Chapter 15 Solutions -...

147
Capitolo 11 11.1 () ( ) ( ) () ( )( ) ( ) () ( ) ( ) ( ) ( ) ( ) Ω = Ω + Ω = + + = = = = = = Ω + Ω Ω = + + = Ω = = Ω = = = = = Ω = = = = = = = = = + = = M k k R r R CMRR A A R g A k k k R r R A c k R R k A V I V r R k A R g A b V A P V V V V V I x V A x R V I I a EE o ic cc cd C m dd EE o C o cc C od C T o id C m dd C CE C C EE BE F F E F C 3 . 27 2 270 101 2 122 2 2 1 basso) (molto dB 47.1 o 227 604 . 0 137 = | | 137 2 604 . 0 270 101 2 122 330 100 2 1 660 2 | 243 7 . 20 025 . 0 100 2 2 2 273 330 7 . 20 40 87 . 5 , 7 . 20 Q unto | 87 . 5 7 . 0 17 . 5 10 3 . 3 12 | 7 . 20 10 7 . 2 7 . 0 12 101 100 2 1 12 1 2 1 5 5 β β β μ β μ μ μ β β α π π π 11.2 () ( ) ( ) () ( ) ( ) ( ) ( ) ( ) ( ) Ω = = Ω = = Ω = Ω + = + + = Ω = = = = = Ω + Ω Ω = + + = = Ω = = Ω = = = = = = = = = = Ω = k R R k R R M k R r R k r R k k k R r R A k mS R g A k g r mS I g b V A V I V A I I I A V x I a C oc C od EE o ic id EE o C o cc C m dd m C m C CE E E F C E 50 2 | 200 2 72 . 4 2 150 61 286 2 2 1 | 572 2 dB! 24.4 misero un , 5 . 16 636 . 0 2 0 . 21 = CMRR : terminale singolo a uscita un' Per 0 0 . 21 = CMRR : ale differenzi uscita un' Per 636 . 0 150 61 286 100 60 2 1 0 . 21 100 210 . 0 | 286 60 | 210 . 0 40 68 . 1 , 25 . 5 : Q Punto | 68 . 1 7 . 0 10 5 . 1 25 . 5 61 60 | 33 . 5 10 75 7 . 0 5 . 1 2 1 5 3 β β β μ μ α μ π π π π 11.3 *Problema 11.3 VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Transcript of Chapter 15 Solutions -...

Page 1: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-1

Capitolo 11

11.1

( )

( ) ( )( ) ( )( )

( )

( ) ( )( )

( )

( ) ( )Ω=

Ω+Ω=

++=

=−−

=−=−=

−=Ω+Ω

Ω−=

++−=

Ω==Ω====

−=Ω−=−===−−=

=−==⎟⎠⎞

⎜⎝⎛ −

⎟⎠⎞

⎜⎝⎛=

−+

==

MkkRrR

CMRRAARgA

kkk

RrRAc

kRRkA

VIVrR

kARgAbVAPVVVV

VIxVAxR

VIIa

EEoic

cccdCm

dd

EEo

Cocc

CodC

Toid

Cmdd

CCE

CCEE

BE

F

FEFC

3.272

27010121222

21

basso) (molto dB 47.1 o 227604.0

137= | | 1372

604.02701012122

33010021

6602 | 2437.20025.0100222

2733307.2040 87.5 ,7.20Q unto | 87.57.0

17.5103.312 | 7.20107.2

7.012101100

2112

121 5

5

β

ββ

μβ

μμ

μβ

βα

π

π

π

11.2

( )

( ) ( )

( ) ( )

( )( )

( )

( ) ( )

Ω==Ω==

Ω=Ω+

=++

=Ω==

=−

∞=−

−=Ω+Ω

Ω−=

++−=

−=Ω−=−=Ω====

=−−−=

====Ω

⎟⎠⎞

⎜⎝⎛ −

=

kRRkRR

MkRrRkrR

kkk

RrRA

kmSRgAkg

rmSIgb

VAVIV

AIIIAVx

Ia

CocCod

EEoicid

EEo

Cocc

Cmddm

Cm

CCE

EEFCE

502

| 2002

72.42

150612862

21 | 5722

dB! 24.4 miseroun ,5.16636.02

0.21

= CMRR : terminalesingolo a uscitaun'Per

00.21= CMRR :aledifferenzi uscitaun'Per

636.015061286

1006021

0.21100210.0 | 28660 | 210.040

68.1 ,25.5 :Q Punto | 68.17.0105.1

25.56160 | 33.5

10757.05.1

21

5

3

β

ββ

μ

μαμ

ππ

π

π

11.3 *Problema 11.3 VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 2: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-2 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

VEE 1 0 DC -12 VIC 8 0 DC 0 VID1 4 8 AC 0.5 VID2 6 8 AC -0.5 RC1 2 3 330K RC2 2 7 330K Q1 3 4 5 NBJT Q2 7 6 5 NBJT REE 5 1 270K .MODEL NBJT NPN BF=100 VA=60 IS=1FA .OP .AC LIN 1 1KHZ 1KHZ .PRINT AC IM(VID1) IP(VID1) VM(3,7) VP(3,7) .TF V(7) VIC .END

Ω=Ω==−== MRAkVIDIM

RVMA iccciddd 2.23 | 602.0-= | 269)1(

1 | 241)7,3( :Risultati

V(IVOUT)

Time (s)Problem15.45(b)-Transient-7

-6.000

-4.000

-2.000

+0.000e+000

+2.000

+4.000

+6.000

+0.000e+000 +1.000m +2.000m +3.000m +4.000m

. Problema11.3(b)-Fourier-Tabella FREQ mag fase norm_mag norm_fase +0.000 +49.786n +0.000 +0.00 +0.000 +1.000k +5.766 +180.000 +1.000 +0.000 +2.000k +99.572n +93.600 +17.268n -86.400 +3.000k +80.305m -180.000 +13.927m -360.000 +4.000k +99.572n +97.200 +17.268n -82.800 +5.000k +1.161m +179.993 +201.326u -7.528m +6.000k +99.572n +100.800 +17.268n -79.200 +7.000k +13.351u -179.005 +2.315u -359.005 +8.000k +99.572n +104.400 +17.268n -75.600 Utilizzando l’analisi di Fourier con SPICE, THD = 1.39%

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 3: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-3

11.4

( ) ( )( ) ( )

( ) ( )

( )( )

( )

( ) ( )

Ω==Ω==

Ω=Ω+

=++

=Ω==

=−

∞=−

−=Ω+Ω

Ω−=

++−=

−=Ω−=−=Ω====

ΩΩ

=−−−=

====Ω

−=

kRRkRR

MkRrRkrR

kkk

RrRA

kmSRgAkg

rmSIgb

VAVIV

AIIIAx

VVIa

CocCod

EEoicid

EEo

Cocc

Cmddm

Cm

CCE

EEFCE

502

| 2002

75.42

941017.132

21 | 4.272

dB! 50.8 miseroun ,34605.1

2728

= CMRR : terminalesingolo a uscitaun'Per

07.33= CMRR :aledifferenzi uscitaun'Per

05.1941017.13

10010021

72810028.7 | 7.13100 | 28.740

k 51 o k 47 essere potrebbe realisticapiù scelta Unapiccolo. è comune modo di ingresso di intervallol' e grande abbastanza è R che noti Si

92.0 , 182 :Q Punto | 92.07.01018

182101100 | 184

107.427.018

C

5

4

β

ββ

μ

μαμ

ππ

π

π

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 4: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-4 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.5

( )

( )

( ) ( )

( )( )( )

( )

( ) ( )

( )

( ) ( )segnale piccoloper limiti i supera volt 5 di comune modo di ingresso di tensioneUna

.5 1.11540101121

121521

è emettitore-base giunzione alla applicato comune modo di tensionedi segnale Il mV 0.02 di errore piccoloun ha (a) parte La | 82.4104.212

9.29107.2

7.017101100

21125

121

e!saturazion di soglia la sotto appena sonoBJT i che noti Si 84.45439.003.703.7 , 5

00.52

000.5000.5 | 439.0540101121

24010021

121 7.20025.0100 | 7.73 ,7.20

73.77.0 | 03.7104.212

7.20107.2

7.012101100

2112

121

521

5

21

521

5

mVmVkk

kRr

rvv

cVIxVV

Ax

VVR

VVVIIb

VvAvvVv

Vvkk

kRr

RA

kAVrVAPuntoQ

VVVVVIxVV

AxR

VIIa

EEoicbe

CCC

EE

BE

F

FEFC

icccCCic

icEEo

Cocc

CCECCC

EE

BE

F

FEFC

>=Ω+Ω

Ω=

++=

=−==

=⎟⎠⎞

⎜⎝⎛ −

⎟⎠⎞

⎜⎝⎛=⎟⎟

⎞⎜⎜⎝

⎛ −−−+

==

=−=+===

=+

=−=Ω+Ω

Ω=

++−=

Ω===

=−−==−==

=⎟⎠⎞

⎜⎝⎛ −

⎟⎠⎞

⎜⎝⎛=⎟⎟

⎞⎜⎜⎝

⎛ −⎟⎟⎠

⎞⎜⎜⎝

⎛+

==

β

μβ

βα

ββ

μμ

μβ

βα

π

π

π

π

11.6

( )

( )! topologiaquestacon fattibile ènon 794 di guadagnoun Quindi,

.3609404040:comune) modo dinon ingresso di intervalloun fornisce (che generatore del positiva tensinela tuttasu caderefar di supponendo Anche

BJT.) del ioneamplificaz di fattore del ivasignificat parte una - grande abbastanza suona (Questo. 58 794 richiede Si (9.55)). (Eq. 9 capitolo nel sviluppate quelle a simili

pratica regola della stime le outilizzand progetto del àfattibilit la e verificardobbiamo cosa primaPer

f

==≤==

=

CCLCCmdd

C

dd

VRIRgAR

dbAμ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 5: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-5

11.7

( )( )

( )

( )( )

( ) ( )( )( )

( ).2.46 204 e 09.5 danno valoriQuestiprogetto di finali valorii sono 1 e 1.1 :appendicein tabelladalla

5% al più vicino valoreil Scegliendo | 7599012 :collettore di tensionela oVerificand

00.110540

200200 | 46 200

12.105.52

7.0122

| 05.5100101

00.5500

025.0100 | 50012

fattibile. sembra 200 di guadagnoun Quindi, 240.=10 ,simmetrici generatoriPer . 46 200 richiede Si (9.55)). (Eq. 9 capitolo nel sviluppate quelle a simili

praticaregola della stime leoutilizzandprogettodelàfattibilitlae verificardobbiamo cosa primaPer

6

dBAAIMRMR

VAkV

Mxg

RdBRgA

MAV

IVVRAIII

Ak

VrVIkrMrR

VVAdbA

ddC

CEE

C

mCCmdd

E

BEEEEEC

F

CE

ToCid

EECCdd

dd

−==Ω=Ω=

=Ω−=

Ω===−=−=

Ω=−

=−

====

==Ω=→Ω==

+≅=

μ

μ

μμ

α

μβ

πππ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 6: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-6 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.8

( ) ( )

( )

( ) ( )

( )( )

( )

( ) ( )

( )

( ) ( )

( )( )

( )

( )( ) ( )

( ) ( ) ( ) Ω=≅Ω=≅=Ω==

Ω=ΩΩ+Ω

=++

=Ω==

=−

∞=−

−=Ω+Ω

Ω−=

++−≅

−=ΩΩ−=−=

Ω=+

=

Ω==Ω==

Ω=ΩΩ+Ω

=++

=Ω==

=−

∞=−

−=Ω+Ω

Ω−=

++−=

−=Ω−=−=Ω====

=−−−==⎟⎠⎞

⎜⎝⎛===

MrRRkRRRRkrRR

MkkkrRrRkrR

kkk

RrRA

kkmSrRgA

kx

rc

kRRkRR

rS

MkkkRrRkrR

kkk

RrRA

kmSRgAkg

rmSIg

VA

VIxVAAIIIa

EEfCBout

CCBoutC

ocoCod

oEEoicid

EEo

Cocc

oCmdd

o

CocCod

o

EEoicid

EEo

Cocc

Cmddm

Cm

CCEEE

FEFC

4.242 che dato 5.1922

| 4.682

29.82

1641016.122

21 | 2.252

dB 62.9or 14000965.02271

= CMRR : terminalesingolo a uscitaun'Per

0271= CMRR :aledifferenzi uscitaun'Per

0965.04001016.12

3910021

2712783992.7

27810198

98.450

5.192

| 0.782

corretto.) realmente ènon quindi e limite al avvicina si valorequesto che noti i(

2.202

4001016.122

21 | 2.252

dB 64.1 o 16000965.02309

= CMRR : terminalesingolo a uscitaun'Per

0309= CMRR :aledifferenzi uscitaun'Per

0965.04001016.12

3910021

3093992.7 | 6.12100 | 92.740 b

98.4,198 :Q Punto

98.47.0109.312 | 1982

400101100

2

6

o

4

π

ππ

π

ππ

π

π

μ

β

ββ

β

β

ββ

μ

μμαα

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 7: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-7

11.9

( ) ( )

( )

( )( )

( )

( )

( )

VVVVAVV

Vv

VVVVvAvAVv

VVVVvAvAVv

VvVv

kkk

RrRA

kmSRgAkg

rmSIg

VAVV

VIxVVAAIII

ICICICccCCB

OD

icccid

ddCC

icccid

ddCC

icid

EEo

Cocc

Cmddm

Cm

CE

CCCEE

FEFC

94.30962.0132.4 | 0

07.3663.5593.2

663.520962.0201.030732.4

2

593.220962.0201.030732.4

2

00.22

995.1005.2 | 01.0995.1005.2

0962.04007652.9

397521

3073988.7 | 52.975 | 88.740

02.5,197 :Q Punto | 02.57.032.4

32.4109.312 | 1972

4007675

2

1

22

11

421

=+

≤≥−+=

−=−=

=−+=+−=

=−−=++=

=+

==−=

−=Ω+Ω

Ω−=

++−=

−=Ω−=−=Ω====

=−−=

=−======

ββ

μ

μμαα

π

π

11.10

Rid = 2rπ =2βoVT

IC

→ IC

2 100( )0.025V( )5MΩ

=1.00μA | IEE = 2 IC

αF

= 2101100

1μA( )= 2.02 μA

CMRR = gmREE =105 → REE =105

40 1.00μA( )= 2.5 GΩ !

11.11

( )

( )

( ) ( )

( ) ( ) mVVvvvv

VVVVvmV

VvvForvAvAVv

ARkmSRgAmSIg

VIxVAAIII

sssBC

C

CCsicccid

ddCC

ccEECmddCm

CCEE

FEFC

48.5181991.00180991.0 ,0Per b

35.1001.00001.0360991.0 :2Per v

991.0 :0 | 2

0 = | 360910396.0 | 396.040

991.0101.910 | 90.92

20101100

2 a

2s

2222

52

=≤→≥−−≥

+=−+==

===+−=

≅→∞−=Ω−=−===

=−==⎟⎠⎞

⎜⎝⎛=== μμαα

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 8: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-8 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.12

( )

( )

( )

( ) mVAV

VVvVVmVv

vAvVVv

ARkmSRgAmSIg

VIxVAAIII

ddO

oOs

idddoOs

ccEECmddCm

COEE

FEFC

96.4v0v2

v,0Per v b

219.0=2

001.0437= e 09.1 : 1Per

0=2

= e 09.1 :0Per

0 = | 43711097.3 | 97.340

09.11010.112 | 2.992

200121120

2 a

sssCB

5

≤→≥⎟⎠⎞

⎜⎝⎛ −−≥

−−==

−==

≅→∞−=Ω−=−===

=−==⎟⎠⎞

⎜⎝⎛=== μμαα

11.13 *Problema 11.13 - Figura P11.11 VCC 2 0 DC 12 VEE 1 0 DC -12 V1 3 7 AC 1 V2 5 7 AC 0 VIC 7 0 DC 0 RC 2 6 110K Q1 2 3 4 NBJT Q2 6 5 4 NBJT IEE 4 1 DC 200U .MODEL NBJT NPN VA=60V BF=120 .OP .AC LIN 1 1KHz 1KHZ .PRINT AC IM(V1) IP(V1) VM(6) VP(6) .TF V(6) VIC .END

Ω=Ω==−== MRAkVIM

RVMA iccciddd 8.45 | 0123.0+= | 0.82)1(

1 | 193)6( :Risultati

*REAL(Vout)*

Time (s)Circuit 15.55-Transient-3

+5.000

+6.000

+7.000

+8.000

+9.000

+10.000

+11.000

+12.000

+13.000

+0.000e+000 +1.000m +2.000m +3.000m +4.000m +5.000m +6.000m +7.000m +8.000m +9.000m

L’amplificatore è sovraccaricato causando una distorsione sull’uscita. Utilizzando l’analisi di Fourier con SPICE, THD = 16.9% Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 9: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-9

11.14

( ) ( )

( )

( )

( )( )

( )( ) ( )

dBoCMRR

AAAA

CMRRAAA

MkkRrRkrR

kkk

RrRA

kmSRgA

kg

rmSIgVA

VIxVAk

I

cccmdd

dm

cmdddm

EEoicid

EEo

Cocc

Cmdd

mCm

CECEFC

2.49 287661.0

190=

661.0 | 1902

: terminalesingolo a uscitaun'Per

= | 0 | 380 :aledifferenzi uscitaun'Per

7.222

3001510.792

21 | 1582

661.03001510.79

20015021

38020090.1

0.79150 | 90.140 | 22.6 ,4.47 :Q Punto

22.6102157.0 | 4.471502

7.015151150I 5

=−−

−==−==

∞=−==

Ω=Ω+Ω

=++

=Ω==

−=Ω+Ω

Ω−=

++−=

−=Ω−=−=

Ω====

=+−−==⎥⎦

⎤⎢⎣

⎡Ω

−==

βββ

μ

μα

ππ

π

π

11.15

( )

