16e V

Now for 2u(t ) source, just take above expression and replace t t 2 and flip signs

v (t) = 8 +16e e V v(t) = v (t) + v (t)

v(t) = 8 e +16e u(t) + e e u (t

L 1 2

L2

1 2

Lt t

1 Lt t

2t t

1 2t t t t

= = − −

UV|W|

∴ −

∴ − −

− →

∴ − −∴

− − + − −

− −

− −

− − − −

− − − − − −

8 34

4

4 16

2

16

16 8 16 16

1

3

3

2 3 2

3 2 3 2

( ) ( )

( ) ( )

2) V

Page 34: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

P9.8-6

First, find the steady state response for t < 0, when the switch is closed. The input is constant so the capacitor will act like an open circuit at steady state, and the inductor will act like a short circuit.

( ) 50 1.25 mA4

i = − = −

and ( )0 5 Vv =

After the switch closes Apply KCL at node a:

0.1252v d v i

dt+ =

Apply KVL to the right mesh:

10 cos 4 4 0dt v i idt

− + + + =

After some algebra:

2

2 5 6 20 cod dv v vdt dt

+ + = s t

The characteristic equation is

Page 35: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

21,25 6 0 2, 3 rad/s s s+ + = ⇒ = − − s

t

Try

f cos sinv A t B= +

( ) ( ) ( )2

2 cos sin 5 cos sin 6 cos sin 20 cosd dA t B t A t B t A t B tdt dt

+ + + + + = t

( ) ( ) ( )cos sin 5 sin cos 6 cos sin 20 cosA t B t A t B t A t B t t− − + − + + + =

( ) ( )5 6 cos 5 6 sin 20 cosA B A t B A B t− + + + − − + = t

t

So A =2 and B =2. Then

f 2 cos 2 sinv t= +

( ) 2 31 22 cos 2 sin t tv t t t A e A e− −= + + +

Next ( ) ( ) ( ) ( ) ( ) ( )0.125 8 42

v t d dv t i t v t i t v tdt dt

+ = ⇒ = −

( ) ( ) ( ) ( )5 V0 8 0 4 0 8 4 5 30 4

d v i vdt s

⎛ ⎞= − = − − = −⎜ ⎟⎝ ⎠

Let t = 0 and use the initial conditions:

( ) 0 01 2 15 0 2 cos 0 2 sin 0 2v A e A e− −= = + + + = + + 2A A

( ) 2 31 22 sin 2 cos 2 3t td v t t t A e A e

dt− −= − + − −

( ) 0 01 2 130 0 2 sin 0 2 cos 0 2 3 2 2 3d v A e A e

dt− −− = = − + − − = − − 2A A

So A1 = -23 and A2 = 26 and

( ) 2 32 cos 2 sin 23 26t tv t t t e e− −= + − +

Page 36: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

P9.8-7

First, find the steady state response for t < 0, when the switch is closed. The input is constant so the capacitor will act like an open circuit at steady state, and the inductor will act like a short circuit.

( )0 0 Ai = and

( )0 0 Vv =

After the switch closes

Apply KCL at node a: dC vdt

= i

Apply KVL to the right mesh:

( )8 2 4 2

12 2 8

di v i idt

di v idt

+ + + + =

+ + = −

0

After some algebra: ( )2

2

1 462

d dv v vdt dt C C

⎛ ⎞+ + =⎜ ⎟

⎝ ⎠−

The forced response will be a constant, vf = B so

( )2

2

1 46 82

d dB B B Bdt dt C C

⎛ ⎞+ + = − ⇒ = −⎜ ⎟

⎝ ⎠ V

Page 37: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

(a) When C = 1/18 F the differential equation is ( ) ( )

2

2 6 9d dv v vdt dt

72+ + = −

The characteristic equation is 21,26 9 0 3,s s s 3+ + = ⇒ = − −

Then ( ) ( ) 31 2 8tv t A A t e−= + − .

Using the initial conditions: ( ) ( )( )

( ) ( )( )

01 2 1

0 01 2 2 2

0 0 0 8 8

0 0 3 0

v A A e A

d v A A e A e Adt

= = + − ⇒ =

= = − + + ⇒ = 24

So ( ) ( ) 38 24 8 V for 0tv t t e t−= + − >

(b) When C = 1/10 F the differential equation is ( ) ( )

2

2 6 5d dv v vdt dt

40+ + = −

The characteristic equation is 21,26 5 0 1,s s s 5+ + = ⇒ = − −

Then . ( ) 51 2 8t tv t A e A e− −= + −

Using the initial conditions: ( )

( )

0 01 2 1 2

1 20 01 2 1 2

0 0 8 810 and 2

0 0 5 5 0

v A e A e A AA Ad v A e A e A A

dt

⎫= = + − ⇒ + =⎪ ⇒ = = −⎬

= = − − ⇒ − − = ⎪⎭

So ( ) 510 2 8 V for 0t tv t e e t− −= − − >

(c) When C = 1/20 F the differential equation is ( ) ( )

2

2 6 10d dv v vdt dt

80+ + = −

The characteristic equation is 21,26 10 0 3s s s j+ + = ⇒ = − ±

Then ( ) ( )31 2cos sin 8tv t e A t A t−= + − .

Using the initial conditions: ( ) ( )

( ) ( ) ( )

01 2 1

0 01 2 1 2 2

0 0 cos 0 sin 0 8 8

0 0 3 cos 0 sin 0 sin 0 cos 0 24

v e A A A

d v e A A e A A Adt

= = + − ⇒ =

= = − + + − + ⇒ =

So ( ) ( )3 8cos 24 sin 8 V for 0tv t e t t t−= + − >

Page 38: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

P9.8-8 The circuit will be at steady state for t<0:

so iL(0+) = iL(0-) = 0.5 A and vC(0+) = vC(0-) = 2 V. For t>0:

Apply KCL at node b to get: ( ) ( ) ( ) ( )1 1 1 14 4 4 4

d di t v t i t v tL C L Cdt dt= + ⇒ = −

Apply KVL to the right-most mesh to get: ( ) ( ) ( ) ( )14 2 84

d di t i t v t v tL L c cdt dt⎛ ⎞+ = +⎜ ⎟⎝ ⎠

Use the substitution method to get

( ) ( ) ( ) ( )1 1 1 1 14 2 84 4 4 4 4

d d d dv t v t v t v tC C c cdt dt dt dt⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + − = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

or ( ) ( ) ( )2

2 6 22d dv t v t v tC C Cdtdt

= + +

The forced response will be a constant, vC= B so 2

2 6 22d dB B B B

dtdt= + + ⇒ =1 V .

