E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y...

42
E MBEDDED LES USING PANS [2, 3] L ARS DAVIDSON Department of Applied Mechanics Chalmers University of Technology, SE-412 96 Gothenburg, SWEDEN

Transcript of E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y...

Page 1: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

EMBEDDED LES USING PANS [2, 3]LARS DAVIDSON

Department of Applied MechanicsChalmers University of Technology, SE-412 96 Gothenburg,

SWEDEN

Page 2: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

PANS LOW REYNOLDS NUMBER MODEL [4]∂ku

∂t+

∂(kuUj)

∂xj=

∂xj

[(

ν +νu

σku

)

∂ku

∂xj

]

+ (Pu − εu)

∂εu

∂t+

∂(εuUj)

∂xj=

∂xj

[(

ν +νu

σεu

)

∂εu

∂xj

]

+ Cε1Puεu

ku− C∗

ε2ε2

u

ku

νu = Cµfµk2

u

εu, C∗

ε2 = Cε1 +fkfε

(Cε2f2 − Cε1), σku ≡ σkf 2k

fε, σεu ≡ σε

f 2k

Cε1, Cε2, σk , σε and Cµ same values as [1]. fε = 1. f2 and fµ read

f2 =

[

1 − exp(

−y∗

3.1

)

]2 {

1 − 0.3exp[

−( Rt

6.5

)2]}

fµ =

[

1 − exp(

−y∗

14

)

]2{

1 +5

R3/4t

exp[

−( Rt

200

)2]

}

Baseline model: fk = 0.4. Range of 0.2 < fk < 0.6 is evaluated

Davidson ( ) www.tfd.chalmers.se/˜lada 2 / 40

Page 3: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

CHANNEL FLOW: DOMAIN

d

x

y

δ 2.2δ

LES, fk < 1RANS, fk = 1.0

Interface

Interface: Synthetic turbulent fluctuations are introduced asadditional convective fluxes in the momentum equations and thecontinuity equation

fk = 0.4 is the baseline value for LES [4]

Davidson ( ) www.tfd.chalmers.se/˜lada 3 / 40

Page 4: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

INLET FLUCTUATIONS

0 0.5 1 1.5 20

0.5

1

1.5

2

y

〈u′v ′〉, v2rms, w2

rms, u2rms/u2

τ

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

w′w

′tw

o-po

intc

orr

z

Anisotropic synthetic fluctuations, u′, v ′, w ′,

Integral length scale L ≃ 0.13 (see 2-p point correlation)

Asymmetric time filter (U ′)m = a(U ′)m−1 + b(u′)m witha = 0.954, b = (1 − a2)1/2 gives a time integral scale T = 0.015(∆t = 0.00063)

Davidson ( ) www.tfd.chalmers.se/˜lada 4 / 40

Page 5: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

INTERFACE CONDITIONS FOR ku AND εu

For ku & εu we prescribe “inlet” boundary conditions at theinterface.

First, the usual convective and diffusive fluxes at the interface areset to zeroNext, new convective fluxes are added. Which “inlet” valuesshould be used at the interface?

◮ ku,int = fk kRANS(x = 0.5δ), εu,int = C3/4µ k3/2

u,int/ℓsgs, ℓsgs = Cs∆,

∆ = V 1/3

Davidson ( ) www.tfd.chalmers.se/˜lada 5 / 40

Page 6: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

INTERFACE CONDITIONS FOR ku AND εu

For ku & εu we prescribe “inlet” boundary conditions at theinterface.

First, the usual convective and diffusive fluxes at the interface areset to zeroNext, new convective fluxes are added. Which “inlet” valuesshould be used at the interface?

◮ ku,int = fk kRANS(x = 0.5δ), εu,int = C3/4µ k3/2

u,int/ℓsgs, ℓsgs = Cs∆,

∆ = V 1/3

◮ Baseline Cs = 0.07; different Cs values are tested

Davidson ( ) www.tfd.chalmers.se/˜lada 5 / 40

Page 7: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

NUMERICAL METHOD

Incompressible finite volume method

Pressure-velocity coupling treated with fractional step

2nd order central differencing scheme for momentum eqns in LESregion.