( )

( )

( )( )

( )

( )

( )

( )

( ) VVvAVv

vVvAVv

VVVVvAvAVv

VVVVvAvAVv

VvVv

kkk

RrRA

kmSRgA

kg

rmSIgVV

VIxVVAk

II

icccCOC

OCidddOD

icccid

ddCC

icccid

ddCC

icid

EEo

Cocc

Cmdd

mCmEC

CCCEFC

65.4995.0643.001.4 :Nota

65.42

450.3850.5 e 40.2 :Nota | 40.2450.3850.5

450.3995.0643.0201.024001.4

2

850.5995.0643.0201.024001.4

2

995.02

99.01 | 01.099.01

643.0860101234

56010021

240560428.0

234100 | 428.040 | 71.401.47.0

01.4106.510 | 7.104302

7.010101100

22

11

521

−=−−=+=

−=−−

=−=−=−−−=

−=−+−=+−=

−=−−−=++=

=+

==−=

−=Ω+Ω

Ω−=

++−=

−=Ω−=−=

Ω=====−−=

−=+−===⎥⎦

⎤⎢⎣

⎡Ω

−==

ββ

μα

π

π

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 10: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-10 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.16 *Problema 11.16 – Figura P11.14 VCC 2 0 DC 10 VEE 1 0 DC -10 V1 4 8 AC 1 V2 6 8 AC 0 VIC 8 0 DC 0 RC1 5 1 560K RC2 7 1 560K Q1 5 4 3 PBJT Q2 7 6 3 PBJT REE 2 3 430K .MODEL PBJT PNP VA=60V BF=100 .OP .AC LIN 1 5KHz 5KHZ .PRINT AC IM(V1) IP(V1) VM(5,7) VP(5,7) .TF V(7) VIC .END

Add = VM(5,7) = −213 | Rid =1

IM(V1)= 511 kΩ

Acc = −0.642 | Ric = 37.5 MΩ | CMRR = 2130.642

= 332 → 50.4dB

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 11: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-11

11.17

( )

( )

( )

( )( )

( )( ) ( )

.6.107.1 epolarizzarper 0.7V avere di permette che 7.07.0+supererànon V che stimare solo possiamo ,Iper circuito del esatta conoscenza una Senza

e 07.1 richiede 0 | 0.60 10000385.0

6.38=

661.0 | 6.382

: terminalesingolo a uscitaun'Per

= | 0 | 2.77 :aledifferenzi uscitaun'Per

64894.480

280

2 ,80 era se esempio,Per

raggiunta. ntecompletame sarànon 405= cosicchè 2

a simile è che noti Si

4052

10818082

21 | 8082

0385.01081404

3908021

2.77390198.0

40480 | 198.040 | 77.1 ,94.4 :Q Punti

77.1109.337.0 | 94.42

108180

2

ICEE

o

5

VVVIVVV

VVVVdBoCMRR

AAAA

CMRRAAA

MA

rVV

MRrR

MMkRrRkrR

Mkk

RrRA

kmSRgA

kg

rmSIgVA

VIxVAAII

ICEECCIC

CICBC

cccmdd

dm

cmdddm

ooA

ico

ic

EEoicid

EEo

Cocc

Cmdd

mCm

CECEE

FC

+≤≤−→−≤

−=≥≥=−

−==−==

∞=−==

Ω=⎟⎟⎠

⎞⎜⎜⎝

⎛≅

Ω

Ω=Ω+Ω

=++

=Ω==

−=Ω+Ω

Ω−=

++−=

−=Ω−=−=

Ω====

=+−−==⎟⎠⎞

⎜⎝⎛==

μβ

β

βββ

μ

μμα

ππ

π

π

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 12: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-12 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.18

( )

( )

( )( )

( )

( )

( )

( )

( ) VVvAVv

v

VvAVv

VVVVvAvAVv

VVVVvAvAVv

VvVv

Mkk

RrRA

kmSRgA

kg

rmSIgVV

VIxVVAmAII

icccCOC

OC

idddOD

icccid

ddCC

icccid

ddCC

icid

EEo

Cocc

Cmdd

mCmEC

CCCEE

FC

6.14005.00149.060.14

e 6.142

12.1309.16 :nota si Inoltre

97.2 :Note | 97.212.1309.16

12.13005.00149.0201.02976.14

2

09.16005.00149.0201.02976.14

2

005.02

001.0 | 01.0001.0

0149.0112106.6

1512021

297158.19

06.6120 | 8.1940 | 3.156.147.0 oVerificand

6.14105.122 | 4962

1121120

2

22

11

421

−=−−=+=

−=−−

=

−=−=−−−=

−=−+−=+−=

−=−−−=++=

=+

==−=

−=Ω+Ω

Ω−=

++−=

−=Ω−=−=

Ω=====−−=

−=+−===⎟⎠⎞

⎜⎝⎛==

ββ

μα

π

π

11.19

( )

( )

( ) ( )

( )( )

( )

dBorCMRR

kkk

RrR

RRA

vRr

RvRRRRvRr

v

vRr

ii

RRiRRivvvvvA

RgAvRgRRvgmRRvgmv

RRiRRivvvvvA

kg

rmSIgAk

VVII

EEo

ocd

icEEo

oodic

EEo

ood

icEEo

occ

ccccodic

odcd

mddidmidid

od

ccccodid

oddd

mCmEFC

2.95 5730000494.0283

00494.2001013.35

10010001.021

212221

21 comune, modo di ingressoun Per

22 |

283 | 2222

22 |

3.35100 | 83.240 | 8.701002

7.015101100

21

2121

2121

=−

−=

−=Ω+Ω

Ω−=

++Δ

−=

++Δ

−==⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ Δ

−−⎟⎠⎞

⎜⎝⎛ Δ

+++

−=

++==

⎟⎠⎞

⎜⎝⎛ Δ

−−⎟⎠⎞

⎜⎝⎛ Δ

+=−==

−=−=−=⎟⎠⎞

⎜⎝⎛ Δ

−⎟⎠⎞

⎜⎝⎛−−⎟

⎠⎞

⎜⎝⎛ Δ

+−=

⎟⎠⎞

⎜⎝⎛ Δ

−−⎟⎠⎞

⎜⎝⎛ Δ

+=−==

Ω=====⎥⎦

⎤⎢⎣

⎡Ω

−==

ββ

ββ

ββ

ββ

μα

π

ππ

π

π

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 13: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-13

11.20 *Problema 11.20 – Figura P11.19 VCC 2 0 DC 15 VEE 1 0 DC -15 V1 4 8 AC 0.5 V2 6 8 AC -0.5 VIC 8 0 DC 0 RC1 2 5 100.5K RC2 2 7 99.5K Q1 5 4 3 NBJT Q2 7 6 3 NBJT REE 3 1 100K .MODEL NBJT NPN BF=100 .OP .AC LIN 1 100 100 .PRINT AC IM(V1) IP(V1) VM(5,7) VP(5,7) .TF V(5,7) VIC .END Risultati: Add = VM(5,7) = −274 | Acd = −0.00494 | CMRR = 55500 or 94.9 dB

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 14: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-14 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.21

( )

( ) ( ) ( ) ( )

( )

( )( ) ( )

( )

dBorggRgCMRR

RgRg

gg

RgRg

gg

RrR

gg

vvA

vRr

rvvvRr

Rv

vGggggggvv

vvRgggvvRgRggvvRggvvv

RgAvRgvvvggv

RrR

ggv

vGgggvvgggvv

vggvRgv

RvgvRgRggvvRggvvv

m

mEEm

EEm

m

m

m

EEm

m

m

m

EEo

o

m

m

ic

odcd

icEEo

eicicEEo

EEoe

eEEm

mm

meic

eicmm

meicm

mmeic

mmeicod

mddidmodididm

mid

EEo

EEo

m

me

eEEm

meidm

meid

em

midmod

emidmm

meidm

meid

od

6.95 600002

00499.0212121

21 |

2121

022

:emettitore nodo Al

22

:comune modo di ingressoun Per

300 | | 41

2121

02222

:emettitore nodo Al |

2222

:aledifferenzi modo di ingressoun Per

1

=⎥⎦

⎤⎢⎣

⎡Δ≅

−=+

Δ−=

−≅++

Δ−==

++=−

+++

=

=−⎟⎠⎞

⎜⎝⎛ +

Δ−++

Δ+−

−Δ

−=−Δ−=⎟⎠⎞

⎜⎝⎛ Δ

−−+⎟⎠⎞

⎜⎝⎛ Δ

+−−=

−=−≅−≅<<Δ

≅++

Δ=

=−⎟⎠⎞

⎜⎝⎛ +

Δ−⎟

⎠⎞

⎜⎝⎛ −−+⎟

⎠⎞

⎜⎝⎛ +

Δ+⎟

⎠⎞

⎜⎝⎛ −

⎟⎟⎠

⎞⎜⎜⎝

⎛ Δ+−=

Δ+−=⎟⎠⎞

⎜⎝⎛ Δ

−⎟⎠⎞

⎜⎝⎛ −−+⎟

⎠⎞

⎜⎝⎛ Δ

+⎟⎠⎞

⎜⎝⎛ −−=

ββ

βββ

ββ

π

π

π

π

ππ

π

ππ

Nota per i problemi 11.22 - 11.37 Il file MATLAB seguente può essere usato per trovare le correnti di drain nei circuiti con FET nei problemi 11.22 - 11.37. Utilizzo fzero('FET Bias',0) per trovare .ID function f=bias(id) kn=4e-4; vto=1; gamma=0.0; rss=62e3; vss=15; vsb=2*id*rss; vtn=vto+gamma*(sqrt(vsb+0.6)-sqrt(0.6)); f=vss-vtn-sqrt(2*id/kn)-vsb;

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 15: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-15

11.22 Questa soluzione è stata calcolata con il file matlab precedente. La soluzione del problema 11.23 da un esempio dei calcoli manuali.

( )

( )( )

( ) ( ) ( )( ) ( )

( )( )( )

| | 8.29 | 2.31738.0

0.23=

738.0 | 0.232

: terminalesingolo a uscitaun'Per

= | 0 | 9.45 :aledifferenzi uscitaun'Per

738.022039.121

33039.121

9.4533039.1 | 39.1348.0

102.2422

36.5 ,2.24=Q Punto .> 36.501.4

01.4103.312 .2.24220

35.11221

348.1 07617588 128812

1 e 400per e 220

122

2220

122

6

5

22

22

∞=∞===

−==−==

∞=−==

−=Ω+

Ω=

+−=

−=Ω−=−===−

=

−=−−=

=−==⎟⎠⎞

⎜⎝⎛

Ω−

==

==+−+−=−

==Ω

−=−⇒

Ω−

=

iciddb

cccmdd

dm

cmdddm

SSm

Dmcc

DmddTNGS

Dm

TNGSGSDS

DDSD

GSGSGSGSGSGS

TNnGS

TNGSnGS

S

RRdBCMRRCMRR

AAAA

CMRRAAAkms

kmsRg

RgA

kmsRgAmSxVV

Ig

VAVVVVV

VIxVAk

II

VVeVVorVVV

VVV

AKkVVVK

kVI

μ

μ

μ

11.23

( )( ) ( ) ( )

( ) ( )( )

( )( )( )( )

∞=∞===

−==−==

∞=−==

−=Ω+

Ω−=

+−=

−=Ω−=−===−

=

>=−−Ω−=

=−=→++=

++=+==−

iciddb

cccmdd

dm

cmdddm

SSm

Dmcc

DmddTNGS

Dm

GSDDS

TNGSDD

SS

n

DTNSSDSS

n

DTNGSSSDGSSS

RRdBCMRRCMRR

AAAA

CMRRAAAkmS

kmSRg

RgA

kmSRgAmSVA

VVIg

VAVVVIkV

VVVAIx

IxI

KIVRIV

KIVVRIVV

| | 4.25 | 7.18487.010.9=

487.0 | 10.92

: terminalesingolo a uscitaun'Per

= | 0 | 2.18 :aledifferenzi uscitaun'Per

487.062293.021

62293.021

2.1862293.0 | 293.0731.0

107221.10 ,107 :Q Punto | Attivo - 731.01.106215

731.0 | 107104

211062215

22 | 2 | 2

43

μμ

μ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 16: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-16 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.24 *Problema 11.24 - Figura P11.22 VCC 2 0 DC 12 VEE 1 0 DC -12 VIC 8 0 DC 0 VID1 4 8 AC 0.5 VID2 6 8 AC -0.5 RD1 2 3 330K RD2 2 7 330K M1 3 4 5 5 NFET M2 7 6 5 5 NFET REE 5 1 220K .MODEL NFET NMOS KP=400U VTO=1 .OP .AC LIN 1 1KHZ 1KHZ .PRINT AC IM(VID1) IP(VID1) VM(3,7) VP(3,7) .TF V(7) VIC .END

∞=∞==−−== icidccdd RRCMRRAVMA | | 2.31 | 738.0= | 9.45)7,3( :Risultati (b)

V(IVOUT)

Time (s)Problem15.67(b)-Transient-0

(V)

-1.000

-500.000m

+0.000e+000

+500.000m

+1.000

+0.000e+000 +1.000m +2.000m +3.000m +4.000m

Problema 11.24(b)-Fourier-Tabella FREQ mag phase norm_mag norm_phase +0.000 -4.011 +0.000 +0.000 +0.000 +1.000k +586.074m +180.000 +1.000 +0.000e+000 +2.000k +82.747u -90.000 +141.188u -270.000 +3.000k +90.858u +179.996 +155.029u -3.577m +4.000k +14.251n +93.958 +24.316n -86.042 +5.000k +9.695n +53.059 +16.541n -126.941 THD = 0.021% è molto basso a causa del modello quadratico di primo livello utilizzato nella simulazione

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 17: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-17

11.25

( )( )

( ) Ω=Ω=−

=−

=

=+===

=====−=

Ω=Ω=→Ω==≅

kRkAI

VVR

VKIVVA

xxI

IKmSgRgA

kRkRkRRVVA

SSD

GSSSSS

n

DSTNGSD

DnmDmdd

DDDod

SSDDdd

6.5 : 5% al più vicino valoreil doSelezionan | 52.53482

16.152

16.12 | 348102521017.4

217.4240010 | 1010

4.2 :5% al più vicino valoreil doSelezionan | 5.252ok. essere Dovrebbe dB. 20 o 10=+

,simmetrici generatoriabbiamocheDato pratica.regolanostra la amo verifichicosa primaPer

3

23

2020

μ

μ

11.26 ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )

( )( )( )

( )( )

( )

( )VAVIIVAIx

IIKIVRIVVVc

RRdBCMRRCMRR

AAAA

CMRRAAAkmS

kmSRg

RgA

kmSRgAmSVA

VVIgb

VAVVVIkVVVVVVVVAI

VVVV

AKkR

RIVVVV

KIVRIV

KIVVRIRIVV

SDDSD

DD

n

DTOSSDSSTOTN

iciddb

cccmdd

dm

cmdddm

SSm

Dmcc

DmddTNGS

Dm

GSDDS

GSTNTNGSD

TOnSS

SSDTOSBTOTN

n

DTNSSDSS

n

DTNGSSSDSSSGSSS

1.10 , 107 :Q Punto | eSaturazion 1.101280006200030 107104

2112400015 | 22 | ,0=For

| | 7.24 | 2.17486.035.8=

486.0 | 35.82

: terminalesingolo a uscitaun'Per

= | 0 | 7.16 :aledifferenzi uscitaun'Per

0= Supponendo 486.062270.021

62270.0121

7.1662270.0 | 270.0676.0

3.9122

9.12 ,3.91 :Q Punto | eSaturazion - 676.09.12621569.3 | 01.3 | 676.0 | 3.91

ottiene si 75.0= | 1 | 400 | 62con enteiterativam Risolvendo

6.06.026.06.0

22 | 2 | 22

11.22. problema del matlab file il utilizza soluzione Questa a

4

2

μμ

γ

ηη

μμ

μ

γμγγ

=−−==

++=++==

∞=∞===

−==−==

∞=−==

−=Ω+

Ω−=

++−=

−=Ω−=−===−

=

>=−−Ω−====−=

==Ω=

−++=−++=

++=+===−

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 18: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-18 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.27 *Problema 11.27 - Figura P11.26 VCC 2 0 DC 15 VEE 1 0 DC -15 VIC 8 0 DC 0 VID1 4 8 AC 0.5 VID2 6 8 AC -0.5 RD1 2 3 62K RD2 2 7 62K M1 3 4 5 1 NFET M2 7 6 5 1 NFET REE 5 1 62K .MODEL NFET NMOS KP=400U VTO=1 PHI=0.6 GAMMA=0.75 .OP .AC LIN 1 1KHZ 1KHZ .PRINT AC IM(VID1) IP(VID1) VM(3,7) VP(3,7) .TF V(7) VIC .END

∞=∞==−−== iciddBccdd RRdBCMRRAVMA | | 6.25 | 439.0= | 8.16)7,3( :Risultati (b)

V(IVOUT)

Time (s)Problem15.70(b)-Transient-1

(V)