To find the natural response, consider the characteristic equation:

Page 39: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

( )(20 6 2 5.65 0.35s s s s= + + = + + )

+

The natural response is

5.65 0.351 2

t tv A e A en− −= +

so ( ) 5.65 0.35 11 2t tv t A e A eC

− −= +

Then ( ) ( )1 1 1 5.65 0.351.41 0.08751 24 4 4

d t ti t v t A e A eL Cdt− −= + = + +

At t=0+ ( )2 0 1 2v A AC 1= + = + +

( )1 10 1.41 0.08751 22 4i AL= + = + + A

+

so A1 = 0.123 and A2 = 0.877. Finally

( ) -5.65 -0.350.123 0.877 1t tv t e e VC = + P9.8-9

v = L didt (1)

KCL : C dvdt

+ i + v2

= i (2)s

( )s s + 29 i = i = 51

29 = 145

roots : s = j5

i = e A cos 5t + B sin 5t

i = 14529= 5

So i (t) = 5 + e A cos 5t + B sin 5tNow i (0) = 0 = A +5 A =

from (1) di (0)dt

= 0 = A + 5B B =

i (t) = 5+e cos 5t sin t

2s

nt

f

t

t

+

− ±

⇒ −

− ⇒

∴ − −

4

2

5

2 2

5 2 5

2

2

2

Substituting (1) into (2) yields

− P9.8-10 t = 0−

i(0 ) = 22+1

9 = 6A = i (0 )

& v (0 ) = 12+1

9 1.5 = 4.5V = v(0 )

+

+

×

× ×

Page 40: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

t > 0

KCL at middle node: i + 0.5 dvdt

+ v1.5

= i (1)

KVL : v + (0.5 dvdt

+ v1.5

) (0.5) = 5didt

+ i (2)

s

d vdt

4930

dvdt

+ 45

v = 25

i ddt

where i e A

So have s 4930

s + 45

yields s = .817 j.365

v (t) = e A cos (.365t) + A sin (.365t)

Try v (t) = B + B e and plug into the D.E.,equate like terms

2

2 sis

st

2

nt

1 2

f 0 1t

+ + = +

+ = − ±

2 9 3

0

2

817

2

.

Solving for i in (1) and plugging into (2) i ld

⇒ −

− ⇒ =

− − − −

∴ − ⇒ −

− −

=

− −

− −

B = 4.5, B =

So v(t) = e A cos t + A sin (.365t) + 4.5 eNow v(0) = 4.5 = A + 4.5 A from (1)dv(0)

dt = 2 i (0) i (0) 4

3 v(0) = 2(9+3) (4.5) = 6

6 = A + . 365 A + 14.08 A =

so i(t) = i (t) v(t)1.5

dv(t)dt

i(t) e 2.37 cos (.365t) + 7.14 sin (.365t) + 6 +.65e A

0 1t

1 2t

1 1

s

1 2 2

s

t t

7 04

365 7 047 04 7 04

2 2 6 43

817 22 82

5

817 2

817 2

.

(. ) .. .

( )

. .

.

.

.

P9.8-11

Page 41: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

First, find the steady state response for t < 0, when the switch is closed. The input is constant so the capacitor will act like an open circuit at steady state, and the inductor will act like a short circuit.

( ) ( )0 4 0av i= −

( ) ( )( ) ( )0 2 4 0 0 0 Ai i i= − ⇒ = and

( )0 10 Vv =

For t > 0 Apply KCL at node 2:

0aa

v dK v C vR dt+ + =

KCL at node 1 and Ohm’s Law:

av R= − i so

1d Kv idt C R

+=

R

Apply KVL to the outside loop: s 0dL i R i v Vdt

+ + − =

After some algebra: 2 2

s2 2

1 1 40 144 2304d R d K R K R d dv v v V v v vdt L dt LC LC dt dt

+ ++ + = ⇒ + + =

The forced response will be a constant, vf = B so

( ) ( )2

2 40 144 2304 16 Vd dB B B Bdt dt

+ + = ⇒ =

The characteristic equation is . 2

1,240 144 0 4, 36s s s+ + = ⇒ = − −

Then ( ) 4 361 2 16t tv t A e A e− −= + + .

Using the initial conditions: ( )

( )

0 01 2 1 2

1 20 01 2 1 2

10 0 16 60.75 and 6.75

0 0 4 36 4 36 0

v A e A e A AA Ad v A e A e A A

dt

⎫= = + + ⇒ + = −⎪ ⇒ = = −⎬

= = − − ⇒ − − = ⎪⎭

Page 42: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

So ( ) 4 360.75 6.75 16 V for 0t tv t e e t− −= − + >

P9.8-12 Two steady state responses are of interest, before and after the switch opens. At steady state, the capacitor acts like an open circuit and the inductor acts like a short circuit. For t > 0, the switch is open. At steady state, inductor

current is ( )1

2420

iR

∞ =+

. From the given equation,

. Thus, ( ) ( )lim 0.24t

i i t→∞

∞ = =

11

240.24 80 20

RR

= ⇒ =+

Ω .

For t < 0, the switch is closed and the circuit is at steady state.