2nd order upwind differencing scheme (van Leer) for momentumeqns in RANS region.

Hybrid 1st order upwind/2nd order central scheme k & ε eqns.

2nd -order Crank-Nicholson for time discretization

Davidson ( ) www.tfd.chalmers.se/˜lada 6 / 40

Page 8: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

CHANNEL FLOW: VELOCITY AND SHEAR STRESSES

100

101

102

0

5

10

15

20

25

30

y+

U+

0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

y+〈u

′v′〉+

x/δ = 0.19 x/δ = 1.25 x/δ = 3

Davidson ( ) www.tfd.chalmers.se/˜lada 7 / 40

Page 9: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

CHANNEL FLOW: STRESSES AND PEAK VALUES VS. x

0 200 400 600 8000

0.5

1

1.5

2

2.5

3

3.5

y/δ

reso

lved

stre

sses

x/δ = 3

0 0.5 1 1.5 2 2.5 3 3.50

2

4

0 0.5 1 1.5 2 2.5 3 3.50

50

100

x

〈u′u′〉+ m

ax

〈νu/ν

〉 max

〈u′u′〉+ 〈u′u′〉+max (left)〈v ′v ′〉+ 〈νu〉

+max (right)

〈w ′w ′〉+

Davidson ( ) www.tfd.chalmers.se/˜lada 8 / 40

Page 10: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

CHANNEL FLOW: DIFFERENT Cs VALUE FOR εinterface

ku,int = fkkRANS

εu,int = C3/4µ k3/2

u,int/ℓsgs, ℓsgs = Cs∆

100

101

102

0

5

10

15

20

25

30

y+

U+

x/δ = 3

0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

y+

〈u′v′〉+

Cs = 0.07 Cs = 0.1 Cs = 0.2

Davidson ( ) www.tfd.chalmers.se/˜lada 9 / 40

Page 11: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

CHANNEL FLOW: DIFFERENT Cs VALUE FOR εinterface

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

6

y+

〈νu〉/

ν

x/δ = 3

0 1 2 3 40.85

0.9

0.95

1

1.05

x/δu τ

Cs = 0.07 Cs = 0.1 Cs = 0.2

Davidson ( ) www.tfd.chalmers.se/˜lada 10 / 40

Page 12: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

CHANNEL FLOW: DIFFERENT fk VALUES

100

101

102

0

5

10

15

20

y+

U+

x/δ = 3

0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

y+〈u

′v′〉+

fk = 0.4 fk = 0.2 fk = 0.6

Davidson ( ) www.tfd.chalmers.se/˜lada 11 / 40

Page 13: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

CHANNEL FLOW: DIFFERENT fk VALUES

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

2.5

3

3.5

4

y+

〈νu〉/

ν

x/δ = 3

0 1 2 3 40.85

0.9

0.95

1

1.05

x/δu τ

fk = 0.4 fk = 0.2 fk = 0.6

Davidson ( ) www.tfd.chalmers.se/˜lada 12 / 40

Page 14: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

HUMP FLOWxI/c = 0.6 RS

NTS 2D RANS PANS

Inlet, Separation xS/c = 0.65; reattachment xR/c = 1.1

Rec = 936 000Uijcν (Uin = c = ρ = 1, ν = 1/Rec

H/c = 0.91, h/c = 0.128, x/c = [0.6, 4.2]

Mesh: 312 × 120 × 64, Zmax = 0.2c (baseline)

Davidson ( ) www.tfd.chalmers.se/˜lada 13 / 40

Page 15: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

BASELINE INLET FLUCTUATIONS

−1 0 1 2 3 4 5 6

0.15

0.2

0.25

0.3

0.35

0.4

y/c

〈u′v ′〉, v2rms, w2

rms, u2rms/u2

τ

0 0.02 0.04 0.06 0.08 0.1

0

0.2

0.4

0.6

0.8

1

w′w

′tw

o-po

intc

orr

z

Integral length scale L ≃ 0.04 (see 2-p point correlation)Asymmetric time filter (U ′)m = a(U ′)m−1 + b(u′)m witha = 0.954, b = (1 − a2)1/2 gives a time integral scale T = 0.038∆t = 0.002. 7500 + 7500 time steps (100 hours one core)Fluctuations multiplied byfbl = max {0.5 [1 − tanh(y − ybl − ywall)/b] , 0.02}, ybl = 0.2,b = 0.01.