-400.000m

-200.000m

+0.000e+000

+200.000m

+400.000m

+0.000e+000 +1.000m +2.000m +3.000m +4.000m

Problema11.27(b)-Fourier-Tabella THD = 0.0034% FREQ mag phase norm_mag norm_phase +0.000 -345.019n +0.000 +0.000 +0.000 +1.000k +444.350m +180.0 +1.000 +0.000 +2.000k +35.476n -30.192 +79.838n -210.192 +3.000k +11.056u -179.929 +33.884u -359.929 +4.000k +23.789n -50.644 +53.536n -230.643 +5.000k +22.342n -57.083 +50.280n -237.083

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 19: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-19

11.28

( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )

( )( )( )

( )( )

( )

( )VAVIIVAIx

IIKIVRIVVVc

RRdBCMRRCMRR

AAAA

CMRRAAAkmS

kmSRg

RgA

kmSRgAmSVA

VVIgb

VAVVVIkVVVVVVVVAI

VVVV

AKkR

RIVVVV

KIVRIV

KIVVRIRIVVa

SDDSD

DD

n

DTOSSDSSTOTN

iciddb

cccmdd

dm

cmdddm

SSm

Dmcc

DmddTNGS

Dm

GSDDS

GSTNTNGSD

TOnSS

SSDTOSBTOTN

n

DTNSSDSS

n

DTNGSSSDSSSGSSS

37.5 , 2.25 :Q Punto | eSaturazion 37.544000033000024 2.24104

2144000012 | 22 | ,0=For

| | 1.29 | 4.28737.0

0.21=

737.0 | 0.212

: terminalesingolo a uscitaun'Per

= | 0 | 9.41 :aledifferenzi uscitaun'Per

0= supponendo 737.0220127.021

330127.0121

9.41330127.0 | 127.0319.0

3.2022

35.8 ,3.20 :Q Punto | attiva Regione - 319.035.83301205.3 | 74.2 | 319.0 | 3.20

ottiene si 75.0= | 1 | 400 | 220con enteiterativam Risolvendo

6.06.026.06.0

22 | 2 | 2=2

11.22. problema del matlab file il utilizza soluzione Questa

4

2

μμ

γ

ηη

μμ

μ

γμγγ

=−−==

++=++==

∞=∞===

−==−==

∞=−==

−=Ω+

Ω−=

++−=

−=Ω−=−===−

=

>=−−Ω−====−=

==Ω=

−++=−++=

++=+==−

11.29

( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )

( )( )( )( )

∞=∞===

−==−==

∞=−==

−=Ω+

Ω−=

+−=

−=Ω−=−===−

=

>=−−Ω−=

=−++=== −

iciddb

cccmdd

dm

cmdddm

SSm

Dmcc

DmddTNGS

Dm

GSDDS

TNGSn

DTNGS

SSD

RRdBCMRRCMRR

AAAA

CMRRAAAMmS

kmSRg

RgA

kmSRgAmSVA

VVIgb

VAVVVIkV

VVVVxx

KIVVAIIa

| | 0.44 | 158120.0

0.19=

120.0 | 0.192

: terminalesingolo a uscitaun'Per

= | 0 | 0.38 :aledifferenzi uscitaun'Per

120.025.1127.021

300127.021

0.38300127.0 | 127.0316.02022

32.4 ,20 :Q Punto | attiva Regione - 316.032.43009

316.0 | 316.1= 10410221=2 | 20

2 4

5

μμ

μ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 20: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-20 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.30

( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )

( )( )( )( )

| | 0.35 | 0.56232.0

0.13=

232.0 | 0.132

: terminalesingolo a uscitaun'Per

= | 0 | 0.26 :aledifferenzi uscitaun'Per

232.0160346.021

75346.021

0.2675346.0 | 346.0866.0

15022

62.5 ,150 :Q Punto | attiva Regione - 866.062.57515

866.0 | 866.1= 104

105.121=2 | 1502

4

4

∞=∞===

−==−==

∞=−==

−=Ω+

Ω−=

+−=

−=Ω−=−===−

=

>=−−Ω−=

=−++=== −

iciddb

cccmdd

dm

cmdddm

SSm

Dmcc

DmddTNGS

Dm

GSDDS

TNGSn

DTNGS

SSD

RRdBCMRRCMRR

AAAA

CMRRAAAkmS

kmSRg

RgA

kmSRgAmSVA

VVIgb

VAVVVIkV

VVVVx

xKIVVAIIa

μμ

μ

11.31

( ) ( )

( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )( )

( )( )( )

( )( )

∞=∞===

−==−==

∞=−==

−=Ω+

Ω−=

++−=

−=Ω−=−===−

=

>=−−Ω−=

==→−+−+=−

−+−+=−++=

+++= −

iciddb

cccmdd

dm

cmdddm

SSm

Dmcc

DmddTNGS

Dm

GSDSDS

TNGSGSGS

GSSBTOTN

TNTNn

DTNGS

SSD

RRdBCMRRCMRR

AAAA

CMRRAAAMmS

kmSRg

RgA

kmSRgAmSVA

VVIgb

VAVVVIkVVVVVVV

VVVV

VVxxV

KIVVAIIa

| | 0.44 | 158120.0

0.19=

120.0 | 0.192

: terminalesingolo a uscitaun'Per

= | 0 | 1.38 :aledifferenzi uscitaun'Per

0= supponendo 120.025.1127.021

300127.0121

1.38300127.0 | 127.0316.02022

71.5 ,20 :Q Punto | attiva Regione - 316.071.5300939.2 | 71.26.06.0975.01316.0

6.06.0975.016.06.0

316.0=1041022 =2 | 20=

2= 4

5

ηη

μμ

γ

μ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 21: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-21

11.32

( ) ( )

( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )( )

( )( )( )

( )( )

∞=∞===

−==−==

∞=−==

−=Ω+

Ω−=

++−=

−=Ω−=−===−

=

>=−−Ω−=

==→−+−+=−

−+−+=−++=

+++= −

iciddb

cccmdd

dm

cmdddm

SSm

Dmcc

DmddTNGS

Dm

GSDSDS

TNGSGSGS

GSTOSBTOTN

TNTNn

DTNGS

SSD

RRdBCMRRCMRR

AAAA

CMRRAAAkmS

kmSRg

RgA

kmSRgAmSVA

VVIgb

VAVVVIkVVVVVVV

VVVVV

VVx

xVKIVVAIIa

| | 9.34 | 8.55233.0

0.13=

233.0 | 0.132

: terminalesingolo a uscitaun'Per

= | 0 | 0.26 :aledifferenzi uscitaun'Per

0= supponendo 233.0160346.021

75346.0121

0.2675346.0 | 346.0866.0

15022

61.7 ,150 :Q Punto | attiva Regione - 866.061.7751599.2 | 86.36.06.01575.01866.0

6.06.0156.06.0

866.0=104

105.12 =2 | 150=2

= 4

4

ηη

μμ

γγ

μ

11.33

( )

( ) ( ) ( )

5%. al più vicino valoreil ,273.25156

95.3 | 3122

1562

005.025.02=25.0 | 95.32

6.3125.0

,inversione fortein ntofunzioname il assicurareper 25.0 Scegliendo m minima richiede comune modo di onedistribuzi massima La

26.31 | .)1 usa

pratica regola nostra (la . di valoreil riduce si se bene andare Dovrebbe2. fattoreun entro ,15=+ ,simmetrici generatori abbiamo che Dato

pratica. regola nostra la e verificardovremo cosa, primaPer | 6.3110

2

2030

Ω→Ω====

==→==

=−−⇒

−===−

−≅

==−=

kkA

VRAII

AIKIVVRI

VVVVVinimaRI

VVRIRgVVV

VVVVA

RgA

DDSS

Dn

DDD

TNGS

TNGSDD

TNGS

DDDmTNGS

TNGS

SSDDdd

Dmdd

μμ

μ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 22: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-22 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.34

( ) ( )

( )( )[ ]{ } ( )

( ) ( )( ) ( )( )

( )( )

∞=∞===

−==−==

∞=−==

−=Ω+

Ω=

+−=

−=Ω−=−===

−−≤−=−Ω−−−==−=−−=→+=+

−==Ω

+=−⇒⎟

⎠⎞

⎜⎝⎛

Ω−

=

−−

iciddb

cccmdd

dm

cmdddm

SSm

Dmcc

Dmddm

DGSDS

DTPGSGSGSGS

TPpGS

TPGSpGS

D

RRdBCMRRCMRR

AAAA

CMRRAAAkmS

kmSRg

RgA

kmSRgAmSxxgb

VAVVIkVVAIVVVVVVV

VVV

AKkVVV

KkVIa

| | 9.22 | 9.13785.0

9.10=

785.0 | 9.102

: terminalesingolo a uscitaun'Per

= | 0 | 7.21 :aledifferenzi uscitaun'Per

785.056238.021

91238.021

7.2191238.0 | 238.01042.11022

27.7 ,142=Q Punto | attiva Regione 19.127.71891142 | 19.1 | 19.212.1118

1 e 200per e 112

18256

1821

44

2

22

μμ

μ

11.35 *Problema 11.35 – Figura P11.34 VCC 2 0 DC 18 VEE 1 0 DC -18 VIC 8 0 DC 0 V1 4 8 AC 0.5 V2 6 8 AC -0.5 RD1 5 1 91K RD2 7 1 91K M1 5 4 3 3 PFET M2 7 6 3 3 PFET REE 2 3 56K .MODEL PFET PMOS KP=200U VTO=-1 .OP .AC LIN 1 3KHZ 3KHZ .PRINT AC IM(V1) IP(V1) VM(5,7) VP(5,7) .TF V(7) VIC .END

∞=∞==−−== ididccdd RRCMRRAVMA | | 8.13 | 783.0= | 6.21)7,5( :Risultati

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 23: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-23

11.36

( ) ( )

( ) ( ){ }( ){ }

( )[ ] ( )( ) ( )( ) ( )( )

( )( )( )

( )( )

∞=∞===

−==−==

∞=−==

−=Ω+

Ω−=

++−=

−=Ω−=−===

−≤−=Ω+−+=

−=−=→−++−−=

−++−−=−+−−=

−−−=

−−

iciddb

cccmdd

dm

cmdddm

SSm

Dmcc

Dmddm

DGSDS

TPGSGSGS

GSBSTOTP

TPTPp

DTPGS

SSD

RRdBCMRRCMRR

AAAA

CMRRAAAMS

kSRg

RgA

kSRgASxxgb

VAVVIkVVVVVVVV

VVVV

VVxxV

KIVVAIIa

| | 0.41 | 113119.0

4.13=

119.0 | 4.132

: terminalesingolo a uscitaun'Per

= | 0 | 8.26 :aledifferenzi uscitaun'Per

0= supponendo 119.025.14.8921

3004.89121

8.263004.89 | 4.891021022

67.6-,20 :Q Punto | attiva Regione - 447.067.63001023.2 | 67.26.06.106.01447.0

6.06.0106.016.06.0

447.0=1021022=2 | 20=

2=

45

4

5

ημ

μη

μμ

μ

γ

μ

11.37

( ) ( )

( )

( )( ) ( )( )

( )

( ) ( )

mVvQmVvvv

mVvmVVVvb

VvAVvrRA

kSRgASAmAg

VVV

VVVVKIVV

VVvvVIkVAIIa

O

PGS

ddOOoSScc

Dmddm

DDS

PGSP

DTPGS

OOIDOSS

D

3.48 uindi, | 3.482

0.11680.31- pinchoff.per V 1 Inoltre

segnale piccoloper limiti sui basato 56 | 0.2814.02.02.02

64.202.02

0.11680.32

| e for 0

116820141 | 1411012

pinchoff.per V 1 Quindi pinchoff.per 14.0

14.0 | 86.01010212

80.3 ,0For | 80.382012 | 10=2

=

111

11

1

3

5

≤=→+−≤−≤

≤==−≤

−=+−=−=∞==

−=Ω−=−===

−≤−≤

−=−=−=+=

−===−=Ω+−=

μμμ

μ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 24: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-24 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.38

200 k Ω

+22 V

-22 V

Q1

2 k Ω

400 k Ω

R1

2R EE

RC

dc half-circuit

200 k Ω

Q1

402 k Ω

R1 +2R EE

RC

+- vic

Common-mode half circuit

200 k Ω

Q1

2 k Ω

R1

RC

+-

Differential-mode half circuit

vid

2

(a)

( ) ( ) ( )

( ) ( )

( )( )( )

( )

( )( )

( )( )[ ] ( )[ ]

( )( )[ ] ( )( )[ ]

dB 38.2 miseroun ,4.81494.0

2.40= il terminalesingolo ilper e

304021513.715.0215.0 :inoltre noti Si 74721513.71212

4.8021513.71

2001501

494.04021513.71

20015021

3.716.52025.0150 | ri transistoi entrambiper 2.12 ,52.6

2.127.020022 | 6.52402

7.022151150

1

1

1

1

=

Ω=Ω+Ω=+++=Ω=Ω+Ω=++=

−=Ω+Ω

Ω−=

++−=

−=Ω+Ω

Ω−=

+++−=

Ω===

=−−Ω−==Ω

−==

CMRR

MkkRRrRkkkRrR

kkk

RrRA

kkk

RRrRA

kA

VrVAPuntoQ

VIkVAk

IIb

EEoic

oid

o

Codd

EEo

Cocc

CCEEFC

βββ

ββ

βμ

μ

μα

π

π

π

π

π

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 25: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-25

11.39 *Problema 11.39 – Figura P11.38 VCC 2 0 DC 22 VEE 1 0 DC -22 VIC 10 0 DC 0 V1 4 10 AC 0.5 V2 8 10 AC -0.5 RC1 2 5 200K RC2 2 9 200K Q1 5 4 3 NBJT Q2 9 8 7 NBJT RE1 3 6 2K RE2 7 6 2K REE 6 1 200K .MODEL NBJT NPN BF=150 .OP .AC LIN 1 1KHZ 1KHZ .PRINT AC IM(V1) IP(V1) VM(5,9) VP(5,9) .TF V(9) VIC .END

Ω==−−== kVIM

RAVMA idccdd 751)1(

1 | 494.0= | 9.79)9,5( :Risultati

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 26: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-26 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.40

(a)

REE

100 k Ω

Q1

600 k Ω

+- vic

Common-mode half circuit

dc half-circuit

100 k Ω

+V CC

-VEE

Q1

IEE 100 μA

Differential-mode half circuit

Q1

2.5 k Ω+-

vid2

REE600 k Ω

100 k Ω

500 k Ω

( ) ( ) ( )

( ) ( )

( ) ( )

( )( )

( ) ( )[ ] ( )[ ]

( )[ ] ( )[ ] Ω=Ω+Ω=++=

=⎟⎠⎞

⎜⎝⎛

Ω=Ω+Ω=++=−=Ω+Ω

Ω−=

Ω=ΩΩ=Ω=ΩΩ=++

−=

−=Ω+Ω

Ω−=

++−=

Ω===

=−−−====

MkkRrR

CMRR

kkkRrRkk

kA

kkkRkkkRRr

RA

kkk

RrRA

kAVrVAPuntoQ

VIVAAIIb

oic

oiddd

Lo

Lodd

EEo

Locc

CCEEFC

3.306001013.255.015.0

e 2.91165.0

1.305.0= il terminalesingoloPer :Nota

55449.21013.25212 | 1.3049.21013.25

3.83100

49.25.2600 | 3.83500100 | 1

165.06001013.25

1001

3.25 0.99025.0100 | ri transistoi entrambiper 8.10 ,0.99

8.107.01020 0.99100101100

5

5

55

'

5

β

β

ββββ

μμ

μμα

π

π

π

π

π

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 27: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-27

11.41 *Problema 11.41 – Figura P11.40 VCC 2 0 DC 20 VEE 1 0 DC -20 VIC 9 0 DC 0 V1 4 9 AC 0.5 V2 7 9 AC -0.5 RC1 2 5 100K RC2 2 8 100K RL 5 8 1MEG Q1 5 4 3 NBJT Q2 8 7 6 NBJT REE 3 6 5K IEE1 3 1 67.8U RE1 3 1 600K IEE2 6 1 67.8U RE2 6 1 600K .MODEL NBJT NPN BF=100 .OP .AC LIN 1 1KHZ 1KHZ .PRINT AC IM(V1) IP(V1) VM(5,8) VP(5,8) .TF V(8) VIC .END

Ω==−−== kVIM

RAVMA idccdd 555)1(

1 | 165.0= | 0.30)8,5( :Risultati

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 28: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-28 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.42

Common-mode half circuit

2REE

Q1

RD

+- vic

M1

Q1

M1

RD

+- vid

2

Differential-mode half circuit

-VEE

IEE2

+VCC

RD

Q1

M1

dc half-circuit

( ) ( )[ ]

( )( ) ( )

( )( )( )

( )( )

( )( )

( )[ ] ( )[ ]( ) ( ) attiva regionein tounzionamen | 7.0 | 29.3 a Dalla

6.602.11015.505.0215.0

e dB 61.6 o 12000619.01495.0= terminalesingoloA :Nota

1012 | 1497549.540

0619.02.11015.50

7510021

| 5.50 5.49025.0100

70.8 ,5.49Q unto JFET | 29.3 ,5.49Q unto BJT 70.87.0105.715 | 29.3

29.3=42102=5.49 | 5.49

2100

101100

2

1

4

24

FVVVVVVVcMMkRrR

CMRR

krRkARgAMk

kRr

RAkAVr

VAPVAPVVIxVVVV

VVVxAAAIIb

BECEBEGSCE

EEoic

idDmdd

EEo

Locc

CECDSGSCE

GSGSEE

FC

→≥==−=Ω=Ω+Ω=++=

=⎟⎠⎞

⎜⎝⎛

Ω==−=Ω−=−=

−=Ω+Ω

Ω−=

++−−=Ω==

===−−−−==−=

−→−−=⎟⎠⎞

⎜⎝⎛==

β

μβ

βμ

μμ

μμμα

π

π

ππ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 29: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-29