( ) ( )3

24 0.24 0.193 cos 102 0.280 || 20R

= + − ° =+

Consequently, 3 80 R = Ω

After the switch opens, apply KCL and KVL to get

( ) ( ) ( )1 sdR i t C v t v t Vdt

⎛ ⎞+ +⎜ ⎟⎝ ⎠

=

Apply KVL to get

( ) ( ) ( )2dv t L i t R i tdt

= +

Substituting into the first equation gives ( )v t

( ) ( ) ( ) ( ) ( )1 2d d d

2 sR i t C L i t R i t L i t R i t Vdt dt dt

⎛ ⎞⎛ ⎞+ + + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=

then

Page 43: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

( ) ( ) ( ) ( ) ( )2

1 1 2 1 22d d

sR C L i t R C R L i t R R i t Vdtdt

+ + + + =

Dividing by : 1R C L

( ) ( ) ( )2

1 2 1 2 s2

1 1

R C R L R R Vd di t i t i t1R C L dt R C L R C Ldt

⎛ ⎞ ⎛ ⎞+ ++ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

=

Compare to

( ) ( ) ( )2

202 2 (d di t i t i t f t

dtdtα ω+ + = )

to get 1 2 1 22 s

01 1

2 , and ( )R C R L R R Vf t

1R C L R C L R C Lα ω

+ += = =

From the given equation, we have 6.25α = and d 9.27 rad/sω = . Consequently,

2 20 d 11.18 rad/sω ω α= + = . Next

1 2

1

20 112.580

R C R LR C L L C

+= = + and 1 2

1

1.25 1125 100R RR C L C L C L+

= = ⇒ =

So 220 112.5 0 2000 12.5 0.0125 1.25, 5 mF1 80

100

C C CC

C

= + ⇒ = − + ⇒ =

The corresponding values of the inductance are 8, 2 HL = . There are two solutions:

1 380 , 80 , 1.25 mF and 8 HR R C L= Ω = Ω = = and

1 380 , 80 , 5 mF and 2 HR R C L= Ω = Ω = =

We have used the initial condition but we have not yet used the initial condition ( )0 0.2 Ai =

( ) ( ) ( ) ( ) ( ) ( )22

00 8 4 40R ivd dv t L i t R i t i

dt dt L L L L L= + ⇒ = − = − =

from the given equation,

Page 44: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

( ) ( ) ( )( )6.250.24 0.04cos 9.27 0.1888sin 9.27 A for 0ti t e t t t−= + − + ≥

( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

6.25

6.25

6.25 0.04cos 9.27 0.1888sin 9.27

9.27 0.04sin 9.27 0.1888cos 9.27 for 0

t

t

d i t e t tdt

e t t

= − − +

+ + t ≥

( ) ( )( ) ( )( )0 6.25 0.04 9.27 1.888 2d idt

= − − + =

Consequently, ( ) 42 0 2d i Ldt L

= = ⇒ = H

and we choose 1 380 , 80 , 5 mF and 2 HR R C L= Ω = Ω = =

P9.8-13 First, we find the initial conditions; For t < 0, the switch is closed and the circuit is at steady state. At steady state, the capacitor acts like an open circuit and the inductor acts like a short circuit.

( ) ( )120 1

8 || 24 12v − = × =

+8 12 V

and

( ) ( )24 180 0.75 A

8 24 8 || 24 12i − = × =

+ +

Next, represent the circuit by a differential equation. After the switch opens, apply KCL and KVL to get

( ) ( ) ( )1 sdR i t C v t v t Vdt

⎛ ⎞+ +⎜ ⎟⎝ ⎠

=

Apply KVL to get

( ) ( ) ( )2dv t L i t R i tdt

= +

Page 45: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

Substituting into the first equation gives ( )v t

( ) ( ) ( ) ( ) ( )1 2d d d

2 sR i t C L i t R i t L i t R i t Vdt dt dt

⎛ ⎞⎛ ⎞+ + + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=

then

( ) ( ) ( ) ( ) ( )2

1 1 2 1 22d d

sR C L i t R C R L i t R R i t Vdtdt

+ + + + =

Dividing by : 1R C L

( ) ( ) ( )2

1 2 1 2 s2

1 1

R C R L R R Vd di t i t i t1R C L dt R C L R C Ldt

⎛ ⎞ ⎛ ⎞+ ++ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

=

Compare to

( ) ( ) ( )2

202 2 (d di t i t i t f t

dtdtα ω+ + = )

to get 1 2 1 22 s

01 1

2 , and ( )R C R L R R Vf t

1R C L R C L R C Lα ω

+ += = =

With the given element values, we have 17.5α = and . Consequently, the roots of the

characteristic equation are

20 250ω =

2 21 0 25s α α ω= − − − = − and 2 2

2 0 10s α α ω= − + − = − . The

natural response is ( ) 10 25

n 1 2t ti t A e A e− −= +

Page 46: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

Next, determine the forced response. The steady state response after the switch opens will be used as the forced response. At steady state, the capacitor acts like an open circuit and the inductor acts like a short circuit.

f18 0.9 A

8 12i = =

+

So ( ) ( ) ( ) 10 25

n f 1 2 0.9t ti t i t i t A e A e− −= + = + + It remains to evaluate A1 and A2 using the initial conditions. At t = 0 we have

( ) 1 20.75 0 0.9i A A= = + + The other initial condition comes from

( ) ( ) ( ) ( )2 12 120 0.70.4 0.4

Rv td di t i t idt L L dt

= − ⇒ = − × =5 7.5

then

( ) 1 27.5 0 10 25d i Adt

= = − − A

>

Solving these equations gives A1 = 0.25 and A2 = −0.4 so

( ) 10 250.25 0.4 0.9 A for 0t ti t e e t− −= − +

(checked using LNAPTR 7/21/04) P9.8-14 First, we find the initial conditions; For t < 0, the switch is open and the circuit is at steady state. At steady state, the capacitor acts like an open circuit and the inductor acts like a short circuit.

( )0 0v − = V Aand ( )0 0i − =

Page 47: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

also

( ) ( )00 0

0.025id v

dt= =

Next, represent the circuit after the switch closes by a differential equation. To do so, we find the Thevenin equivalent circuit for the part of the circuit to the left of the inductor.