Davidson ( ) www.tfd.chalmers.se/˜lada 14 / 40

Page 16: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

NUMERICAL METHOD

Incompressible finite volume method

Pressure-velocity coupling treated with fractional step

95% 2nd order central and 5% 2nd order upwind differencingscheme for momentum eqns.

Hybrid 1st order upwind/2nd order central scheme k & ε eqns.

2nd -order Crank-Nicholson for time discretization

Davidson ( ) www.tfd.chalmers.se/˜lada 15 / 40

Page 17: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

PRESSURE: AMPLITUDES OF INLET FLUCT

0.5 1 1.5 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x/c

−C

p

baseline inlet fluct 1.5× (baseline inlet fluct)0.5× (baseline inlet fluct)

Davidson ( ) www.tfd.chalmers.se/˜lada 16 / 40

Page 18: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

SKIN FRICTION: AMPLITUDES OF INLET FLUCT

0 0.5 1 1.5−2

0

2

4

6

8

10x 10

−3

x/c

Cf

0.6 0.8 1 1.2 1.4 1.6

−2

−1

0

1

2

3x 10

−3

x/c

zoom

baseline inlet fluct 1.5× (baseline inlet fluct)0.5× (baseline inlet fluct)

Davidson ( ) www.tfd.chalmers.se/˜lada 17 / 40

Page 19: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

VELOCITIES: AMPLITUDES OF INLET FLUCT

0 0.2 0.4 0.6 0.8 1 1.20.1

0.15

0.2

0.25

x/c = 65y

0 0.5 10

0.05

0.1

0.15

0.2

0.25

x/c = 80

0 0.5 10

0.05

0.1

0.15

0.2

0.25

x/c = 100

U/Ub

y

0 0.5 10

0.05

0.1

0.15

0.2

0.25

x/c = 110

U/Ubbaseline 1.5× (baseline) 0.5× (baseline)

Davidson ( ) www.tfd.chalmers.se/˜lada 18 / 40

Page 20: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

VELOCITIES: AMPLITUDES OF INLET FLUCT

0 0.2 0.4 0.6 0.8 1 1.20

0.05

0.1

0.15

0.2

0.25

x/c = 120

U/Ub

y

0 0.2 0.4 0.6 0.8 1 1.20

0.05

0.1

0.15

0.2

0.25

x/c = 130

U/Ub

baseline 1.5× (baseline) 0.5× (baseline)

Davidson ( ) www.tfd.chalmers.se/˜lada 19 / 40

Page 21: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

RESOLVED AND MODELLED (< 0) SHEAR STRESSES

−0.005 0.005 0.010.1

0.15

0.2

0.25

x/c = 0.65y

0 0.01 0.02 0.03 0.040

0.05

0.1

0.15

0.2

0.25

x/c = 0.80

0 0.01 0.02 0.03 0.040

0.05

0.1

0.15

0.2x/c = 1.00

〈τ12,u〉, 〈−u′v ′〉/U2b

y

0 0.01 0.02 0.030

0.05

0.1

0.15

0.2x/c = 1.10

〈τ12,u〉, 〈−u′v ′〉/U2b

baseline 1.5× (baseline) 0.5× (baseline)

Davidson ( ) www.tfd.chalmers.se/˜lada 20 / 40

Page 22: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

SHEAR STRESSES: AMPLITUDES OF INLET FLUCT

Resolved and Modelled (< 0) Shear stresses

0 0.01 0.02 0.030

0.05

0.1

0.15

0.2x/c = 1.20

〈τ12,u〉, 〈−u′v ′〉/U2b

y

0 0.01 0.02 0.030

0.05

0.1

0.15

0.2x/c = 1.30

〈τ12,u〉, 〈−u′v ′〉/U2b

baseline inlet fluct 1.5× (baseline inlet fluct)0.5× (baseline inlet fluct)