11.43

(a)

M1

vic

RD

M3

30 k Ω

RD

M1

I1

v1

+VDD = 6 V

- VSS = -6 V

M3

I2

100 μA

200 μA

30 k Ω

M1

vid

RD

M 3

30 k Ω

2

Common-mode half circuitdc half-circuit

Differential-mode half circuit

( )

( )[ ]{ } ( )( ) ( )

( )( )( ) ∞==∞=−=Ω−=−=

−−=−++−−=Ω+−−−−=−=−

=+=−==−=−=

=−=+=+===

−−

idccoDmdd

DGSSDSTPGS

GSDSDD

TNGSn

DTNGSD

RArkRgA

VAVAVIkVVVVVV

Vx

VVAAAIII

VVVVKIVVAIIb

| 0 ,Per | 4.133010102

18.3 ,100 :M 63.1 ,100 :M :Q Punti e.saturazionin sono M che M Sia18.33663.145.1306 | 632.0

632.1105

1021 | 100100200

447.0 | 447.11010212 | 100

34

3131

33133

4

4

31113

13

41

121

μμ

μμμ

μ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 30: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-30 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.44 (a)

M1

vic

RD

M3

10 k Ω

M1

vid

RD

M3

10 k Ω

2

Common-mode half circuit

Differential-mode half circuit

RD

M1

I1

+VDD = 1.5 V

- VSS = 1.5 V

M3

I2

100 μA

200 μA

10 k Ω

dc half-circuit

+0.18 V

-1.45 V

-0.5 V

VS1

VS3

( )

( )[ ]{ } ( )

( )capi. suoi ai bassa molto tensioneuna ha I corrente di generatore il e pinchoff, il oltre appena è M

.5.010105.1 ,100per ma ,18.063.145.1

Inoltre, . V-1.5- da generatore del negativapiù è che 45.1negativi. V-1.5 da generatore dal esuppportat pena mala a sono tensioniQueste

32.135.163.145.1305.1 | 632.0

632.1105

1021 | 100100200

447.0 | 447.11010212 | 100

23

433312

11

33133

4

4

31113

13

41

121

VkVAIVVVVV

VVV

VIkVVVVVV

Vx

VVAAAIII

VVVVKIVVAIIb

DDGSSS

GSS

DGSSDSTPGS

GSDSDD

TNGSn

DTNGSD

−=Ω+−==+=+−=−=

−=−=

−=−++−−=Ω+−−−−=−=−

=+=−==−=−=

=−=+=+===

μ

μμμ

μ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 31: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-31

11.45

( ) ( )

( ) ( ) ( )

( )

( )

( )

( ) ( )( ) ( )( )( )( )

( )

( ) ( ) ( ) ( ) invertentenon ingressol' è | 147290.2101

21

6.20= | 2022

893241445004054.3590.22

8.24402

144500

1260 | 5500

025.0100

90.28.24

1260 | 1018.24025.0100

4.3558.24

7.0 | 2.288.247.0

12 , 500 12 , 8.24 12 , 8.24 :Q Punti

5002412 | 120Per

1212 | 8.242

50101100

2

22

32

333222

33

22

32

321

33

2321

1

veMMrRd

kRrRckrR

kkAkkMAA

RrgrRrgA

kA

rkA

Vr

MA

rkA

Vr

kAA

VII

VRkA

VRb

VAVAVA

AkVIVVV

VVVVAAIIa

ooic

ooutid

dm

omCom

dm

o

o

BC

EBCC

CECO

BEEBCEFC

Ω=Ω

=+

Ω=Ω==

=ΩΩΩΩΩ=

=

Ω=+

=Ω==

Ω=+

=Ω==

Ω=−

=−

=Ω==

==→=

=−−−==⎟⎠⎞

⎜⎝⎛==

β

μμ

μμ

μμ

μμμ

μμμ

μ

μμα

π

π

π

π

11.46

vic ≥ −VEE + 0.75V + VBE1 = −12 + 0.7 + 0.75 = −10.6Vvic ≤ VCC −VEB3 =12 − 0.7 =11.3V | −10.6 V ≤ vic ≤11.3 V

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 32: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-32 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.47 Si noti che i parametri del transistore e il valore di RC sono stati selezionati accuratamente per consentire il funzionamento ad anello aperto e ottenere VO = 0. *Problema 11.47 – Amplificatore a due stadi – Figura P11.45 VCC 1 0 DC 12 VEE 2 0 DC -12 RC1 1 5 28.2K RC2 1 7 33.9K Q1 5 4 3 NBJT Q2 7 6 3 NBJT I1 3 2 DC 50U Q3 8 7 1 PBJT R 8 2 24K V1 4 10 AC 0.5 V2 6 10 AC -0.5 VIC 10 0 DC 0 .MODEL NBJT NPN BF=100 VA=60 .MODEL PBJT PNP BF=100 VA=60 IS=0.288F .OPTIONS TNOM=17.2 .OP .AC LIN 1 1KHZ 1KHZ .TF V(8) VIC .PRINT AC VM(8) VP(8) IM(V1) IP(V1) .END

Risultati: Adm = VM(8) =1030 | Acm = −6.07 x 10−3 | CMRRdB =105 dB

Rid =1

IM(V1)= 239 kΩ | Rout = 20.6 kΩ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 33: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-33

11.48 ( )[ ]

( )[ ]

( ) ( )

( ) ( )( )

( )( ) ( )[ ]( )[ ] ( )[ ]

3 che noti Si

322 211

11

111

21122

2211

1

40 =40 ipotizza Si

11 =

2f

221o

2222

12

2

2112

2

12112

1211

2

22

1211

2

22

212121211

222211

22121

21

211

11

21221212

211

1

211111

1

2

22

1

11

111221222111

1212

21121121

21122221111

fiCmoooiBm

oooo

oo

o

moo

o

mooiC

mo

o

oce

mo

o

ocec

ooooiB

mmbe

mbembembem

bebe

be

oo

obe

obebe

oooooBFF

A

C

Ao

BF

A

C

Ao

ommo

o

m

o

m

o

momomBFFCmBFCm

FFoo

BFFBFFBFCCC

BFFBFFBFCBFBFC

RGRG

rrrrrrgrrrrgr

rR

rrgrrv

rrgrrvi

rrrrrR

gGvgvgvgvG

vvvrr

rvrr

rvv

rrrI

VIVr

IV

IVr

rrggg

rg

r

gggIIgIIg

IIIIIIIIIIIII

μμββββ

βββ

ββ

ββββ

βββ

β

βββββ

ββ

ββββββββ

βββββββββ

βββββββ

πππ

ππππ

πππππ

ππ

π

ππ

π

ππππ

==≅==

===+

≅+

⎥⎥⎦

⎢⎢⎣

++≅

⎥⎥⎦

⎢⎢⎣

++

+=

≅++=++=

≅→≅+=

≅→≅++

≅++

=

=≅≅≅=≅

=====

==≅=====

≅++=+=≅+===

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 34: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-34 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.49

Q1 Q

2

Q3

Q4

vO

+VCC

-VEE

I1

I2v2v1

RC RC

( ) ( )

( ) ( ) ( ) ( )( )

( )

( ) ( )

( )

( ) ( ) ( )( ) ( ) ( )( ) ( )

( )

( ) ( ) ( ) ( ) invertentenon ingressol' è | 145288.2101

21

2.193

2= | 2022

918024962

495401016.5688.22

8.24403

22

222

144495

3.1160 | 05.5495

025.0100 | 4.1495.4

3.1160

50595.4

025.0100 | 88.28.24

3.1160 | 1018.24025.0100

5.568.244.1 | 6.56

0495.08.244.1

invertentenon ingressol' è | 14512 , 495 3.11 , 95.4 3.11 , 8.24 3.11 , 8.24 :Q Punti

95.4 | 495 | 2412

111

3.11 ,equilibriol'Per | 3.117.012 e 120P

3.117.012 | 8.242

50101100

2

22

42

44422

222

2

443

322

132

432

2

3444

3443434

2134

24321

1

veMMrRd

kRrRckrR

kkAkkMAA

RrgrRrgRRgRRrgA

kA

rkA

VrMA

r

kA

VrMA

rkA

Vr

kA

VRkAA

VIIVVRb

veMVAVAVAVA

AIAIkVIIIIIII

VVVVVVVerV

VVVVVVAAIIa

ooic

ooutid

dm

omoCo

mDarlingtonout

Darlingtonm

DarlingtoninCo

mdm

oo

o

CBC

EBEBC

CCF

CF

CFCBFCCC

CECEECECO

BEEBEBCCCEFC

Ω=Ω

=+

Ω=Ω==

=ΩΩΩΩΩ=

⎟⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛==

Ω=+

=Ω==Ω=+

=

Ω==Ω=+

=Ω==

Ω==Ω=−

=−+

=

Ω−

==Ω

=⎟⎟⎠

⎞⎜⎜⎝

⎛+

+=+=+=+

===−==→=

=−=−−−−==⎟⎠⎞

⎜⎝⎛==

β

μμ

β

μμμ

μμμ

μμμ

μμμμ

μμββ

αα

μμα

π

π

π

ππ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 35: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-35

11.50

( )

( )( ) ( ) ( )

( )( )

( ) ( )[ ][ ]( ) ( )( )[ ]

( )( )

( )

( )

( )

( ) ( )

( ) ( ) ( ) (+) invertentenon ingressol' è v | 6.348.98

3.1470281

21

0.494.267.61.15

4.280128150150

2813.0

3.1470 | 5.408.98025.080222

5519.197.27

9.194.28167.6

50801

7.274.28167.61.152

8.9840

12

67.63.0025.080 | 1.15

75.38.986.1315

3.14 ,300 3.14 ,8.98 3.14 ,8.98 :Q Punti3.14240015 | 3.147.06.13

75.380

300 | 8.982

2008180

2200

6.137.0729.015240015 | 3005015 ,0Per

211

33

31

11

2

2

33

3

22

1

3312

1

3

3321

3

3321

3323

eMA

rRd

kkkk

kkkRrR

RrkRc

kmA

rkAV

IVrR

vv

vvA

kkk

RrR

vvA

kkkAA

RrRgvvAb

kmA

VrkA

VR

VAVAVAVVIVVVV

AAIIAAAII

VVIVAkVIVa

ooic

EC

Eooout

oC

Toid

c

o

id

cv

Eo

Lo

c

ov

v

EoCm

id

cv

C

OEECCECE

F

CBFCC

EBECCO

Ω=⎟⎟⎠

⎞⎜⎜⎝

⎛ +=

+=

Ω=⎥⎦⎤

⎢⎣⎡

Ω+Ω+ΩΩ

+ΩΩ=⎟⎟⎠

⎞⎜⎜⎝

⎛++

+Ω=

Ω=+

=Ω====

=−−==

−=Ω+Ω

Ω−=

++−==

−=Ω+ΩΩ⎟⎠⎞

⎜⎝⎛−=

++⎟⎠⎞

⎜⎝⎛−==

Ω==Ω=−

−=

=−−==−−==

====⎟⎠⎞

⎜⎝⎛=⎟

⎠⎞

⎜⎝⎛==

=−−=−−==Ω

==

μβ

β

μβ

ββ

μ

β

μ

μμμ

μμβ

μμμα

μ

π

π

π

π

π

11.51

( )

VvVVv

VkkVRI

VRIVvVVVVv

icic

EE

EBEECCicBEEEic

6.13 6.13 | 6.137.0729.015

729.04.25015

8081 11.92, prob Dal

| 6.1375.07.01575.0

3

331

≤≤−=−−≤

=Ω⎟⎠⎞

⎜⎝⎛

Ω⎟⎠⎞

⎜⎝⎛=

−−≤−=++−=++−≥

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 36: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-36 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.52

( )

( )( ) ( ) ( )

( )( )

( )Ω=

+=Ω==

Ω=+

=Ω==

Ω==Ω=−

=

=−−−==

====⎟⎠⎞

⎜⎝⎛=⎟

⎠⎞

⎜⎝⎛==

=−=−==Ω

==

kmA

VVrkmA

Vr

kAVVrk

AVr

kA

VRkA

VR

VAVAVAVVVVV

AAIIAAAII

VVVAkVIa

o

o

CC

BEEBCECE

F

CBFCC

OECCO

2833.0

1570 | 67.63.0025.080

8608.98

1570 | 2.208.98025.080

09.78.98

7.0 ,equilibriol'Per | 37.775.38.98

7.00.15 ,300 0.15 ,8.98 0.15 ,8.98 :Q Punti

0.1515

75.380

300 8.982

2008180

2200

1501515 3005015 ,0VPer

33

22

12

1321

3

3321

33

π

π μμ

μμ

μμμ

μμβ

μμμα

μ

11.53

( )

( ) ( )( ) ( ) ( )

( ) 213

33

2

3333-

331

1

332

31

321

333

333

| 1 | 1

1= | 10976.1-=8.9820=2

=

6.137.0729.01524001575.38.98

3047.07.0 | 8.982

2008180

2200

304=8081= | 75.3

80300 | 300

5015 ,0Per

vtvtvEth

EooL

Eo

Lovt

EoininCinCinCm

vt

EBEC

E

BC

EECFCC

CEF

CBCO

AAARrR

RrRRRr

RA

RrRRRxRRARRgA

VVIVAARAV

IIRIVRAAAII

AIIAAIIAkVIV

=⎟⎟⎠

⎞⎜⎜⎝

⎛++

+=++

−=

++−−

=−−=−−=−

+=

−+

==⎟⎠⎞

⎜⎝⎛=⎟

⎠⎞

⎜⎝⎛==

====Ω

==

ππ

π

ββ

β

βμ

μμμμμμα

μμμβ

μ

30000200001000001

10

100

1000

Emitter Resistance

Vol

tage

Gai

n

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 37: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-37

11.54

( )[ ]

( )

( )( )

( )

mAIRkR

mAmAVIVIRR

rR

rR

RIrRrRIrRgA

AAAkmARgA

mAVrmA

RIkR

R

VVVVRI

RRVVI

RrRRrRR

VVA

C

BCCC

CC

CC

C

CCC

mvt

vt

vvtoutmvt

C

OECA

C

ECA

C

ooutoout

EECCv

74.3 , 390 , 1.1= :5% al prossimi valorii doSelezionan

87.110011.8

3917.0

3917.0 | 391165.6

1308

7.020

I ando trascur1

7.0201

20202

165.6324

2000 | 324111.840

30811.8

025.0100 | 11.89 | 11.1970

91110

0 | 111111 |

edisponibil margine molto èC'400,3210

:progetto del àfattibilit la careper verifi guadagno del stime nostre le utilizzo cosa, primaPer

1

31

B3

33

2

3

323

21

2132

333

3

3

3

3

33

2

=Ω=Ω

=+Ω

=+Ω

=Ω=→−=+

+−≅

+−=

+−=−=

−=−

==−=Ω−=−=

Ω====Ω=→⎟⎠⎞

⎜⎝⎛

++=

=⎟⎟⎠

⎞⎜⎜⎝

⎛+

+=+

+=+==

=+≅

ππ

π

ππ

π

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 38: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-38 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.55 ( )

( )( ) ( ) ( )

( )( )

( ) ( )[ ]{ }( ) ( )( )[ ]

( )( ) ( )

( )

( ) ( )

Ω==

Ω=====−−==

−=Ω+Ω

Ω−=Ω=⎟

⎠⎞

⎜⎝⎛

Ω+Ω+ΩΩ

+Ω=

Ω=+

=⎟⎟⎠

⎞⎜⎜⎝

+++=

++−==

−=Ω+ΩΩΩ⎟⎠⎞

⎜⎝⎛−=

++⎟⎠⎞

⎜⎝⎛−==

Ω==Ω==

Ω=−

=Ω=−

−=

=−−==−−==

====⎟⎠⎞

⎜⎝⎛=⎟

⎠⎞

⎜⎝⎛==

=−−=−−====

MRR

kAV

IVrRAAA

kkMAM

kkkkkR

kA

rRrrR

RrRRr

RvvA

kkMkAA

RrrRgvvAb

kA

VrkmA

Vr

kA

VRkA

VR

VAVAVAVVIVVVV

AAIIAAAII

VVIVAIIVa

Lout

C

Toidvtvtv

vtL

oEoC

EooL

Eo

Lo

c

ovt

vt

EooCm

id

cvt

o

CC

OEECCECE

F

CBFCC

EBECCO

51.2

5.408.98025.080222 | 2780010105.27

10104.28167.6

53.280 | 53.24.267.68.14

4.2801281

281300

3.1470 | 2

1 | 1

5.274.28167.662.11.152

8.9840

122

8108.98

80 | 67.63.0025.080

2.148.98

6.1315 ,equilibriol'Per | 7.1475.38.986.1315

3.14 ,300 3.14 ,8.98 3.14 ,8.98 :Q Punti3.14240015 | 3.147.06.13

75.380

300 | 8.982

2008180

2200

6.137.0729.015240015 300 ,0Per

1

1121

2

332

333

3

22

1

33212

1

23

12

3321

3

3321

33223

μβ

μβ

ββ

μ

β

μ

μμ

μμμ

μμβ

μμμα

μ

π

ππ

π

π

11.56 L’amplificatore ha una tensione di offset approssimativamente di 3.92 mV. Utilizzo questo valore per forzare l’uscita vicina a zero. Dall’analisi della funzione di trasferimento si ottiene

Av = +28,627 Rout = 2.868 MΩ Rin = +50.051 kΩ Questi valori sono simili ai calcoli manuali del Prob. 11.55. Rin e Rout sono grandi perchè i calcoli manuali non ottimizzano il valore del guadagno di corrente basato sulla tensione di Early.