( )( )

s oca

1 s 2oc

oc 1 2a a

2

11

v vi

R v R bv

v R R bi bi

R

− ⎫= ⎪

+⎪ ⇒ =⎬ + +⎪+ = ⎪⎭

( ) ( )ssc a

11 1

vi i b b

R= + = +

( )( )

( ) ( )

s 2

oc 1 2 1 2t

ssc 1 2

1

11

11

v R bv R R b R R

R vi RbR

+

+ += = =

+ ++

R b

With the given values, and oc 16 Vv = t 2 R = Ω . After the switch closes, apply KVL to get

( ) ( ) ( )t od

cR i t L i t v t vdt

+ + =

Apply KCL to get

( ) ( )di t C v tdt

=

Substituting into the first equation gives ( )i t

( ) ( ) ( )2

oc2

1 vd R dv t v t v tL dt C L C Ldt

⎛ ⎞⎛ ⎞+ + =⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

Compare to

( ) ( ) ( )2

202 2 (d dv t v t v t f t

dtdtα ω+ + = )

to get

Page 48: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

t 2 oc0

12 , and ( )R vf tL C L

α ω= = =C L

With the given element values, we have 2.5α = and . Consequently, the roots of the

characteristic equation are

20 100ω =

2 21,2 0 2.5 9.682s jα α ω= − ± − = − ± and the circuit is

underdamped. The damped resonant frequency is 2 2d 0 9.682 rad/sω ω α= − = . The natural

response is ( ) ( )2.5

n 1 2cos9.682 sin 9.682tv t e A t A t−= +

Next, determine the forced response. The steady state response after the switch closes will be used as the forced response. At steady state, the capacitor acts like an open circuit and the inductor acts like a short circuit.

f oc 16 Vv v= = So

( ) ( )2.5

1 216 cos9.682 sin 9.682tv t e A t A t−= + +

It remains to evaluate A1 and A2 using the initial conditions. At t = 0 we have

( ) 1 10 0 16 16v A A= = + ⇒ = − and

( ) 1 2 22.5 160 0 2.5 9.682 4.1319.682

d v A A Adt

×= = − + ⇒ = − = −

Finally,

( ) ( )( )

2.5

2.5

16 16cos9.682 4.131sin 9.682

16 16.525 cos 9.682 165.5 V for 0

t

t

v t e t t

e t

= + − −

= + + ° ≥t

(checked using LNAPTR 7/22/04)

P9.8-15 First, we find the initial conditions;

Page 49: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

For t < 0, the switch is open and the circuit is at steady state. At steady state, the capacitor acts like an open circuit and the inductor acts like a short circuit.

( )0 0v − = V Aand ( )0 0i − =also

( ) ( ) ( )0 00 0

0.005 50 0.005i vd v

dt= −

×=

Next, represent the circuit after the switch closes by a differential equation. After the switch closes, use KCL to get

( ) ( ) ( )2

v t di t C v tR dt

= +

Use KVL to get

( ) ( ) ( )s 1dv R i t L i t v tdt

= + +

Substitute to get

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

21

s 1 22 2

21 2

122 2

R d L d dv v t R C v t v t CL v t vR dt R dt dt

R Rd L dCL v t R C v t v tdt R dt R

= + + + +

⎛ ⎞ += + + +⎜ ⎟⎜ ⎟

⎝ ⎠

t

Finally,

( ) ( ) ( )2

s 1 12

2 2

1v R Rd dv t v t v tCL dt L R C dt R CL

⎛ ⎞ += + + +⎜ ⎟⎜ ⎟

⎝ ⎠

2R

Compare to

( ) ( ) ( )2

202 2 (d di t i t i t f t

dtdtα ω+ + = )

to get 1 1 22

02 2

12 , and ( s)R R R v

f tL R C R CL CL

α ω+

= + = =

With the given element values, we have 14.5α = and . Consequently, the roots of the

characteristic equation are and

20 200ω =

1 11.3s = − 2 17.7s = − so the circuit is overdamped. The natural response is

Page 50: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

( ) 11.3 17.7n 1 2

t tv t A e A e− −= + Next, determine the forced response. The steady state response after the switch opens will be used as the forced response. At steady state, the capacitor acts like an open circuit and the inductor acts like a short circuit.

f s1 10 V2

v v= =

So

( ) 11.3 17.7n 1 210 t tv t A e A e− −= + +

It remains to evaluate A1 and A2 using the initial conditions. At t = 0 we have

( ) 1 20 0 10v A= = + + A and

( ) 1 20 0 11.3 17.7d v Adt

= = − − A

Solving these equations gives 1 227.6 and 17.6A A= − =

Finally,

( ) 11.3 17.710 27.6 17.6t tv t e e− −= − +

(checked using LNAPTR 7/26/04) P9.8-16 First, we find the initial conditions; For t < 0, the switch is closed and the circuit is at steady state. At steady state, the capacitor acts like an open circuit and the inductor acts like a short circuit.

( )0 0 v − = V A and

( )0 0i − =

Also

( ) ( ) ( ) ( )9 0 0.4 0 0 0 0d di i v idt dt

+ = ⇒ =

Page 51: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

Next, represent the circuit by a differential equation. After the switch closes use KVL to get

( ) ( ) ( )2dR i t L i t v tdt

+ =

Use KCL and KVL to get

( ) ( ) ( )s 1dv R i t C v t v tdt

⎛ ⎞= + +⎜ ⎟⎝ ⎠

Substitute to get

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

s 1 1 2 1 22

2

1 1 2 1 22

d dv R i t R CR i t R C L i t R i t L i tdt dt dt

d dR CL i t R R C L i t R R i tdt dt

= + + + +

= + + + +

d

then

( ) ( ) ( )2

s 2 12

1 1

1v R Rd di t i t i tR CL dt L R C dt R CL

⎛ ⎞ += + + +⎜ ⎟⎜ ⎟

⎝ ⎠

2

1

R

Compare to

( ) ( ) ( )2

202 2 (d di t i t i t f t

dtdtα ω+ + = )

to get 2 1 22 s

01 1

12 , and ( )R R R Vf tL R C R C L R C L

α ω1

+= + = =

With the given element values, we have 12.5α = and . Consequently, the roots of

the characteristic equation are

20 156.25ω =

2 21,2 0 12.5, 12.5s α α ω= − ± − = − − so the circuit is critically

damped. The natural response is ( ) ( ) 12.5

n 1 2ti t A A t e−= +

Next, determine the forced response. The steady state response after the switch opens will be used as the forced response. At steady state, the capacitor acts like an open circuit and the inductor acts like a short circuit.

f20 0.8 A

16 9i = =

+

So

Page 52: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

( ) ( ) ( ) ( ) 12.5n f 1 2 0.8ti t i t i t A A t e−= + = + +

It remains to evaluate A1 and A2 using the initial conditions. At t = 0 we have

( ) 1 10 0 0.8 0.i A A= = + ⇒ = − 8

And ( ) 1 2 20 0 12.5d i A A Adt

= = − − ⇒ =10

Thus ( ) ( ) 12.50.8 10 0.8 for 0ti t t e t−= − + + >

(checked using LNAPTR 7/27/04)

P9.8-17 First, we find the initial conditions; For t < 0, the switch is closed and the circuit is at steady state. At steady state, the inductors act like short circuits.