Davidson ( ) www.tfd.chalmers.se/˜lada 21 / 40

Page 23: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

TURB VISCOSITY: AMPLITUDES OF INLET FLUCT

0 2 4 6 8 100.1

0.12

0.14

0.16

0.18

0.2x/c = 0.65

y

0 10 20 30 40 50 60 700

0.05

0.1

0.15

0.2x/c = 0.80

0 10 20 30 40 50 60 700

0.05

0.1

0.15

0.2x/c = 1.00

〈νt〉/ν

y

0 10 20 30 40 50 60 700

0.05

0.1

0.15

0.2x/c = 1.10

〈νt〉/νbaseline 1.5× (baseline) 0.5× (baseline)

Davidson ( ) www.tfd.chalmers.se/˜lada 22 / 40

Page 24: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

TURB VISCOSITY: AMPLITUDES OF INLET FLUCT

0 10 20 30 40 50 60 700

0.05

0.1

0.15

0.2x/c = 1.20

〈νt〉/ν

y

0 10 20 30 40 50 60 700

0.05

0.1

0.15

0.2x/c = 1.30

〈νt〉/ν

baseline 1.5× (baseline) 0.5× (baseline)

Davidson ( ) www.tfd.chalmers.se/˜lada 23 / 40

Page 25: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

PRESSURE: fk = 0.3; NO INLET FLUCT; fk = 0.5

0.5 1 1.5 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x/c

−C

p

fk = 0.3 no inlet fluct fk = 0.5

Davidson ( ) www.tfd.chalmers.se/˜lada 24 / 40

Page 26: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

SKIN FRICTION: fk = 0.3; NO INLET FLUCT; fk = 0.5

0 0.5 1 1.5−2

0

2

4

6

8

10x 10

−3

x/c

Cf

0.6 0.8 1 1.2 1.4 1.6

−2

−1

0

1

2

3x 10

−3

x/c

zoom

fk = 0.3 no inlet fluct fk = 0.5

Davidson ( ) www.tfd.chalmers.se/˜lada 25 / 40

Page 27: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

VELOCITIES: fk = 0.3; NO INLET FLUCT; fk = 0.5

0 0.2 0.4 0.6 0.8 1 1.20.1

0.15

0.2

0.25

x/c = 65y

0 0.5 10

0.05

0.1

0.15

0.2

0.25

x/c = 80

0 0.5 10

0.05

0.1

0.15

0.2

0.25

x/c = 100

U/Ub

y

0 0.5 10

0.05

0.1

0.15

0.2

0.25

x/c = 110

U/Ubfk = 0.3 no inlet fluct fk = 0.5

Davidson ( ) www.tfd.chalmers.se/˜lada 26 / 40

Page 28: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

VELOCITIES: fk = 0.3; NO INLET FLUCT; fk = 0.5

0 0.2 0.4 0.6 0.8 1 1.20

0.05

0.1

0.15

0.2

0.25

x/c = 120

U/Ub

y

0 0.2 0.4 0.6 0.8 1 1.20

0.05

0.1

0.15

0.2

0.25

x/c = 130

U/Ub

fk = 0.3 no inlet fluct fk = 0.5

Davidson ( ) www.tfd.chalmers.se/˜lada 27 / 40

Page 29: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

RESOLVED AND MODELLED (< 0) SHEAR STRESSES

−0.0025 0.0025 0.0050.1

0.12

0.14

0.16

0.18

0.2x/c = 0.65

y

0 0.01 0.02 0.03 0.040

0.05

0.1

0.15

0.2

0.25

x/c = 0.80

0 0.01 0.02 0.03 0.040

0.05

0.1

0.15

0.2x/c = 1.00

〈τ12,u〉, 〈−u′v ′〉/U2b

y

0 0.01 0.02 0.030

0.05

0.1

0.15

0.2x/c = 1.10

〈τ12,u〉, 〈−u′v ′〉/U2b

fk = 0.3 no inlet fluct fk = 0.5Davidson ( ) www.tfd.chalmers.se/˜lada 28 / 40

Page 30: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

SHEAR STRESSES: fk = 0.3; NO INLET FLUCT; fk = 0.5

Resolved and Modelled (< 0) Shear stresses