11.57

( )

( ) ( )( )VAVAVAVVVAIIV

VVVVVAAAII

OECCO

BEEBCECEFCC

0.15 ,300 0.15 ,0.99 0.15 ,0.99 :Q Punti1515 | 300 ,0Per

1515 | 0.992

200101100

2200

323

132121

μμμμ

μμμα

=−====

=−−−===⎟⎠⎞

⎜⎝⎛=⎟

⎠⎞

⎜⎝⎛==

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 39: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-39

11.58

Av = Avt1Avt2 | Avt1 = −gm1

2RC 2ro2 rπ 3 + βo3 +1( )RE[ ]{ }

Avt2 = −βoRout

rπ 3 + βo +1( )RE

= −βo

rπ 3 + βo +1( )RE

ro3 1+βoRE

RC 2ro2( )+ rπ 3 + RE

⎢ ⎢

⎥ ⎥

IC1 = IC2 = αFI1

2=

8081

200μA2

= 98.8μA | For VO = 0, IC3 = I2 = 300μA

IB3 =IC3

βF 3

=300μA

80= 3.75μA | IE3 = 81

80IC3 = 303.8μA | VEC3 =15 − IE3RE

RC2 =0.7V + IE3RE

IC1 − IB3

=0.7V + 303.8μA( )RE

98.8μA − 3.75μA

rπ 3 =80 0.025V( )

300μA= 6.67kΩ | ro3 =

70 +15 − 303.8μA( )RE

300μA

gm1 = 40 98.8μA( )= 3.95mS | ro2 =70 +14.3− 303.8μA( )RE

98.8μA

4000030000200001000000

10000

20000

30000

Emitter Resistance

Vol

tage

Gai

n

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 40: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-40 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.59

( ) ( )

( )( ) ( )

( ) ( )( ) ( )

( ) ( )

( ) ( ) ( )

( )( ) ( ) (-) invertente ingressol' è (+) invertentenon ingressol' è

1652180 | | 4300330030.1

3300218002.025.0

15755.040

30.1487.22

58.12

| =

45.0025.080 | 1058.100025.0005.02

87.2

80500250

7.0 15 ,500:Q Punto | 15=15--0=-= | 500

6.15 ,250:- | 6.1532.13.14 | 3.147.015

32.1105

105.2212+== | 2502

500

12

23

2332

32

1212

2

33

2

32

3333

3-

4-2

2

vdvckMkRrRRA

MkMmA

VVmARrgA

kkmSrRgAAAvv

vvA

kmA

VrSxgb

kAA

VII

VR

VAVVVVAIVAptQVVVVVV

Vx

xKIVVVAAIa

ooutinv

omvt

Dm

vtvtvtd

o

id

dv

m

BD

BED

ECCEC

SDDSD

p

DTPSGSD

Ω=ΩΩ==∞==−−=

−=ΩΩ−=⎟⎠⎞

⎜⎝⎛ Ω

+−=−=

−=ΩΩ−=−==

Ω====

Ω=−

=−

=

=−−=−−=−=−=+−=

=+=−==

π

π

μμ

μμμ

μμ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 41: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-41

11.60 Si noti che i parametri del transistore e il valore di RC sono stati selezionati accuratamente per consentire il funzionamento ad anello aperto e ottenere VO = 0. *Problema 11.60 – Figura P11.59 VCC 7 0 DC 15 VEE 8 0 DC -15 V1 1 9 AC 0.5 V2 3 9 AC -0.5 VIC 9 0 DC 0 I1 7 2 DC 493.2U R1 7 2 2MEG M1 4 1 2 2 PFET M2 5 3 2 2 PFET RD1 4 8 2.863K RD2 5 8 2.863K Q3 6 5 8 NBJT I2 7 6 DC 492.5U R2 7 6 2MEG .MODEL PFET PMOS KP=5M VTO=-1 .MODEL NBJT NPN BF=80 VA=75 IS=0.2881FA .OP .AC LIN 1 1000 1000 .TF V(6) VIC .PRINT AC IM(V1) IP(V1) VM(6) VP(6) .OPTIONS TNOM=17.2 .END

Risultati:

Adm = VM(6) = 4630 | Acm = −1.46 | CMRRdB = 70.0 dB

Rid =1

IM(V1)= ∞ | Rout =164 kΩ

11.61

Av =vd2

vid

vo

vd2

= Avt1Avt2 | Avt1 = −gm2

2RD rπ 3( ) | IC3 =100μA | rπ 3 =

80 0.025V( )100μA

= 20kΩ

ID2 = 500μA2

= 250μA | gm2 = 2 0.005( )0.00025( )=1.58x10−3 S

RD =VBE

ID2 − IB3

=0.7V

250μA −100μA

80

= 2.81kΩ | Avt1 = −1.58mS

22.81kΩ 20kΩ( )= −1.95

Avt2 = −gm3 ro3 R2( )= −40 100μA( ) 75V + 5V100μA

10MΩ⎛

⎝ ⎜

⎠ ⎟ = −0.02 800kΩ 10MΩ( )= −2960

Av = −1.95 −2960( )= 5770

11.62

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 42: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-42 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

VvVVVVvVVVVVv

VVVV

Vxx

KIVV

icGSCCic

GSDSBEEEic

TPGSDS

P

DTPGS

9.12 3.15 | 9.12316.175.01575.03.15316.1316.07.015

316.0 :attiva regionein PMOSun Per

316.110510512

2

223

22

3

4

2

≤≤−=−−=+−≤−=−++−=+−+−≥

−=−≤

−=−−=−=

11.63

( ) ( )

( )( )

( ) ( ) ( ) ( )

( ) ( )

( )( ) ( )( ) ( )

( ) Ω=ΩΩ=⎟⎠⎞

⎜⎝⎛=∞==−−=

−=ΩΩ−=⎥⎦

⎤⎢⎣

⎡Ω⎟⎟

⎞⎜⎜⎝

⎛ +−=⎟

⎠⎞

⎜⎝⎛−=

−=ΩΩ−===

Ω===

Ω=−

=−+

=

→=+=+=+−=−−=−=−=++−=

=+−=+−−===

kMkRrRRA

MkmSMAVVARrgA

kkmSAmSg

kAVrrRgA

kAA

VIIVVR

VAVAVAVAVVVVV

AIAIAIIIAIIVAptQVVVVVV

Vx

xKIVVVAAIa

ooutidv

om

vt

vtm

Dm

vt

BD

BEBED

CECEO

CCCFEFCCC

SDDSD

p

DTPGSSD

5.97110832 | | 423096339.4

963110888.91494

57532

249440

32

2

39.465660.52

58.1 | 58.100025.0005.02

32810.6025.080 | 2

2 :11.48 Prob. nel Darlington

circuito del risultati sui Basandosi | 60.5

8010.6250

4.100.5 ,494 30.4 ,10.6 92.4- ,250 92.4- ,250 :pts-Q

30.4=7.0-5= and 5= ,0=For 494= | 10.6=5002 | 500

92.4- ,250:- | 92.432.16.3 | 6.37.07.05

32.1105

105.2212= | 2502

500

24

244

2

11

331

1

32

43

34

4333343

3-

4-2

2

μμ

μ

μμ

μμμμ

μμμββμμ

μμ

ππ

11.64 *Problema 11.64 – Figura P11.63 *Vos (il valore dc di V2) è stato ottimizzato adeguatamente per fissare Vo ≈ 0 VCC 8 0 DC 5 VEE 9 0 DC -5 V1 1 10 AC 0.5 V2 3 10 DC 1.21M AC -0.5 VIC 10 0 DC 0 I1 8 2 DC 496.3U R1 8 2 1MEG M1 4 1 2 2 PFET M2 5 3 2 2 PFET RD1 4 9 5.6K RD2 5 9 5.6K Q3 7 5 6 NBJT Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 43: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-43

Q4 7 6 9 NBJT I2 8 7 DC 495U R2 8 7 1MEG .OP .MODEL PFET PMOS KP=5M VTO=-1 .MODEL NBJT NPN BF=80 VA=75 .AC LIN 1 1000 1000 .TF V(7) VIC .PRINT AC IM(V1) IP(V1) VM(7) VP(7) .END

Risultati:

Adm = VM(7) = 4080 | Acm = −2.58 | CMRRdB = 64.0 dB

Rid =1

IM(V1)= ∞ | Rout = 96.2 kΩ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 44: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-44 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.65

v1

RC R

C

Q1 Q

2

Q3

I1

+VCC

v2

I2 I

3

2 k Ω

RL

Q4

Q5

-VEE

vO = 0

( )( ) ( )( ) ( )

( )( )( )( )

( )( )

( ) Ω=Ω

+=+=

Ω==−−=

=Ω+

Ω=

+=

+≅

−=ΩΩ−=−=

Ω=Ω+Ω=+=

2.2610

1611095.440

22 101 e dB 63.5=CMRR :cambianonon e CMRR

.12200995.0351050.3

995.0021095.4402

21095.4402

21

2 diventa eemettittor di

einseguitordell' guadagno Il | 35101.2016122diventa | 1.20210050510022

:11.5 es.dell' risultati i ando Utilizz11.48. Prob. del risultati i outilizzand migliorato re transistosingoloun come trattatoessere può uscita di stadio nuovo Il

4323

4

3

3

4

4

4

4

3

54332

222

45-4

kx

rg

R

kRRA

kxkx

RgRg

Rg

Rg

A

MkmSRrgAAMkRrR

o

o

mout

idid

v

Lm

Lm

Lm

Lm

v

inomv

vLooin

β

ββ π

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 45: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-45

11.66

v1

RC R

C

Q1 Q

2

Q3

I1

+VCC

v2

I2 I

3

2 k Ω

RL

Q4

Q5

-VEE

vO = 0

( )( ) ( )( ) ( )

( )( )( )( )

( )( )

( ) Ω=Ω

+=+=

Ω==−−=

=Ω+

Ω=

+=

+≅

−=ΩΩ−=−=

Ω=Ω+Ω=+=

2.2610

1611095.440

22 101 e dB 63.5=CMRR :cambianonon e CMRR

.12200995.0351050.3

995.0021095.4402

21095.4402

21

2 diventa emettitore di

einseguitordell' guadagno Il | 35101.2016122diventa | 1.20210050510022

:11.5 es.dell' risultati i ando Utilizz11.48. Prob. del risultati i outilizzand migliorato re transistosingoloun come trattatoessere può uscita di stadio nuovo Il

4323

4

3

3

4

4

4

4

3

54332

222

45-4

kx

rg

R

kRRA

kxkx

RgRg

Rg

Rg

A

MkmSRrgAAMkRrR

o

o

mout

idid

v

Lm

Lm

Lm

Lm

v

inomv

vLooin

β

ββ π

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 46: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-46 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.67

( ) ( )

( )

( )

( ) ( ) ( ) ( )

( ) ( )( )

( )( )( ) ( )( ) ( )( )( )

( )

( ) ( )

( ) ( ) ( ) ( ) 2111

44

43

1

3321

33321

3213

32

32

3423

434

21

21

3.66231.1101 | 31.1

5.491550 |

21

80.1101

53.2179 | 53.2990

025.0100 | 1

1015.49025.010022

121003.644094.602.23.152

5.4940

22

122

= | 179360

3.1450

94.6360

025.0100 | 01.15.49

50

3.1560.35.49

7.07.0

0.15 ,990 3.14 ,360 0.15 ,5.49 0.15 ,5.49 :Q unti

3.14157.0 | 3601011350+=

0.15150 | 99000.1101100= ,0For

0.157.0157.0 | 5.492

100101100

2

veMMRMAVVrrRd

kkkRkA

VrrrRc

kA

VrR

kMkAA

rrRgrgrrRgAAAAkA

r

kA

VrMA

Vr

kA

VII

VRb

VAVAVAVAP

VVVAmAAIII

VVVAmAIIV

VVVVVAAIIIa

icooo

ic

outo

oout

id

v

foCm

omoCm

vtvtvtvo

o

BCC

OCEBC

ECFCO

ECFCC

Ω=Ω

=Ω+

=+

=

Ω=Ω+Ω

=Ω==+

+=

Ω===

=ΩΩΩ=

==Ω=+

=

Ω==Ω==

Ω=−

=−

=

=−−−==+=

=−−==⎟⎠⎞

⎜⎝⎛==

=+−−+==⎟⎠⎞

⎜⎝⎛===

μβ

μβ

μ

μ

μμ

μμ

μ

μμμμ

μμ

μα

μμα

ππ

π

ππ

π

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 47: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-47

11.68 *Problema 11.68 – Figura P11.67 *RC e Vos (si veda V2) sono stati attentamente ottimizzati per fissare Vo ≈ 0 VCC 7 0 DC 15 VEE 8 0 DC -15 V1 1 9 DC 0.117M AC 0.5 V2 3 9 AC -0.5 VIC 9 0 DC 0 I1 7 2 DC 100U Q1 4 1 2 PBJT Q2 5 3 2 PBJT RC1 4 8 11.8K RC2 5 8 11.8K Q3 6 5 8 NBJT I2 7 6 DC 350U Q4 8 6 10 PBJT I3 7 10 DC 1M .MODEL PBJT PNP BF=100 VA=50 .MODEL NBJT NPN BF=100 VA=50 .NODESET V(10)=0 .OP .AC LIN 1 1000 1000 .TF V(10) VIC .PRINT AC IM(V1) IP(V1) VM(10) VP(10) .END

Risultati:

Adm = VM(10) =13800 | Acm = −0.0804 | CMRRdB =105 dB

Rid =1

IM(V1)=133 kΩ | Rout =1.37 kΩ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 48: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-48 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.69

( )( ) ( ) ( )

( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )( ) ( )[ ]

( )( ) ( )[ ]

( )( ) ( )[ ]

( )( ) Ω==∞==+

Ω=

====+=

Ω=+

==+=

Ω=+

==+=

Ω==+

=+

=

=−−===+=

===−=+=

−=−−=−===

−=−−=−−==+=+=

===−=−=

−−

−−

−−

1271 | | 8686.971

6.9711664.82

75.1

6.97 | 116 | 87.71202.011051052

4.125

1202.01

| 03.384.9015.011021022

3.382

84.9015.01

| 75.19.1002.01105.21052

64.825.016.2 |

1212

V.00mA,12.05 A,-9.84V00.2 A,10.9V250 A,10.9V250 :

9.1007.184.9 | 07.1105

105.2275.0

2502

= | 84.916.212

16.2002.0002.0275.02 | 00.2

84.916.212 | 16.2005.0005.0275.02

00.5 | 0.12012:uscitadall' indietroall' Lavorando

4

433333

4

433

3

343

1

4

43

1

44

4433

1

213

4

2

12132

4323

434

4

344

moutiddm

fomfm

om

om

Df

ffD

m

om

omomD

mdm

DSDSGS

DDGSDDD

n

DTPGSD

GSDDDSn

DTNGS

DODDDS

gRRkmsA

rgmSxxg

kmA

rmSxxg

kmA

rmSxxg

kmAVRRg

rgrgrgRgAb

mPuntiQ

VVVVVVx

xVV

AIIIVVVVVV

VVKIVVmAII

VVVVVKIVV

mAIIVVVVa

μμ

μμ

μ

μμ

μ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 49: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-49

11.70 *Problema 11.70 – Figura P11.69 *I valori di RD sono stati attentamente ottimizzati per fissare ≈ 0 VCC 8 0 DC 12 VEE 9 0 DC -12 V1 1 10 AC 1 V2 3 10 AC 1 VIC 10 0 DC 0 I1 2 9 DC 500U M1 4 1 2 2 NFET M2 5 3 2 2 NFET RD1 8 4 8.28K RD2 8 5 8.28K M3 6 5 8 8 PFET M4 8 6 7 7 NFET I2 6 9 DC 2M I3 7 9 DC 5M .MODEL PFET PMOS KP=2M VTO=-0.75 LAMBDA=0.015 .MODEL NFET NMOS KP=5M VTO=0.75 LAMBDA=0.02 .OP .AC LIN 1 1000 1000 .TF V(7) VIC .PRINT AC VM(7) VP(7) IM(V1) IP(V1) .END

Risultati: Adm = VM(7) = 802 | Acm = −4.74x10-7 ≅ 0 | CMRRdB = ∞

Rid =1

IM(V1)=1030 ≅ ∞ | Rout =126 Ω

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 50: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-50 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.71 ( ) ( ) ( )

( )

( )( )

( ) ( )[ ]

( ) ( ) ( ) ( )

( ) ( )

( )( ) ( )[ ]

( )( ) ( )[ ]

( )( ) ( )[ ]

( )( ) Ω==∞==+

Ω=

====+=

Ω=+

==+=

Ω=+

==+=

Ω==+

=+

=

−−

−=−−=−=−−==

==−=+−=+−=

=+=+===

=+−=−−+=

−=−−=−===

−=−+=−−=

−−

−−

−−

3411 | | 5281051

10524483.32

14.1105 | 244 | 93.215015.011021022

8.352

00.5015.01

| 30.289.202.011051052

1065.0

89.202.01

| 14.110.5015.011031022

83.33.015.1 |

1212

00.5,00.2 89.2,500 10.5,300 10.5,300 :Q unti

10.585.325.1= | 25.110210327.0

3002

= | 85.315.15

15.1105105275.02 | 500

89.2511.20

11.2002.0002.027.02 | 00.2

00.550:uscitadall' indietroall' Lavorando

4

433333

4

443

3

343

1

4

43

1

44

4433

1

223

4

21

12132

3

44

323

43

4434

4

moutiddm

fomfm

om

om

Df

ffD

m

om

omomD

mdm

DSDSGSGS

DDGSSSD

n

DTNGSD

SSGSODS

p

DTPGSD

SSODS

gRRkmsA

rgmSxxg

kmA

rmSxxg

kmA

rmSxxg

kmAVRRg

rgrgrgRgAb

VmAVAVAVAP

VVVVxxVVV

AIIIVVVVV

VxxV

KIVVAII

VVVVV

VKIVVmAII

VVVVa

μμ

μμ

μ

μμμ

μ

μ

11.72 L’amplificatore ha una tensione di offset approssimativa di –6.69 mV. Questo valore viene utilizzato per forzare l’uscita vicina a zero. Dall’analisi della funzione di trasferimento si ottiene

Av = +517 Rout = 339 Ω Rin = +1.00 x 1020 Ω Questi valori sono simili ai calcoli manuali del Prob. 11.71.