( )1200 1.333 A15

i − = = and

( )2 0 0 Ai − =

Next, represent the circuit by a differential equation. After the switch opens, KVL gives

( ) ( ) ( )1 1 2 2 2 2d dL i t R i t L i tdt dt

= +

KVL and KCL give

( ) ( ) ( )( )1 1 1 1 2 0dL i t R i t i tdt

+ + =

Use the operator method to get

( )1 1 2 2 2 2

1 1 1 1 2 0

L s i R i L s i

L s i R i i

= +

+ + =

Page 53: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

( ) ( )

21 1 1 1 1 2

12 2 2 2 2 2 2 2 1 2

1

2 1 222 2 2 1 1 2 2

1 1

2 1 1 1 222 2 2

2 2 1 1 2

0

0

0

0

L s i R s i R s i

Rs R i L s i R i L s i R s i

L

L R RL s i R R R s i i

L L

R R R R Rs i s i i

L L L L L

+ + =

+ + + +

⎛ ⎞+ + + + =⎜ ⎟⎜ ⎟⎝ ⎠

⎛ ⎞+ + + + =⎜ ⎟⎜ ⎟⎝ ⎠

=

so

( ) ( ) ( )2

2 1 1 1 22 22

2 2 1 1 2

0R R R R Rd di t i t i t

dt L L L dt L L⎛ ⎞

+ + + + =⎜ ⎟⎜ ⎟⎝ ⎠

2

Compare to

( ) ( ) ( )2

202 2 (d di t i t i t f t

dtdtα ω+ + = )

to get 2 1 1 1 22

02 2 1 1 2

2 , andR R R R R

f tL L L L L

α ω= + + = =( ) 0

With the given element values, we have 33.9α = and . Consequently, the roots of

the characteristic equation are

20 281.25ω =

2 21,2 0 4.4, 63.4s α α ω= − ± − = − − so the circuit is

overdamped. The natural response is

( ) 4.4 63.4n 1 2

t ti t A e A e− −= + Next, determine the forced response. The steady state response after the switch opens will be used as the forced response. At steady state the inductors act like short circuits.

f 0 Ai =

So ( ) ( ) ( ) 4.4 63.4

2 n f 1 2t ti t i t i t A e A e− −= + = +

It remains to evaluate A1 and A2 using the initial conditions. At t = 0 we have

Page 54: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

( )2 10 0i A= = + 2A

( ) ( ) ( ) ( ) ( )2 2 2 2 1 1 1 2 20 0 0 0 0d dL i R i R i R i idt dt

+ + + ⇒ = 20−

and

( ) 1 220 0 4.4 63.4d i Adt

− = = − − A

Solving these equations gives A1 = −0.339 and A2 = 0.339 so

( ) 4.4 63.42 0.339 0.339 for 0t ti t e e t− −= − + ≥

(checked using LNAPTR 7/27/04)

P9.8-18 First, we find the initial conditions; For t < 0, the switch is open and the circuit is at steady state. At steady state, the capacitor acts like an open circuit and the inductor acts like a short circuit.

( )0 0v − = V Aand ( )0 0i − =also

( ) ( )00 0

0.005id v

dt= =

Next, represent the circuit after the switch closes by a differential equation. After the switch closes

( ) ( )di t C v tdt

=

KCL and KVL give

( ) ( ) ( ) ( ) ( )s 21

1 d dv R i t L i t v t L i t v tR dt dt

⎛ ⎞⎛ ⎞= + + + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

Substituting gives

Page 55: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

( ) ( ) ( ) ( ) ( ) ( )2 2

2 2 2s 2 22 2

1 1 1

1 1 1R R Rd d d dv LC v t R C v t v t LC v t R C v t v tR dt dt R R dt dt R

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + = + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2

1

R

So the differential equation is

( ) ( ) ( ) ( ) ( )2

1 s 1 2

1 2 1 2

1R v R Rd dv t v t v tdt dt LCLC R R L R R

= + ++ +

Compare to

( ) ( ) ( )2

202 2 (d di t i t i t f t

dtdtα ω+ + = )

to get

( ) ( )1 2 1 s2

01 2 1 2

12 , and ( )R R R v

f tC LL R R LC R R

α ω= = =+ +

With the given element values, we have 6.25α = and . Consequently, the roots of the

characteristic equation are

20 100ω =

2 21,2 0 6.25 7.806s jα α ω= − ± − = − ± and the circuit is

underdamped. The damped resonant frequency is 2 2d 0 7.806 rad/sω ω α= − = . The natural

response is ( ) ( )6.25

n 1 2cos 7.806 sin 7.806tv t e A t A t−= +

Next, determine the forced response. The steady state response after the switch opens will be used as the forced response. At steady state, the capacitor acts like an open circuit and the inductor acts like a short circuit.

f50 20 10 V

50 50v = × =

+

So

( ) ( )6.251 210 cos 7.806 sin 7.806tv t e A t A t−= + +

It remains to evaluate A1 and A2 using the initial conditions. At t = 0 we have

( ) 1 10 0 10 10v A A= = + ⇒ = − and

Page 56: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

( ) 1 2 26.25 100 0 6.25 7.806 8.006

7.806d v A A Adt

×= = − + ⇒ = − = −

Finally,

( ) ( )( )