0 0.01 0.02 0.030

0.05

0.1

0.15

0.2x/c = 1.20

〈τ12,u〉, 〈−u′v ′〉/U2b

y

0 0.01 0.02 0.030

0.05

0.1

0.15

0.2x/c = 1.30

〈τ12,u〉, 〈−u′v ′〉/U2b

fk = 0.3 no inlet fluct fk = 0.5

Davidson ( ) www.tfd.chalmers.se/˜lada 29 / 40

Page 31: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

TURB VISCOSITY: fk = 0.3; NO INLET FLUCT; fk = 0.5

0 2 4 6 8 100.1

0.12

0.14

0.16

0.18

0.2x/c = 0.65

y

0 50 100 1500

0.05

0.1

0.15

0.2x/c = 0.80

0 50 100 1500

0.05

0.1

0.15

0.2x/c = 1.00

〈νt〉/ν

y

0 50 100 1500

0.05

0.1

0.15

0.2x/c = 1.10

〈νt〉/νfk = 0.3 no inlet fluct fk = 0.5

Davidson ( ) www.tfd.chalmers.se/˜lada 30 / 40

Page 32: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

TURB VISCOSITY: fk = 0.3; NO INLET FLUCT; fk = 0.5

0 50 100 1500

0.05

0.1

0.15

0.2x/c = 1.20

〈νt〉/ν

y

0 50 100 1500

0.05

0.1

0.15

0.2x/c = 1.30

〈νt〉/ν

fk = 0.3 no inlet fluct fk = 0.5

Davidson ( ) www.tfd.chalmers.se/˜lada 31 / 40

Page 33: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

PRESSURE: WALE, Nk = 128, Zmax = 0.4, CDS

0.5 1 1.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x/c

−C

p

fk = 0.3 no inlet fluct fk = 0.5

Davidson ( ) www.tfd.chalmers.se/˜lada 32 / 40

Page 34: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

SKIN FRICTION: WALE, Nk = 128, Zmax = 0.4, CDS

0 0.5 1 1.5−2

0

2

4

6

8

10x 10

−3

x/c

Cf

0.6 0.8 1 1.2 1.4 1.6

−2

−1

0

1

2

3x 10

−3

x/c

zoom

fk = 0.3 no inlet fluct fk = 0.5

Davidson ( ) www.tfd.chalmers.se/˜lada 33 / 40

Page 35: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

VELOCITIES: WALE, Nk = 128, Zmax = 0.4, CDS

0 0.2 0.4 0.6 0.8 1 1.20.1

0.15

0.2

0.25

x/c = 65y

0 0.5 10

0.05

0.1

0.15

0.2

0.25

x/c = 80

0 0.5 10

0.05

0.1

0.15

0.2

0.25

x/c = 100

U/Ub

y

0 0.5 10

0.05

0.1

0.15

0.2

0.25

x/c = 110

U/UbWALE Nk = 128, Zmax = 0.4 CDS

Davidson ( ) www.tfd.chalmers.se/˜lada 34 / 40

Page 36: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

VELOCITIES: WALE, Nk = 128, Zmax = 0.4, CDS

0 0.2 0.4 0.6 0.8 1 1.20

0.05

0.1

0.15

0.2

0.25

x/c = 120

U/Ub

y

0 0.2 0.4 0.6 0.8 1 1.20

0.05

0.1

0.15

0.2

0.25

x/c = 130

U/Ub

WALE Nk = 128, Zmax = 0.4 CDS

Davidson ( ) www.tfd.chalmers.se/˜lada 35 / 40

Page 37: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

RESOLVED AND MODELLED (< 0) SHEAR STRESSES

−0.02 −0.01 0 0.01 0.020.1

0.15

0.2

0.25

x/c = 0.65y

0 0.01 0.02 0.03 0.040

0.05

0.1

0.15

0.2

0.25

x/c = 0.80

0 0.01 0.02 0.03 0.040

0.05

0.1

0.15

0.2x/c = 1.00

〈τ12,u〉, 〈−u′v ′〉/U2b

y

0 0.01 0.02 0.030

0.05

0.1

0.15

0.2x/c = 1.10

〈τ12,u〉, 〈−u′v ′〉/U2b

WALE Nk = 128, Zmax = 0.4 CDS

Davidson ( ) www.tfd.chalmers.se/˜lada 36 / 40