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 51: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-51

11.73 ( ) ( ) ( )

( )

( )

( ) ( )[ ]

( ) ( ) ( ) ( )

( ) ( )( ) ( )

( )

( )( ) ( )[ ]

( )( ) ( )[ ]( )

( )( ) Ω==∞==+

ΩΩ=

===

Ω=+

==+=

Ω=+

==+=

Ω==Ω==

+=⎟⎟

⎞⎜⎜⎝

⎛+

=

−−

−=−−−=−=−−==

==−=+−=+−===

=+−=−−+=

−=−−=−===

−=−+=−−=

−−

−−

3411 | | 28101051

105280053.733.22

14.1

105 | 2800=7040

8.352

00.5015.01

| 93.215015.011021022

1065.0

89.202.01

| 14.110.5015.011031022

53.7500

025.0150 | 33.23.07.0

1212

00.5,00.2 89.2,500 55.5,300 55.5,300 :Q unti

55.530.425.1= | 25.110210327.0

3002

= | 30.47.05 | 500

89.2511.20

11.2002.0002.027.02 | 00.2

00.550:uscitadall' indietroall' Lavorando

4

4333

433

4

343

1

3

4

433

1

44

44333

1

213

4

21

1213223

43

4434

4

moutiddm

fomf

om

om

D

f

ffD

m

om

omomD

mdm

DSDSGSGS

DDBESSDC

SSGSOCE

p

DTPGSD

SSODS

gRRkkmsA

rg

kmA

rmSxxg

kmA

rmSxxg

kA

VrkmAVR

rRgrg

rgrgrRgAb

VmAVAVAVAP

VVVVxxVVV

AIIIVVVVVAII

VVVVV

VKIVVmAII

VVVVa

μμ

μ

μμ

μ

μμμ

μμ

π

ππ

11.74 L’amplificatore ha una tensione di offset approssimativa di 48.69 mV. Questo valore viene utilizzato per forzare l’uscita vicina a zero. Dall’analisi della funzione di trasferimento si ottiene Av = +2810 Rout = 339 Ω Rin = +1.00 x 1020 Ω Questi valori sono simili ai calcoli manuali del Prob. 11.73

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 52: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-52 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.75 ( )

( )

( )

( )( ) ( )

( ) ( )( ) ( )( )

( )

( ) ( )( )

( ) ( )( )( ) ( )( )

( )Ω==Ω==

=Ω+

Ω+ΩΩ=

==Ω==

+=⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+

=

=+Ω−=−−−=

Ω=−

=−

=====

=+−=−−−==−=−=

===+=+===

=−=−=

2241 | 5.500.99025.01002=2

11400247.41

247.441.3504000.545.72

0.9940

47.4002.0005.02 | 00.5500

025.01001212

:Q di collettore al corrente di partitore il do Utilizzan00.5 ,00.2 41.3 ,500 00.5 ,0.99 96.4 ,0.99 :

96.47.045.70.9955

45.700.50.99

7.0 | 0.992

200101100

2

00.57.07.055 | 41.359.155

500 | 59.1005.0002.027.02 | 2

505 :0=con uscitadall' indietroall' Lavorando

41

43

4

433

1

4

433

3

1

2

211

32

3121

23243

234

434

4

moutid

dm

m

Lm

LmfC

m

Lm

Lmoo

C

Cmdm

BECCCE

BC

EBCFCC

BEEBCEGSEC

Cn

DTNGSD

OCCDSO

gRk

AVrR

kmSkmSkkAA

mSgkA

Vr

RgRgrRg

RgRgr

rRRgA

bVmAVAVAVAPuntiQ

VkAVRIV

kA

VII

VRAAIII

VVVVVVV

AIIVKIVVmAII

VVVVVa

μ

μμ

μβ

μμμμ

μμμα

μ

π

π

ππ

(c) *Problema 11.75 – Figura P11.75 *I valori di RC sono stati attentamente ottimizzati per fissare Vo ≈ 0. VCC 8 0 DC 5 VEE 9 0 DC -5 VIC 10 0 DC 0 V1 1 10 AC 0.5 V2 3 10 AC -0.5 I1 2 9 DC 200U Q1 4 1 2 NBJT Q2 5 3 2 NBJT RC1 8 4 8.00K RC2 8 5 8.00K Q3 6 5 8 PBJT I2 6 9 DC 500U M4 8 6 7 7 NFET I3 7 9 DC 2M RL 7 0 2K .MODEL NBJT NPN BF=100 VA=50 .MODEL PBJT PNP BF=100 VA=50 .MODEl NFET NMOS KP=5M VTO=0.70 .OP .AC LIN 1 2KHZ 2KHZ .PRINT AC VM(7) VP(7) IM(V1) IP(V1)

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 53: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-53

.TF V(7) VIC

.END

Risultati:

Adm = VM(7) =11200 | Acm = −0.0957 | CMRRdB =101 dB

Rid =1

IM(V1)= 56.4 kΩ ≅ ∞ | Rout = 201 Ω

11.76

( )

( ) ( ) ( )

( )

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )[ ]( ) ( )( )

( ) ( )

( )( )

( )( )

( )( )( )( ) ( )[ ]( )

( )

( )( ) ( )( )

2. fattore altroun di almeno guadagno il riducendo stae ,107= bassa, è emettitore di einseguitordell' ingresso di resistenza la Inoltre

ridotto mentesostanzial è guadagno il | 900301010 d

invertente ingressol' è - invertentenon ingressol' è

59.151

10.572.5781

= | 01.195.4

025.010022

235980.055110.572.5782

5.2440

1.100.5130095.440

980.055110.5

5511

1 | 1.1095.450

10.5245

025.050 | 86.25.24

70 | 0.515.24025.050

1112

2

00.3,245 06.3,5.24 06.3,5.24 36.2,95.4 36.2,95.4 :pts-Q

06.37.07.066.1 | 66.130050

5.2495.43

7.0 | 00.3 | 2452505150 :0Per

36.27.030050

5.2495.43

5.242

505150

2 | 95.4

210

101100

2

25

32

5

521

55

51

543

55

55542

31311

431

4535

2322

243

121

Cin

CCCCCv

BA

o

Coutid

dm

Lo

Loo

o

Lo

LoLooC

moCmdm

ECECC

CECFCO

BECBCCCCE

FCCFCC

RkRRrVVA

vvc

kkMkrRRM

AVrR

kkMkA

MkkAA

kkk

RrRM

Ar

kAVrM

Ark

AVr

RrRRrrRgrrRgAb

VAVAVAVAVA

VVVVkAAV

VVVVAAIIV

VkAAVVRIIVV

AAIIIAAIIIa

≈Ω<<===

Ω=Ω+ΩΩ

=+

+Ω===

=Ω+ΩΩΩ

•ΩΩΩ=

=Ω+Ω

Ω=

+++

Ω==

Ω==Ω==Ω==

⎟⎟⎠

⎞⎜⎜⎝

⎛++

+++=

=−−+===Ω⎟⎠⎞

⎜⎝⎛ −−=

−=====

=−−Ω⎟⎠⎞

⎜⎝⎛ −−=−−−−=

========

π

ππ

π

ππ

πππ

βμ

μ

μ

ββ

μ

μμμ

βββ

μμμμμ

μμ

μμα

μμ

μμαμμα

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 54: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-54 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.77

( )

( ) ( ) ( )

( )

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )[ ]( ) ( )( )

( ) ( )

( )( )

( )( )

( )( )( )( ) ( )[ ]( )( )

( )

( )

( )

. 689.0270086.1

è zero a uscital' portareper richiestooffset di tensionedella valoreIl 0.7V.- essere dovrebbe

86.1+= e 16.117050

7350.981818

essere dovrebbe Q di collettore di tensioneLa ddefinito. ènon di negativo limite il ideale, corrente di generatore ilPer . annodeterminer

I di tichecaratteris le , di negativi Per valori | 3.12 , di positivi Per valori c

37.351

70.11701

= | 1015.49025.010022

2700984.025170.143.11702

0.9840

01.18.121205.4940

984.025170.1

2511

1 | 01.15.49

50

70.1735

025.050 | 7140.98

70 | 8.120.98025.050

1112

2

0.18,735 7.13,0.98 7.13,0.98 0.13,5.49 0.13,5.49 :Q unti

7.137.07.03.12 | 3.1212050

0.985.4918

7.0 | 18 | 7357505150 :0For

0.137.012050

0.985.4918

0.982

2005150

2 | 5.49

2100

101100

2

2544

4

11

5

521

55

52

543

55

55542

32311

431

4435

2322

243

121

mVVAVV

VVVkAAVRIIVV

vvvVVvv

kkrRRkA

VrR

kkMkA

MkkAA

kkk

RrRM

AVr

kAVrk

AVrk

AVr

RrRRrrRgrrRgAb

VAVAVAVAVAP

VVVVkAAV

VVVVAAIIV

VkAAVVRIIVV

AAIIIAAIIIa

dm

OOS

OCBCC

ICIC

ICCICIC

o

Coutid

dm

Lo

Loo

o

Lo

LoLooC

moCmdm

ECECC

CECFCO

BECBCCCCE

FCCFCC

==Δ

=

=Ω⎟⎠⎞

⎜⎝⎛ ++−=++−=

=≤

Ω=Ω+

=+

+Ω===

=Ω+ΩΩΩ

•ΩΩΩ=

=Ω+Ω

Ω=

+++

Ω==

Ω==Ω==Ω==

+++

++=

=−−+===Ω⎟⎠⎞

⎜⎝⎛ −−=

−=====

=−−Ω⎟⎠⎞

⎜⎝⎛ −−=−−−−=

=⎟⎠⎞

⎜⎝⎛====⎟

⎠⎞

⎜⎝⎛===

μμ

βμ

μ

μ

ββ

μ

μμμ

βββ

μμμμμ

μμ

μμα

μμ

μμαμμα

ππ

π

ππ

πππ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 55: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-55

11.78

( )

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )[ ]( ) ( )( )

( )

( ) ( )[ ]( ) ( )( )

( )Ω=

Ω+Ω=

++

=Ω==

=Ω+Ω

ΩΩ+ΩΩΩ=

Ω==Ω==

⎟⎟⎠

⎞⎜⎜⎝

⎛++

+++=

=−−Ω−=Ω=+

=+−

=

=−−+==−=

=⎟⎠⎞

⎜⎝⎛

Ω===⎟

⎠⎞

⎜⎝⎛===

984101

53.29.961

2 | 5.50

0.99025.01002=2

1771210153.2

121011210153.241.11042

0.9940

53.2990

025.0100 | 7070.99

701

1122

12,990 40.1,0.99 40,2,0.99 :P

40.27.01040.9912 | 10490.90.99

7.07.0124.17.07.0 | 0.12012

9901212

101100 :0=For | 0.99

2200

101100

2

3

321

32

33

3332

2

132

23

331

21

kkrrRRk

AVrR

kkkkkMkAA

kA

VrkA

Vr

RrRRrrRgAb

VAVAVAuntiQ

VkAVkA

VII

VVR

VVVVVV

AkVIIVAAIIIa

o

oCoutid

dm

o

o

oooC

mdm

CEBC

C

CECE

EFCOFCC

βμ

μμμ

βββ

μμμ

μμ

μαμμα

ππ

π

ππ

11.79 ( )

.modificate essere devono entrambe o aumentata, essere deve o ridotta essere deve viceversae per specifiche le rispettate sono se esoddisfatt essere possononon per specifiche Le

7.6101

6771

| 6777.163.113.117.012

7.0 ,0For .7.16300

025.010022=300

3

3

131

111

outid

idout

o

Cout

CBCC

COC

RRRR

kkrRRkA

VI

VII

R

VVVAk

VIrk

Ω=Ω

≥+

+≅Ω==≅

+−

=

===Ω

=→Ω

βμ

μ

π

π

11.80 ( )

.modificate essere devono entrambe o aumentata, essere deve o ridotta essere deve viceversae per specifiche le rispettate sono se esoddisfatt essere possononon per specifiche Le

4.1610166.1

1 | 66.1

00.53.83.87.09

7.0 ,0For | 00.51

025.010022=1

3

3

131

111

outid

idout

o

Cout

CBCC

COC

RRRR

kMrRRMA

VI

VII

R

VVVAM

VIrM

Ω=Ω

≥+

+≅Ω==≅

+−

=

===Ω

=→Ω

βμ

μ

π

π

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 56: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-56 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.81

( ) ( )

( )

( )( ) ( ) ( ) ( )

( ) ( )

( )

( )

( ) ( )

( ) ( ) ( )( )

( ) ( )

( ) ( ) ( )

( )

( ) Ω=+Ω

=+

=+

=

Ω====+

=

⎟⎠⎞

⎜⎝⎛

ΩΩ

ΩΩ=Ω=+

=

Ω=Ω+=+≅

Ω==≅

+⎟⎠⎞

⎜⎝⎛=

Ω=⎟⎠⎞

⎜⎝⎛ +

=−

=

=−−−−===−==−−=

=−==−==⎟⎠⎞

⎜⎝⎛===

=−==→=+=+

=+=+=+====

=====

1.18100100

0.49025.01002118

32

232

2

2028.24025.01002=2 | 5.88or 26500 | 1155

36.117040

3

1.2020

32559.56

28.2440 | 177

4906.1670>>

1.20210010095.4

025.010010022

255490

025.0505022

232

22

:11.48 Prob. del Darlington ioneconfiguraz della proprietà le do Utilizzan

9.56

5062.98.24

4.14.1 | 0.18,95.4 3.17,0.49

A,16.6V490 A,15.9V9.62 A,17.3V24.8 A,17.3V24.8:Q unti3.1718

9.15 | 6.1618

3.17 | 18018 | 8.242

50101100

2

490500 | 62.95002

500100

0.49500 | 0.4910195.4

95.45101100 ,0For

65

54

65

55

14

445

65655

433

655

6554

43

2

32

23421

443654

66561

21

3433333

34

52346

655

366

AVkrrrRR

kA

VrRdBA

MMkkAAk

AVVrR

MkmA

VRrR

kAVrR

RrRRrgRRgA

b

kA

VII

VRVmAVA

PVVVVVV

VVVVVVVV

VVVVVVAAIII

AIAIAIAIII

AAAIIIIAmAIII

mAmAIIIVa

oo

o

oo

thout

iddmf

fdmoin

Loooin

oin

Loo

Looino

minC

mdm

BCC

EBEBEBCECE

EBECECBEBEEC

BECECECEFCC

CCCCFCF

CF

BCCF

CFEFC

FEFCO

μββββ

μμ

μμμ

βββ

μβ

ββββ

μμ

μμμμ

μμα

μμμμβα

β

μμμμβ

αα

αα

ππ

π

π

π

π

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 57: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-57

11.82

( ) ( )

( )

( )( ) ( )( ) ( )

( ) ( )

( )

( )

( ) ( )

( ) ( ) ( )( )

( ) ( )

( ) ( ) ( )

( )

( ) Ω=+Ω

=+

=+

=

Ω====+

=

⎟⎠⎞

⎜⎝⎛

ΩΩ

ΩΩ=Ω=+

=

Ω=Ω+=+≅

Ω==≅

⎥⎦

⎤⎢⎣

⎡+⎥

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛

⎥⎦⎤

⎢⎣⎡==

Ω=⎟⎠⎞

⎜⎝⎛ +

=−

=

=−−−−===−==−−=

=−==−==⎟⎠⎞

⎜⎝⎛===

=−==→=+=+

=+=+=+====

=====

5.22100100

0.49025.01002185

32

232

2

2028.24025.01002=2 | 9.88 27700 | 1208

36.207040

3

1.2020

32559.56

28.2440 | 185

4906.2070>>

1.20210010095.4

025.010010022

255490

025.0505022

232

22

:11.48 Prob. del Darlington ioneconfiguraz della proprietà le do Utilizzan

9.56

5062.98.24

4.14.1 | 0.22,95.4 3.21,0.49

6.20,490 9.19,62.9 3.21,8.24 3.21,8.24:Q unti3.2122

9.19 | 6.2022

3.21 | 22022 | 8.242

50101100

2

490500 | 62.95002

500100

0.49500 | 0.4910195.4

95.45101100 ,0Per

65

54

65

55

14

445

65655

433

655

6554

43

2321

32

23421

443654

66561

21

3433333

34

52346

655

366

AVkrrrRR

kA

VrRdBA

MMkkAAk

AVVrR

MkmA

VRrR

kAVrR

RrRRrgRRgAAAA

b

kA

VII

VRVmAVA

VAVAVAVAPVVVVVV

VVVVVVVV

VVVVVVAAIII

AIAIAIAIII

AAAIIIIAmAIII

mAmAIIIVa

oo

o

oo

thout

iddmf

fdmoin

Loooin

oin

Loo

Looino

minC

mVVVdm

BCC

EBEBEBCECE

EBECECBEBEEC

BECECECEFCC

CCCCFCF

CF

BCCF

CFEFC

FEFCO

μββββ

μμ

μμμ

βββ

μβ

ββββ

μμ

μμμμ

μμα

μμμμβα

β

μμμμβ

αα

αα

ππ

π

π

π

π

11.83

( ) AxII

VVVV

DD

GSGS

μ 8.3675.01.12106

1.122.2 stessi, gli sono re transistodel parametri i che Dato

24

12

21

=−==

==−=

11.84

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 58: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-58 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