6.25

6.25

10 10cos 7.806 8.006sin 7.806

10 12.81 cos 7.806 141.3 V for 0

t

t

v t e t t

e t

= + − −

= + + ° ≥t

(checked using LNAPTR 7/26/04)

P9.8-19

When the circuit reaches steady state after t = 0, the capacitor acts like an open circuit and the inductor acts like a short circuit. Under these conditions

( ) 2

1 2

1C

Rv

R R∞ =

+

Next, represent the circuit by a 2nd order differential equation:

KCL at the top node of R2 gives: ( ) ( ) ( )2

CC L

v t dC v t i tR dt

+ =

KVL around the outside loop gives: ( ) ( ) ( ) ( )1s L Ldv t L i t R i t v tdt

= + + C

Use the substitution method to get

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

12 2

21

122 2

1

C Cs C C

C C C

v t v td d dv t L C v t R C v t v tdt R dt R dt

Rd L dLC v t R C v t v tdt R dt R

⎛ ⎞ ⎛ ⎞= + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎛ ⎞ ⎛ ⎞

= + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

C

(a) C = 1 F, L = 0.25 H, R1 = R2 = 1.309 Ω Use the steady state response as the forced response:

Page 57: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

( ) 2

1 2

112f C

Rv v

R R= ∞ = =

+

The characteristic equation is

( ) ( )

1

1 22 2

2

11 6 8 2 4

RR R

s s s s sR C L LC

⎛ ⎞+⎜ ⎟⎛ ⎞ ⎜ ⎟+ + + = + + = + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟⎜ ⎟

⎝ ⎠

s

so the natural response is

2 41 2 Vt t

nv A e A e− −= + The complete response is

( ) 2 41 2

1 V2

t tcv t A e A e− −= + +

( ) ( ) ( ) 2 41 21.236 3.236 0.3819

1.309C t t

L C

v t di t v t A e A edt

− −= + = − − +

At t = 0+ ( ) 1 20 0 0cv A A= + = + + .5

( ) 1 20 0 1.236 3.236 0.3819Li A A= + = − − +

Solving these equations gives A1 = -1 and A2 = 0.5, so

( ) 2 41 1 V2 2

t tcv t e e− −= − +

(b) C = 1 F, L = 1 H, R1 = 3 Ω, R2 = 1 Ω Use the steady state response as the forced response:

( ) 2

1 2

114f C

Rv v

R R= ∞ = =

+

The characteristic equation is

( )

1

21 22 2

2

11 4 4 2

RR R

s s s sR C L LC

⎛ ⎞+⎜ ⎟⎛ ⎞ ⎜ ⎟+ + + = + + = +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟⎜ ⎟

⎝ ⎠

s

so the natural response is ( ) 2

1 2 Vtfv A A t e−= +

The complete response is

( ) ( ) 21 2

1 V4

tcv t A A t e−= + +

Page 58: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

( ) ( ) ( ) ( )( ) 22 1 2

14

tL C C

di t v t v t A A A t edt

−= + = + − −

At t = 0+

( ) 110 04cv A= + = +

( ) 2 110 04Li A A= + = + −

Solving these equations gives A1 = -0.25 and A2 = -0.5, so

( ) 21 1 1 V4 4 2

tcv t t e−⎛ ⎞= − +⎜ ⎟

⎝ ⎠

(c) C = 0.125 F, L = 0.5 H, R1 = 1 Ω, R2 = 4 Ω Use the steady state response as the forced response:

( ) 2

1 2

415f C

Rv v

R R= ∞ = =

+ The characteristic equation is

( ) (

1

1 22 2

2

11 4 20 2 4 2 4

RR R

s s s s s j sR C L LC

⎛ ⎞+⎜ ⎟⎛ ⎞ ⎜ ⎟+ + + = + + = + − + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟⎜ ⎟

⎝ ⎠

)j

so the natural response is ( )2

1 2cos 4 sin 4 Vtfv e A t A t−= +

The complete response is ( ) ( )2

1 20.8 cos 4 sin 4 Vtcv t e A t A t−= + +

( ) ( ) ( ) 2 12 21 0.2 cos 4 sin 44 8 2 2

C t tL C

A Av t di t v t e t e tdt

− −= + = + −

At t = 0+ ( ) 10 0 0.8cv A= + = +

( ) 20 0 0.22L

Ai= + = +

Solving these equations gives A1 = -0.8 and A2 = -0.4, so

( ) ( )20.8 0.8cos 4 0.4sin 4 Vtcv t e t t−= − +

Page 59: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

P9.8-20

When the circuit reaches steady state after t = 0, the capacitor acts like an open circuit and the inductor acts like a short circuit. Under these conditions

( ) ( ) ( )2 2

1 2 1 2 1 2

11, 1C L o

R Rv i and v

R R R R R∞ = ∞ = ∞ =

+ + R+ Next, represent the circuit by a 2nd order differential equation:

KVL around the right-hand mesh gives: ( ) ( ) ( )2C Ldv t L i t R i tdt

= + L

KCL at the top node of the capacitor gives: ( ) ( ) ( ) ( )1

s CC L

v t v t dC v t i tR dt−

− =

Use the substitution method to get

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2 2

2

1 1 2 1 22

s L L L L

L L L

d d dv t R C L i t R i t L i t R i t R i tdt dt dtd dR LC i t L R R C i t R R i tdt dt

⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= + + + +

1 L+

Using ( ) ( )o

L2

v ti t

R= gives

( ) ( ) ( ) ( )2

1 1s o 1 o2

2 2 2

R Rd L dv t LC v t R C v t v tR dt R dt R

⎛ ⎞ ⎛ ⎞+= + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

2o

R

(a) C = 1 F, L = 0.25 H, R1 = R2 = 1.309 Ω Use the steady state response as the forced response:

( ) 2

1 2

112f o

Rv v

R R= ∞ = =

+

The characteristic equation is

Page 60: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

( ) ( )

2

2 12 2

1

11 6 8 2 4

RR R

s s s s sR C L LC

⎛ ⎞+⎜ ⎟⎛ ⎞ ⎜ ⎟+ + + = + + = + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟⎜ ⎟

⎝ ⎠

s

so the natural response is

2 41 2 Vt t

nv A e A e− −= + The complete response is

( ) 2 4

1 21 V2

t tov t A e A e− −= + +

( ) ( ) 1 22 41 V1.309 2.618 1.309 1.309

o t tL

A Av ti t e e− −= = + +

( ) ( ) ( ) 2 41 2

1 11.309 0.6167 0.23614 2

t tC L L

dv t i t i t A e A edt

− −= + = + +

At t = 0+

( ) 1 210 02.618 1.309 1.309L

A Ai= + = + +

( ) 1 210 0 0.6167 0.23612Cv A= + = + + A

Solving these equations gives A1 = -1 and A2 = 0.5, so

( ) 2 41 1 V2 2

t tov t e e− −= − +

(b) C = 1 F, L = 1 H, R1 = 1 Ω, R2 = 3 Ω Use the steady state response as the forced response:

( ) 2

1 2

314f o

Rv v

R R= ∞ = =

+

The characteristic equation is

( )

2

22 12 2

1

11 4 4 2

RR R

s s s sR C L LC

⎛ ⎞+⎜ ⎟⎛ ⎞ ⎜ ⎟+ + + = + + = +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟⎜ ⎟

⎝ ⎠

s

so the natural response is ( ) 2

1 2 Vtfv A A t e−= +

The complete response is

( ) ( ) 21 2

3 V4

tov t A A t e−= + +

Page 61: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

( ) ( ) 1 2 21 V3 4 3 3

o tL

A Av ti t t e−⎛ ⎞

= = + +⎜ ⎟⎝ ⎠

( ) ( ) ( ) 1 2 2 2334 3 3 3

tC L L

A A Adv t i t i t t edt

−⎛ ⎞⎛ ⎞= + = + + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

At t = 0+

( ) 1 10 03 4L

Ai= + = +

( ) 1 230 04 3 3C

A Av= + = + +

Solving these equations gives A1 = -0.75 and A2 = -1.5, so

( ) 23 3 3 V4 4 2

tov t t e−⎛ ⎞= − +⎜ ⎟

⎝ ⎠

(c) C = 0.125 F, L = 0.5 H, R1 = 4 Ω, R2 = 1 Ω Use the steady state response as the forced response:

( ) 2

1 2

115f o

Rv v

R R= ∞ = =

+

The characteristic equation is

( ) (

2

2 12 2

1

11 4 20 2 4 2 4

RR R

s s s s s j sR C L LC

⎛ ⎞+⎜ ⎟⎛ ⎞ ⎜ ⎟+ + + = + + = + − + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟⎜ ⎟

⎝ ⎠

)j

so the natural response is

( )21 2cos 4 sin 4 Vt

fv e A t A t−= + The complete response is

( ) ( )21 20.2 cos 4 sin 4 Vt

ov t e A t A t−= + +

( ) ( ) ( )21 20.2 cos 4 sin 4 V

1o t

L

v ti t e A t A t−= = + +

( ) ( ) ( ) 2 22 1

1 0.2 2 cos 4 2 sin 42

t tC L L

dv t i t i t A e t A e tdt

− −= + = + −

At t = 0+ ( ) 10 0 0.2Li A= + = +

Page 62: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

( ) 20 0 0.2 2Cv A= + = +

Solving these equations gives A1 = -0.8 and A2 = -0.4, so

( ) ( )20.2 0.2cos 4 0.1sin 4 Vtcv t e t t−= − +

Page 63: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

Section 9-9: State Variable Approach to Circuit Analysis P9.9-1

t = 0 circuit is source free i & v(0) = 0L− ∴ =( )0 0

t > 0

KCL at top node: i + 15

dvdt = 4 (1)

KVL at right loop : v didt i = 0

L

LL− −1 6

Solving for i in (1) & plugging into (2) d vdt

+ 6 dvdt

+ 5v = 120

s + 6s + 5 = 0, s = v (t) = A e + A eTry v = B & plug into D.E. B = 24 = v

From (1) dv(0)dt

= 20 i (0) = 20Vs

So v(0) = 0 = A A

dv(0)dt

= 20 = A A

A = A = 1 v (t) = e + e + 24 V

1

2

2

2n 1

t2

t

f f

L

1 2

1 2

1 2t t

⇒ − − ∴⇒

+ +

− −

UV|W|

−∴ −

− −

− −

1 5

5

24

5

2525

5

5

,

,

P9.9-2

t = 0 circuit is source free i (0) = 0, & v(0) = 0t > 0

L− ∴

KCL at top node : i = 4 1

10 dvdt (1)

KVL at right node : v didt i = 0 (2)

(1) into (2) yields d vdt

+ 6dvdt

+ 10v = 240

L

LL

2

2

− −6

Page 64: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

⇒ − ± ∴

− s + 6 s + 10 = 0, s = j v (t) = e A cos t + A sint Try v = B & plug into D.E. v = B = 24

From (1) dv (0)dt

= 40 i (0) = 40 Vs

2n

t1 2

f f

L

3

10

3 So v(0) = 0 = A + 24 A = & dv(0)

dt = 40 = A + A

A =

v (t) = e cost 32 sint + 24 V

1 1 1

2t

⇒ − −

⇒ −

∴ − −−

24 3

32

243

2 P9.9-3 i (0) = v(0) = 0

t > 0− 3,

KCL: i + C dvdt

+ vR

+ 6 = 0

KVL: v = L didt

d i

dt + 100 di

dt + 250i =

s =

(t) = 250

=

i(t) = A e + A e i (0) = A + A 6 = di (0)

dt = 0 = A A

A = 3 .081A

2

2

1t

2t

1 2

1 2

1

2

− −−

− −

− −

UV|W| =−

− −

1500

2 57 97 41500 6

63

2 57 97 4 081

2 57 97 4

. , .

. . .

. .

i f

i (t) = 3. 081 e e A

v (t) = .2 di dt

= e + 1.58e V

t t

t t

− −

− −

− −

2 57 97 4

2 57 97 4

081 6

158

. .

. .

.

.