Page 38: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

SHEAR STRESSES: WALE, Nk = 128, Zmax = 0.4, CDS

Resolved and Modelled (< 0) Shear stresses

0 0.01 0.02 0.030

0.05

0.1

0.15

0.2x/c = 1.20

〈τ12,u〉, 〈−u′v ′〉/U2b

y

0 0.01 0.02 0.030

0.05

0.1

0.15

0.2x/c = 1.30

〈τ12,u〉, 〈−u′v ′〉/U2b

WALE Nk = 128, Zmax = 0.4 CDS

Davidson ( ) www.tfd.chalmers.se/˜lada 37 / 40

Page 39: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

TURB VISCOSITY: WALE, Nk = 128, Zmax = 0.4, CDS

0 2 4 6 8 100.1

0.12

0.14

0.16

0.18

0.2x/c = 0.65

y

0 10 20 30 40 50 60 700

0.05

0.1

0.15

0.2x/c = 0.80

0 20 40 60 800

0.05

0.1

0.15

0.2x/c = 1.00

〈νt〉/ν

y

0 10 20 30 40 50 60 700

0.05

0.1

0.15

0.2x/c = 1.10

〈νt〉/νWALE Nk = 128, Zmax = 0.4 CDS

Davidson ( ) www.tfd.chalmers.se/˜lada 38 / 40

Page 40: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

TURB VISCOSITY: WALE, Nk = 128, Zmax = 0.4, CDS

0 10 20 30 40 50 60 700

0.05

0.1

0.15

0.2x/c = 1.20

〈νt〉/ν

y

0 10 20 30 40 50 60 700

0.05

0.1

0.15

0.2x/c = 1.30

〈νt〉/ν

WALE Nk = 128, Zmax = 0.4 CDS

Davidson ( ) www.tfd.chalmers.se/˜lada 39 / 40

Page 41: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

CONCLUDING REMARKS

LRN PANS has been shown to work well as an embedded LESmethod

Channel flow: At two δ downstream the interface, the resolvedturbulence in good agreement with DNS data and the wall frictionvelocity has reached 99% of its fully developed value.

Channel flow: The treatment of the modelled ku and εu across theinterface is important.

LRN PANS predicts the hump flow well. LRN PANS better thanWALE.

Hump flow: CDS gives unphysical fluctuations near the inlet. Thebecause larger the smaller the inlet fluctuations

Davidson ( ) www.tfd.chalmers.se/˜lada 40 / 40

Page 42: E LES USING PANS [2, 3] L D - Chalmerslada/slides/slides_embedded_LES.pdfCHANNEL FLOW: DOMAIN d x y δ 2.2δ RANS, f LES, fk < 1 k = 1.0 Interface Interface: Synthetic turbulent fluctuations

[1] ABE, K., KONDOH, T., AND NAGANO, Y.A new turbulence model for predicting fluid flow and heat transfer inseparating and reattaching flows - 1. Flow field calculations.Int. J. Heat Mass Transfer 37 (1994), 139–151.

[2] DAVIDSON, L., AND PENG, S.-H.Emdedded LES with PANS.In 6th AIAA Theoretical Fluid Mechanics Conference, AIAA paper2011-3108 (27-30 June, Honolulu, Hawaii, 2011).

[3] DAVIDSON, L., AND PENG, S.-H.Embedded LES using PANS applied to flow in a channel and overa hump (submitted).AIAA Journal (2012).

[4] MA, J., PENG, S.-H., DAVIDSON, L., AND WANG, F.A low Reynolds number variant of Partially-AveragedNavier-Stokes model for turbulence.International Journal of Heat and Fluid Flow 32 (2011), 652–669.10.1016/j.ijheatfluidflow.2011.02.001.

Davidson ( ) www.tfd.chalmers.se/˜lada 40 / 40