AIIIxx

I

IIKIV

KIVVVV

DDDD

DDp

DTP

n

DTNGSGS

μ7.295.128

7.0 | 1042

10628.07.02.2

dove 222.2

121441

1221

21

==→=⎟⎟⎠

⎞⎜⎜⎝

⎛+++=

=⎟⎟⎠

⎞⎜⎜⎝

⎛−−+=−=

−−

11.85

( ) AV

IIIVVV

VVII

CS

CTEBBE

EBBEES

μ 196025.0230.1exp10 | ln230.1

stessi, gli sono e di valorii che Dato

1521

21

===+=

=

11.86

1.30 = VBE1 + VEB2 = VT ln IC

IS1

+ VT ln IC

IS 2

= VT ln IC2

IS1IS2

IC = 4x10−15( )10−15( )exp 1.300.025

= 391 μA

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 59: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-59

11.87 vO

vS

Slope = 1

-0.7 V

+0.7 V

11.88 *Problema 11.88 – Figura P11.87 VCC 3 0 DC 10 VEE 5 0 DC -10 VBB 2 1 DC 1.3 VS 1 0 DC 0 Q1 3 2 4 NBJT Q2 5 1 4 PBJT RL 4 0 1K .MODEL NBJT NPN IS=5FA BF=60 .MODEL PBJT PNP IS=1FA BF=50 .OP .DC VS -10 +8.7 0.01 .PROBE .END

-10V -5V 0V 5V 10V

10V

0V

-10V

vO

vS

11.89 ( ) ( )( )

( )( ) AIII

IVIIV

IIVV

VkAVV

CSS

CT

S

CT

S

CT

EBBEF

μ

μβ

8.22025.025.1exp1010 | ln=ln+ln=25.1

25.15250 , nulle sono base di correnti le che Dato

1615

21

2

21

21

==

=Ω=+∞=

−−

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 60: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-60 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.90

VGS1 + VGS 2 = 0.5mA( )4kΩ( )= 2.00V | 2.00V = VTN + 2ID1

Kn

− VTP − 2ID2

K p

⎝ ⎜ ⎜

⎠ ⎟ ⎟ | ID2 = ID1

2.00 = 0.75+ 0.75+ ID12

5x10−4 +2

2x10−4

⎝ ⎜ ⎜

⎠ ⎟ ⎟ | ID1 =

0.5163.3

→ ID2 = ID1 = 9.38 μA

11.91

( )( ) ( ) ( ) ( )

( )

%5.12100

5.12%100= | 5.121

12

5 :in sviluppata segnale del potenza La

1002000sin205.01

2000sin205.01010 :rialimentato dagli sviluppata potenza La 2000sin1005.0 | 0 | 0.10 ,00.5=er

00.515 | 00.5

15

| 00.5155

20

minmax

minmax

==Ω

⎟⎠

⎞⎜⎝

⎛=

=+=

+=+=+===

−=Ω

−=+=Ω

+=

+==Ω

=≥

mWmWmW

kPR

mWdttT

P

WtIViVtPAtiimAimAIP

mAIkVIimAI

kVIi

iIimAkV

RVI

acL

T

av

SSD

DSSSS

SSSSSSSSS

LSSSL

SS

η

π

ππ

11.92

+5V

-5V

t0

T

Pac =1T

+5V( )2

5kΩT2

+−5V( )2

5kΩT2

⎣ ⎢ ⎢

⎦ ⎥ ⎥

=10.0mW

Pav =1T

5V 5V5kΩ

T2

− 5V −5V5kΩ

T2

⎡ ⎣ ⎢

⎤ ⎦ ⎥ =10.0mW | η =100%

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 61: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-61

11.93

0 TT2

T4

+10 V

-10 V

t

Pac =1T

v 2 t( )R

dt =4T

40tT

⎛ ⎝ ⎜

⎞ ⎠ ⎟

2

Rdt

0

T4

∫0

T

∫ =6400T 3R

t 2dt0

T4

∫ =1003R

Pav =1T

10i t( )dt0

T

∫ =20T

i t( )dt0

T2

∫ =40T

40tTR

dt0

T4

∫ =1600T 2R

tdt0

T4

∫ =50R

| η =100%

1003R50R

= 66.7%

11.94 *Problema 11.94(a) VBB = 0 V VCC 3 0 DC 10 VEE 5 0 DC -10 VBB 2 1 DC 0 VS 1 0 DC 0 SIN(0 4 2000) Q1 3 2 4 NBJT Q2 5 1 4 PBJT RL 4 0 2K .MODEL NBJT NPN IS=5FA BF=60 .MODEL PBJT PNP IS=1FA BF=50 .OP .TRAN 1U 2M .FOUR 2000 V(4) .PROBE .END *Problema 11.94(b) VBB = 1.3 V VCC 3 0 DC 10 VEE 5 0 DC -10 VBB 2 1 DC 1.3 VS 1 0 DC 0 SIN(0 4 2000) Q1 3 2 4 NBJT Q2 5 1 4 PBJT RL 4 0 2K .MODEL NBJT NPN IS=5FA BF=60 .MODEL PBJT PNP IS=1FA BF=50 .OP .TRAN 1U 2M .FOUR 2000 V(4) .PROBE .END Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 62: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-62 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

(a) HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG) 1 2.000E+03 3.056E+00 1.000E+00 -4.347E-01 0.000E+00 2 4.000E+03 2.693E-02 8.811E-03 -1.300E+02 -1.296E+02 3 6.000E+03 2.112E-01 6.910E-02 -1.744E+02 -1.740E+02 4 8.000E+03 3.473E-02 1.136E-02 -1.550E+02 -1.545E+02 5 1.000E+04 7.718E-02 2.525E-02 -1.678E+02 -1.674E+02 6 1.200E+04 4.064E-02 1.330E-02 -1.679E+02 -1.675E+02 7 1.400E+04 3.179E-02 1.040E-02 -1.580E+02 -1.576E+02 8 1.600E+04 4.109E-02 1.345E-02 -1.736E+02 -1.731E+02 9 1.800E+04 2.127E-02 6.960E-03 -1.568E+02 -1.564E+02 TOTAL HARMONIC DISTORTION = 7.831458E+00 PERCENT with VBB = 0

(b) HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG) 1 2.000E+03 3.853E+00 1.000E+00 2.544E-01 0.000E+00 2 4.000E+03 1.221E-02 3.169E-03 6.765E+01 6.740E+01 3 6.000E+03 1.537E-02 3.990E-03 9.046E+01 9.020E+01 4 8.000E+03 1.504E-02 3.903E-03 5.520E+01 5.495E+01 5 1.000E+04 1.501E-02 3.897E-03 5.500E+01 5.475E+01 6 1.200E+04 1.531E-02 3.973E-03 4.231E+01 4.206E+01 7 1.400E+04 1.435E-02 3.726E-03 3.680E+01 3.654E+01 8 1.600E+04 1.467E-02 3.807E-03 2.823E+01 2.798E+01 9 1.800E+04 1.382E-02 3.587E-03 2.087E+01 2.062E+01 TOTAL HARMONIC DISTORTION = 1.064939E+00 PERCENT with VBB = 1.3 V

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 63: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-63

11.95

( ) ViVViv

mAVR

Vi

EBEBEBS

BEE

6.1907.02507.07.0101

07.010002501000

. 0.7010

7.0 a limitare a inizia corrente La

21

2

=+++=+++=

==

11.96 *Problema 11.96 – Figura 11.38 VCC 3 0 DC 50 VS 1 0 DC 1 R1 1 2 1K Q1 3 2 4 NBJT Q2 2 4 5 NBJT R 4 5 10 RL 5 0 250 .MODEL NBJT NPN IS=1FA BF=100 .OP .DC VS 1 50 .05 .PROBE .END

0V 10V 20V 30V 40V 50V

120mA

80mA

40mA

0A

iL

vS

Slope = 250 Ω

Slope = 1k Ω

I risultati sono in accordo con i calcoli manuali.

11.97

I2RG = VGS 4 −VGS 5 | 0.25mA( )7kΩ( )= VTN 4 +2ID 4

0.005− VTP5 −

2ID5

0.002

⎝ ⎜ ⎜

⎠ ⎟ ⎟ | ID5 = ID4

1.75− 0.75− 0.75 = ID42

0.005+

20.002

⎝ ⎜ ⎜

⎠ ⎟ ⎟ → ID5 = ID 4 = 23.5 μA

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 64: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-64 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.98

Q5

0.2 V

50 Ω

+

+

+15 V

2.4 k Ω

500 μA

1.2 V

- -

-15 V

2 k Ω

Q4

+

-0.7 V

0.5 V

( )

( )( ) mA

kVI

R

VAVVV

VRIVVV

C

EQ

EQ

EB

BEBEBBE

98.62101507.08.14100

50

8.14505002.015off. è Q e 5.0=7.02.1=

-= ,7.0=Per

4

55

4254

=Ω+Ω

−=

Ω=

=Ω−−=−

μ

11.99

Rout =1n2

βo +1⎛

⎝ ⎜

⎠ ⎟ =

1100

βo

βo +1⎛

⎝ ⎜

⎠ ⎟

VT

IC

⎝ ⎜

⎠ ⎟ =

1100

VT

IE

⎝ ⎜

⎠ ⎟ =

1100

0.025V10mA

⎛ ⎝ ⎜

⎞ ⎠ ⎟ = 25.0 mΩ

11.100

( )( )

( )( )

( )( )

( )

mWP

tvvvv

nRRn

vv

nvRRv

nv

Rv

ni

ninvRiv

vvk

vRnr

Rnv

nn

R

AVrr

nR

AVkk

II

o

oss

o

L

th

tho

othL

oth

L

oothth

sssLo

Loth

L

ooth

BC

124.0101

20497.0

2000sin0497.0= | 0497.0

1003.525303.5

500.0= | =

1 | 11 | :tore trasformadel

ideali relazioni le ndo Utilizza| 500.02531016.25

2531011

1

03.5102531 : a uguale siaThevenin eequivalent resistenza la che Voglio

2539.97025.0100

1011

1 |

11 :oretrasformat

nel indietro Guardando | 9.9782101200

7.09100100

2

211

2

2

2

2

=⎟⎠

⎞⎜⎝

⎛=

=

ΩΩ

++

+===+=

=+Ω

=++

+=

=→Ω=Ω

Ω==+⎟⎟

⎞⎜⎜⎝

⎛+

=

=ΩΩ+Ω

−==

π

ββ

μββ

μ

π

ππ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 65: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-65

11.101

( )

( )( )

( )

( ) ( )( ) ( )

( )

( )

( )

( )( )

( )

( ) ( )( ) ( )

( )Ω=⎟

⎠⎞

⎜⎝⎛

Ω+Ω+ΩΩ

+Ω=⎟⎟⎠

⎞⎜⎜⎝

⎛++

+=

Ω=+

==Ω−=Ω−=

Ω===ΩΩ+Ω

−−−−==

Ω=ΩΩ=−=+Ω+Ω

Ω−+−=

Ω=⎟⎠⎞

⎜⎝⎛

Ω+Ω+ΩΩ

+Ω=⎟⎟⎠

⎞⎜⎜⎝

⎛++

+=

Ω=+

==Ω−=Ω−=

Ω===ΩΩ+Ω

−−−−==

Ω=ΩΩ=−=Ω+Ω

Ω−=

MkkM

kMRrR

RrR

MA

VrVkAkIV

kA

VrAVkM

II

MMMRVMM

MVVV

b

MkkM

kMRrR

RrR

MA

VrVkAkIV

kA

VrAVkM

II

MMMRVMM

MVVa

Eth

Eooout

oECE

BO

EQEQ

Eth

Eooout

oECE

BO

EQEQ

1.412201031

220100133.21

33.23.24

60.650 | 60.62203.241001011222012

1033.24025.0100 | 3.24

2201011127.065.5100100

122 | 65.57.022

27.01212

diodo, ilper CVD modello il do Utilizzan

9.432201101

220100150.21

50.28.22

98.650 | 98.62208.221001011222012

1108.22025.0100 | 8.22

2201011127.06100100

122 | 622

212

π

π

π

π

β

μμ

μμ

β

μμ

μμ

11.102

( )Ω=⎟

⎠⎞

⎜⎝⎛

Ω+ΩΩ

+Ω=⎟⎟⎠

⎞⎜⎜⎝

⎛+

+= Mkk

kMRr

RrR

R

E

Eooout

th

169220110

220100150.21

.0 = cosicchè re, transistodel base alla acin massa una è bypass di recondensato il caso, ogniIn 11.101. problema del stessa la è dc analisiL'

π

β

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 66: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-66 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.103

( )

( )( )

( )

( ) ( )( ) ( )

( )

( )

( )

( )( )

( )

( ) ( )( ) ( )

( )

( )

( )( )

( )

( ) ( )( ) ( )

( )

( )

( )

( )( )

( )

( ) ( )( ) ( )

( )Ω=⎟

⎠⎞

⎜⎝⎛

Ω+Ω+ΩΩ

+Ω=⎟⎟⎠

⎞⎜⎜⎝

⎛++

+=

Ω=+

==Ω−=Ω−=

Ω===Ω+Ω

−−−−==

Ω=ΩΩ=−=+⎟⎠⎞

⎜⎝⎛

Ω+ΩΩ

−+−=

Ω=⎟⎠⎞

⎜⎝⎛

Ω+Ω+ΩΩ

+Ω=⎟⎟⎠

⎞⎜⎜⎝

⎛++

+=

Ω=+

==Ω−=Ω−=

Ω===Ω+Ω

−−−−==

Ω=ΩΩ=−=Ω+Ω

Ω−=

Ω=⎟⎠⎞

⎜⎝⎛

Ω+Ω+ΩΩ

+Ω=⎟⎟⎠

⎞⎜⎜⎝

⎛++

+=

Ω=+

==Ω−=Ω−=

Ω===Ω+Ω

−−−−==

Ω=ΩΩ=−=+⎟⎠⎞

⎜⎝⎛

Ω+ΩΩ

−+−=

Ω=⎟⎠⎞

⎜⎝⎛

Ω+Ω+ΩΩ

+Ω=⎟⎟⎠

⎞⎜⎜⎝

⎛++

+=

Ω=+

==Ω−=Ω−=

Ω===Ω+Ω

−−−−==

Ω=ΩΩ=−=Ω+Ω

Ω−=

Mkkk

kkRrR

RrR

kA

VrVkAkIV

kA

VrAVkk

II

kkkRVkk

kVVV

d

Mkkk

kMRrR

RrR

MA

VrVkAkIV

kA

VrAVkk

II

kkkRVkk

kVVc

Mkkk

kkRrR

RrR

kA

VrVkAkIV

kA

VrAVkk

II

kkkRVkk

kVVV

b

Mkkk

kkRrR

RrR

kA

VrVkAkIV

kA

VrAVkk

II

kkkRVkk

kVVa

Eth

Eooout

oECE

BO

EQEQ

Eth

Eooout

oECE

BO

EQEQ

Eth

Eooout

oECE

BO

EQEQ

Eth

Eooout

oECE

BO

EQEQ

8.12157.277.66

1510018701

8704.90

63.375 | 63.3154.901001015155

7.274.90025.0100 | 4.90

151017.6657.087.2100100

7.66200100 | 87.27.0200100

1007.055

diodo, delCVD modello il do Utilizzan

1.17158.407.66

15100129.11

29.13.61

07.475 | 07.4153.611001015155

8.403.61025.0100 | 3.61

151017.6657.033.3100100

7.66200100 | 33.3200100

2005

87.6186.22166

1815014881

488166

99.575 | 99.5181661501519189

6.22166

025.0150 | 16618151166

97.010.5150100

166430270 | 10.57.0430270

2707.099

diodo, delCVD modello il do Utilizzan

83.7180.26166

1815015651

565144

39.675 | 39.6181441501519189

0.26144

025.0150 | 14418151166

97.053.5150100

166430270 | 53.5430270

4309

π

π

π

π

π

π

π

π

β

μμ

μμ

β

μμ

μμ

β

μμ

μμ

β

μμ

μμ

11.104

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 67: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-67

a( ) VEQ = −12V 2MΩ2MΩ + 2MΩ

= −6V | REQ = 2MΩ 2MΩ =1MΩ

IO =100IB =100−6 − 0.7 − −12( )

1MΩ +101 220kΩ( )VΩ

= 22.8 μA | rπ =100 0.025V( )

22.8μA=110kΩ

VCE =12 − IE 220kΩ( )=12 −101100

22.8μA( ) 220kΩ( )= 6.98V | ro =50 + 6.98( )V

22.8μA= 2.50MΩ

Rout = ro 1+ βoRE

Rth + rπ + RE

⎝ ⎜

⎠ ⎟ = 2.50MΩ 1+

100 220kΩ( )1MΩ +110kΩ + 220kΩ

⎝ ⎜

⎠ ⎟ = 43.9 MΩ

( )