Page 65: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

P9.9-4

i (0) = 0, v (0) = 102 c

KCL at 2 - 3: i i dv

dt +

v2

= 0

KCL at 1: i i + v2

= 0

KVL : v + v didt

= 0

i = v

x xx

xx

x

x x

− −

− −

2 01

2

1

2

.

.

v

reduces to :

( 1.5 .01s) v + (.25s) i =0

( 2.5)v + (1+.45s) i = 0

2 The characteristic equation is : s + 13.33s + 333.33 = 0 s , s , = 6.67 j 171 2

− −

⇒ − ±

[ ]

* Note: no forced response

6.67tv(t) = A cos 17t + B sin 17t e

dv(0) v(0) = 10 = A and = 111 = 6.67A + 17 B B = 2.6 dt

6.67tv (t) = [10 cos 17t 2.6sin17t] e

i (t) = A cos 17 t + B sin

− − ⇒ −

−−

[ ] 6.67t17 t e

di (0)i (0) = 0 =A and = 55.6 = 6.67A + 17B B=3.27dt

6.67ti (t) = [3.27 sin 17t] e

− ⇒

Page 66: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

t < 0 v(0) = 10V, i (0) = 103

A

0 < t < .5sL

P9.9-5 α

ω

α α ω

= RL

= 32

= LC = 112

s = s = .028s = 2.97

02

202

1

2

− ± −

−−

v(t) = Ae + Be

v =0

v(0) = 10 = A + B dv(0)

dt = 20 = A B

A = + 16. 89B = +

v(t) = 16. 89 e e

i(t) = e + 3.41e t = .5sv(.5) = 15.1 V i (.5) = .7 A

t t

f

t t

t t

− −

− −

− −

− −

UV|W| −

. .

. .

. .

. . , .

.

.

028 2 97

028 2 97

028 2 97

028 2 97 6 89

689

079

0.55t >

KCL: v + i + 16

dvdt

=

KVL: v = 3i + 12 di

dt

L

LL

−306

Characteristic equation :

0 = s s s2 − − ⇒ = −7 18 1, 9 v = 10 V

v(t) = Ae + Be +10f

9t t−

v (.5) A + .61B + 10 dv(.5)

dt= 10.7 = 810A B

A = 17.6 10B = 5.77

= =

UV|W|

× −151 90

61

3.

.

t v(t)

0 → .5

16.89e-0.28t - 6.89e-2.97 t V

.5 → 2

17.6 × 10-3e9t + 5.77e-t + 10 V

Page 67: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

Section 9-10: Roots in the Complex Plane P9.10-1

2 6 1

1

2

3.5 10 1.5 10 05 5 1063 10

s s

s

s

+ × + × =

= − ×

= − ×

2

P9.10-2

2s + 800s + 250000 = 0s = 400 ± j 300

P9.10-3

61KCL: 10 4 4000

KVL: 4

dv vidt

div vs dt

−= × +

= +

2 3 6Characteristic equation: 1 10 1 10 0 500 866

s ss j+ × + × == − ±

Page 68: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

P9.10-4 at t = 0

v(0) = v (0)= 0

i (0) = 0 and C dvdt

+ v v6

+ =0 (1)

b

b b a−

t = 0

Node a: v i (0) + v v (0) =

then v + 2v = 36 so v (0) =12V

a a b

a a a

( ) ( )

( ) ( )

0 3612

06

0 0

−−

− t 0

Node a : v v + 1L

(v v ) dt + v v 6

= 0

Node b : C dvdt

+ v v 6

+ 1L

(v v )dt =0

Using operators 112

+ 16

+ 1s

v + s

v = v12

( 16

1s) v + ( 1

18 s + 1

6 + 1

s ) v

a sa b

a b

b b aa b

a bs

a b

≥−

− −

−−

FHG

IKJ − −F

HGIKJ

− − =

zz

12

16

1

0

Then v = 36 + A e + A e

v (0) = 36 + A + A (2)

need dvdt

= A 3A

b 1t

2t

b 1 2

b1 2

− −

− −

2 3

0 2( )

Cramers rule

(s +5s + 6) v = (s+ 6)1 v2b s

Use 1 abovdt

A Av

ibe C dv 118

= v

= 126

(3)b a( ) ( )( )

( )0 2 30 0

60 21 2= − −

−− =

b g

Use (2) and (3) to get

A = 72 A = 36 so v e + 36e , t 01 2 bt t− = − − −36 72 2 3

Page 69: Chapter 9 - The Complete Response of Circuits With Two Energy Storage Elements

Section 9-11 How Can We Check…?

P9.11-1 This problem is similar to the verification example in this chapter. First, check the steady-state inductor current

25( ) 250 mA100 100

svi t = = =

This agrees with the value of 250.035 mA shown on the plot. Next, the plot shows an underdamped response. That requires

3 2 2 612 10 4 4(100) (2 10 ) 8 10L R C− −⋅ = < = ⋅ = ⋅ 2− This inequality is satisfied, which also agrees with the plot. The damped resonant frequency is given by

( ) ( )221 1 1 1 3 = = = 5.95 10d 66 3LC 2RC 2(100) (2 10 )2 10 12 10

ω⎛ ⎞⎛ ⎞ ⎜ ⎟− −⎜ ⎟ −⎜ ⎟− −⎝ ⎠ ⋅⋅ ⋅ ⎝ ⎠

The plot indicates a maxima at 550.6μs and a minima at 1078.7μs. The period of the damped oscillation is

= 2 (1078.7 s 550.6 s) = 1056.2 sTd μ μ μ−

Finally, check that 2 23 35.95 10 = = 5.949 1061056.2 10d Td

π πω⋅ = = ⋅−⋅

The value of determined from the plot agrees with the value obtained from the circuit. The plot is correct

P9.11-2 This problem is similar to the verification example in this chapter. First, check the steady-state inductor current.

mA15( ) 150

100 100sv

i t = = =

This agrees with the value of 149.952 mA shown on the plot. Next, the plot shows an under damped response. This requires

3 2 2 68 10 4 4 (100) (0.2 10 ) 8 10L R C− −⋅ = < = ⋅ = ⋅ 3− This inequality is not satisfied. The values in the circuit would produce a critically damped, not underdamped, response. This plot is not correct.