( )

( )( )

( )

( ) ( )( ) ( )

( )Ω=⎟

⎠⎞

⎜⎝⎛

Ω+Ω+ΩΩ

+Ω=⎟⎟⎠

⎞⎜⎜⎝

⎛++

+=

Ω=+

==Ω−=Ω−=

Ω===ΩΩ+Ω

−−−−==

Ω=ΩΩ=−=+Ω+Ω

Ω−+−=

MkkM

kMRrR

RrR

MA

VrVkAkIV

kA

VrAVkM

II

MMMRVMM

MVVV

b

Eth

Eooout

oECE

BO

EQEQ

1.412201031

220100133.21

33.23.24

60.650 | 60.62203.241001011222012

1033.24025.0100 | 3.24

2201011127.065.5100100

122 | 65.57.022

27.01212

diodo), a connesso re(transisto diodo ilper CVD modello il do Utilizzan

π

π

β

μμ

μμ

11.105

R E

Q

VB

RB

IC

R E

R1

R2

Q

-12 V -12 V

IC

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 68: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-68 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

( )

( ) ( )

.principale progetto di variabileVcon progetto di spazio lo esplorareper utilizzati essere possono etc. MATHCAD, MATLAB, calcolo, di foglioun Ora,

1 | 70

12 | 7.0100101

1 101

7.0100

| 801212

| 8015.012

re, transistodel base di corrente la oTrascurand .15.0I scelgo a, tolleranzcerta unapermetterePer 0.2mA. è inepolarizzaz di resistori due nei corrente massima La

70V & 100 outilizzand progetto ilper aiuto come calcolo di foglioun utilizzerà Si

B

2121221

1

AF

⎟⎟⎠

⎞⎜⎜⎝

⎛++

+=+

=

−=⎟⎟⎠

⎞⎜⎜⎝

⎛−

−=

+−

=

=Ω=+=Ω==+

===

EB

Eooout

C

CEo

EECEBC

BE

EB

BC

BBB

o

RrRRrR

IVr

RIVRI

VRorRR

VI

RRRkVRRVRkmAVRR

mA

V

π

β

ββ

VB R2 R1 RB RE ro Rout

0.500 3.33E+03 7.67E+04 3.19E+03 -2.30E+02 -1.74E+05 5.57E+05 0.600 4.00E+03 7.60E+04 3.80E+03 -1.37E+02 -8.00E+04 9.73E+04 0.700 4.67E+03 7.53E+04 4.39E+03 -4.35E+01 1.41E+04 5.13E+03 0.800 5.33E+03 7.47E+04 4.98E+03 4.97E+01 1.08E+05 1.80E+05 0.900 6.00E+03 7.40E+04 5.55E+03 1.43E+02 2.03E+05 5.56E+05 1.000 6.67E+03 7.33E+04 6.11E+03 2.37E+02 2.97E+05 1.09E+06 1.100 7.33E+03 7.27E+04 6.66E+03 3.30E+02 3.91E+05 1.75E+06 1.200 8.00E+03 7.20E+04 7.20E+03 4.24E+02 4.86E+05 2.52E+06 1.300 8.67E+03 7.13E+04 7.73E+03 5.18E+02 5.81E+05 3.38E+06 1.400 9.33E+03 7.07E+04 8.24E+03 6.11E+02 6.76E+05 4.31E+06 1.500 1.00E+04 7.00E+04 8.75E+03 7.05E+02 7.71E+05 5.32E+06 1.600 1.07E+04 6.93E+04 9.24E+03 8.00E+02 8.66E+05 6.38E+06 1.700 1.13E+04 6.87E+04 9.73E+03 8.94E+02 9.61E+05 7.50E+06 1.800 1.20E+04 6.80E+04 1.02E+04 9.88E+02 1.06E+06 8.68E+06 1.900 1.27E+04 6.73E+04 1.07E+04 1.08E+03 1.15E+06 9.90E+06 2.000 1.33E+04 6.67E+04 1.11E+04 1.18E+03 1.25E+06 1.12E+07

Due

possibili soluzioni

IO 0.916 6.20E+03 7.50E+04 5.73E+03 1.50E+02 2.10E+05 5.85E+05 1.04E-03 1.800 1.20E+04 6.80E+04 1.02E+04 1.00E+03 1.07E+06 8.86E+06 9.89E-04

La prima soluzione è il più basso valore di VB che era stato trovato per soddisfare le specifiche di uscita al 5%. Il secondo è uno in cui i valori erano stati trovati per essere molto vicini a resistori reali al 5%, ma utilizza un valore doppio per VB e ha uno spazio di tensioni di uscita più piccolo

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 69: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-69

11.106

( )

( ) ( )

( )

( )( ) ( )[ ]

( )[ ] ( )[ ] Ω=Ω+Ω=+=

=+=Ω=+

=

=Ω−=

==⇒−⎟⎟⎠

⎞⎜⎜⎝

⎛−=Ω−=

−⎟⎟⎠

⎞⎜⎜⎝

⎛=

Ω=ΩΩ==Ω+Ω

Ω=

−−

MkmSMxgrR

mSxxgMA

Vr

VIkV

AIIVVVxxIkV

VxI

kkkRVVkk

kV

moout

mo

DDS

DOGSGSDGS

GSD

EQEQ

9.1733243.0199.110331

243.020.801.01105.541052 | 99.15.54

20.8100corretto. è attiva reginein ntofunzioname Il | 20.83310

5.54= | 467.112105103327.33327.3

12105 :attiva regionein ntofunzioname il suppone Si

222680330 | 27.310680330

330

3

64

24

3

24

μ

μ

11.107

( ) .0 e spento è re transistoil quindi 1V<0.76V ,

8.5020068 | 760.0320068

68

==<

Ω=ΩΩ==Ω+Ω

Ω=

DOTNEQ

EQEQ

IIVV

kkkRVVkk

kV

11.108

( ) ( )

( ) ( )( )

( )( ) ( )[ ]

( )[ ] ( )[ ] Ω=Ω+Ω=+=

=+≅Ω=+

=

=Ω−=Ω−===⇒=+−

−⎟⎟⎠

⎞⎜⎜⎝

⎛=Ω+=

Ω=ΩΩ==Ω+Ω

Ω=

−−

MkmSMxgrR

mSxxgMA

Vr

VAkIkVVAIIVVVV

VxIIkV

kkkRVVkk

kV

moout

mo

DODS

DOGSGSGS

GSDDGS

EQEQ

6.1116200.0177.210161

200.039.501.01101.381052 | 77.21.38

39.5100 corretta. è attiva regione La | 39.51.3816616

1.38= | 390.10274

12105 | 162 :attiva regionein ntofunzioanme il suppone Si

7.66200100 | 26200100

100

3

64

2

24

μ

μμ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 70: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-70 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.109

VEQ =15V 200kΩ200kΩ +100kΩ

=10V | REQ = 200kΩ 100kΩ = 66.7kΩ

IO = 75IB = 7515− 0.7 −10( )V

66.7kΩ + 76 47kΩ( )= 88.6 μA | rπ =

75 0.025V( )88.6μA

= 21.2kΩ

VEC =15− IE RE =15−7675

88.6 μA( )47kΩ( )=10.7V | ro =50 +10.7( )V

88.6μA= 685kΩ

Rout = ro 1+βoRE

Rth + rπ + RE

⎝ ⎜

⎠ ⎟ = 685kΩ 1+

75 47kΩ( )66.7kΩ + 21.2kΩ + 47kΩ

⎝ ⎜ ⎜

⎠ ⎟ ⎟ =18.6 MΩ

11.110

VEQ = 5V 33kΩ33kΩ +10kΩ

= 3.84V | REQ = 33kΩ 10kΩ = 7.67kΩ

IO = 75IB = 75 5 − 0.7 − 3.847.67kΩ + 76 1.5kΩ( )

V = 284 μA | rπ =75 0.025V( )

284μA= 6.60kΩ

VEC = 5 − IERE = 5 −7675

284μA( ) 1.5kΩ( )= 4.57V | ro =60 + 4.57( )V

284μA= 227kΩ

Rout = ro 1+ βoRE

Rth + rπ + RE

⎝ ⎜

⎠ ⎟ = 227kΩ 1+

75 1.5kΩ( )7.67kΩ + 6.60kΩ +1.5kΩ

⎝ ⎜

⎠ ⎟ =1.85 MΩ

11.111

VEQ =10V 300kΩ300kΩ +100kΩ

= 7.50V | REQ = 300kΩ 100kΩ = 75.0kΩ

IO = 90IB = 90 10 − 0.7 − 7.5075.0kΩ + 91 18kΩ( )

V = 94.6 μA | rπ =90 0.025V( )

94.6μA= 23.4kΩ

VEC =10 − IE RE =10 −9190

94.6μA( )18kΩ( )= 8.28V | ro =75+ 8.28( )V

94.6μA= 880kΩ

Rout = ro 1+βoRE

Rth + rπ + RE

⎝ ⎜

⎠ ⎟ = 880kΩ 1+

90 18kΩ( )75.0kΩ + 23.4kΩ +18kΩ

⎝ ⎜ ⎜

⎠ ⎟ ⎟ =13.1 MΩ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 71: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-71

11.112

( )

( )( )( ) ( )[ ]

( ) ( )[ ] Ω=Ω+Ω=+=

=+=Ω=+

=

−=−−=

==−=⇒=+−

+=

=+−−Ω=ΩΩ==Ω+Ω

Ω=

−−

MkmSMRgrR

mSxxgMA

Vr

VIxV

AIIVVVIx

VxI

VIxekkkRVVkk

kV

Smoout

mo

DDS

DOGSGSD

GSD

GSDEQEQ

0.1116292.0194.11

292.013.501.01103.54105.72 | 94.13.54

13.5100corretta. è attiva regione La | 13.510166

3.54 | 13.1010162

75.02105.7 :attiva regionein ntofunzioname il suppone Si

410*3161626 | 7.66100200 | 46100200

200

64

3

3

24

3

μ

μ

11.113

( )( )( ) ( )[ ]

( ) ( )[ ] Ω=+Ω=+=

=+=Ω=+

=

−=−−=

==⇒⎟⎟⎠

⎞⎜⎜⎝

⎛−−+=

−=

=+−Ω=ΩΩ==Ω+Ω

Ω=

−−

MxmSMRgrR

mSxxgMA

Vr

VIxV

AIIxIIx

KIVV

VIkMMRVMM

MVV

Smoout

mo

DDS

DOD

D

p

DTPGS

GSDEQEQ

131102.1165.0129.61

165.096.601.01100.17105.72 | 29.60.17

96.6100corretta. è attiva regione La | 96.6102.19

0.17105.7

275.03102.1

2 :attiva regionein ntofunzioname il suppone Si

6109 | 66712 | 612

29

5

64

5

45

5

μ

μ

11.114

( )

( )( )( ) ( )[ ]

( ) ( )[ ] Ω=Ω+Ω=+=

=+=Ω=+

=

−=−−=

==−=⇒=+−

+==+−

Ω=ΩΩ==Ω+Ω

Ω=

−−

MkSMRgrR

SxxgMA

Vr

VIxV

AIIVVVIx

VxIVIx

kkkRVVkk

kV

Smoout

mo

DDS

DOGSGSD

GSDGSD

EQEQ

0.754311219.121

11265.301.011006.8105.72 | 9.1206.8

65.3100corretta è attiva regione La | 65.310434

06.8 | 6034.00104395.0

75.02105.7 | 05.310434 :attiva regionein ntofunzioname il suppone Si

3.4762200 | 05.3462200

200

64

3

3

24

3

μ

μμ

μ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 72: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-72 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.115

( ) ( )( )( )

( )

( ) ( )

( ) 430 | 200=195=1290.3=

6002012 | 20 Assegno | 25 | 90.3=12

90.3102

1075.121103.31075.112

33 Scelgo | 2.295.21065.21286 va.conservati azionesempllific una arappresent e trascurarQuindi

stima. la olte aumenterà della eespressionnell' includere che noti Si

1075.1102211075.1

501 Stimando

34434

432243

4

4

444

4

444

Ω=Ω⇒Ω+

Ω==+=≤+

=⎟⎟⎠

⎞⎜⎜⎝

⎛−−+−=+−=

Ω=Ω≥⇒Ω≥+Ω

+≅+≅

−−

−−−

kRkRkRRR

kA

VRRAIAIRR

R

Vx

xxxVRIVV

kRkRMRxk

Rg

RxxxVRgrR

GSSDDDG

SSS

outm

SSmoout

μμμ

λλ

11.116

a( ) VEQ = −12V 68kΩ68kΩ + 33kΩ

= −8.08V | REQ = 68kΩ 33kΩ = 22.2kΩ | VB = −8.08 − IB1 + IB2( )RTH

VB = −8.08 −VB − 0.7 − −12( )

126 20kΩ( )+

VB − 0.7 − −12( )126 100kΩ( )

⎝ ⎜ ⎜

⎠ ⎟ ⎟ 22.2kΩ → VB = −8.11V

IC1 = αF IE1 =125126

VB − 0.7 − −12( )20kΩ

⎝ ⎜ ⎜

⎠ ⎟ ⎟ =158 μA | IC2 = αF IE2 =

125126

VB − 0.7 − −12( )100kΩ

⎝ ⎜ ⎜

⎠ ⎟ ⎟ = 31.7 μA

VCE = 0 − −8.11− 0.7( )= 8.87V | ro1 =50 + 8.11( )V

158μA= 368kΩ | Rth1 = REQ rπ 2 + βo +1( )100kΩ( )[ ]

rπ1 =125 0.025V( )

158 μA=19.8kΩ | rπ 2 =

125 0.025V( )31.7μA

= 98.6kΩ

Rth1 = 22.2kΩ 98.6kΩ + 126( )100kΩ( )[ ]= 22.2kΩ

Rout1 = ro1 1+βoRE

Rth + rπ1 + RE

⎝ ⎜

⎠ ⎟ = 368kΩ 1+

125 20kΩ( )22.2kΩ +19.8kΩ + 20kΩ

⎝ ⎜ ⎜

⎠ ⎟ ⎟ =15.2 MΩ

ro2 =50 + 8.11( )V

31.7μA=1.83MΩ | Rth2 = RTH rπ1 + βo +1( )20kΩ( )[ ]

Rth2 = 22.2kΩ 19.8kΩ + 126( )20kΩ( )[ ]= 22.0kΩ

Rout2 = ro2 1+βoRE

Rth + rπ 2 + RE

⎝ ⎜

⎠ ⎟ =1.83MΩ 1+

125 100kΩ( )22.0kΩ + 98.6kΩ +100kΩ

⎝ ⎜ ⎜

⎠ ⎟ ⎟ =106 MΩ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 73: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-73

11.116 cont.

( )( ) ( ) ( )

( )( )

( )( )

( ) ( )

( ) ( ) ( )( )[ ]

( ) ( )

( )( )[ ]( )

( ) ( )( )[ ]

( )( )[ ]( )

Ω=⎟⎠⎞

⎜⎝⎛

Ω+Ω+ΩΩ

+Ω=⎟⎟⎠

⎞⎜⎜⎝

⎛++

+=

Ω=Ω+ΩΩ=

Ω++=Ω=+

=

Ω=⎟⎠⎞

⎜⎝⎛

Ω+Ω+ΩΩ

+Ω=⎟⎟⎠

⎞⎜⎜⎝

⎛++

+=

Ω=Ω+ΩΩ=

Ω==Ω==

Ω++=Ω=+

==−−−=

=⎟⎠⎞

⎜⎝⎛

Ω−−−

===⎟⎠⎞

⎜⎝⎛

Ω−−−

==

−=→Ω⎟⎟⎠

⎞⎜⎜⎝

⎛Ω−−−

+Ω−−−

−−=

+−−=Ω=ΩΩ=−=ΩΩ+Ω

−=

Mkkk

kMRrR

RrR

kkkkR

krRRMA

Vr

Mkkk

kkRrR

RrR

kkkkR

kA

VrkA

Vr

krRRkA

VrVV

Ak

VIIAk

VII

VVkk

Vk

VV

RIIVkkkRVkkk

VV

b

Eth

Eooout

th

oTHtho

Eth

Eooout

th

oEQthoCE

BEFC

BEFC

BBB

B

EQBBBEQEQ

2.981003.860.22

100125161.11

0.22201263.172.22

201 | 61.12.36

35.850

9.13203.172.22

2012513221

2.221001263.862.22

3.862.36025.0125 | 3.17

181025.0125

1001 | 322181

35.850 | 35.87.065.70

2.36100

127.0126125 | 181

20127.0

126125

65.72.22100126

127.020126

127.061.7

08.8 | 2.223368 | 61.7683368

7.012dc,in calcoli iper Q diodo del CVD modello il do Utilizzan

222

2

122

111

1

21

211

2211

21

3

π

π

π

ππ

π

β

βμ

β

μμ

βμ

μαμα

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 74: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-74 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.117

VEQ = −12V 20kΩ20kΩ + 39kΩ

= −4.07V | REQ = 20kΩ 39kΩ =13.2kΩ

IB = −1

76VB + 0.7

33kΩ+

176

VB + 0.716kΩ

+1

76VB + 0.78.2kΩ

⎝ ⎜

⎠ ⎟ | VB = −4.07V +13200IB → VB = −3.95V

IC1 =7576

0 − 0.7V − −3.95V( )33kΩ

⎝ ⎜ ⎜

⎠ ⎟ ⎟ = 97.2μA | Rout1 = ro1 1+

βo 33kΩ( )Rth1 + rπ1 + 33kΩ

⎝ ⎜ ⎜

⎠ ⎟ ⎟

Rth1 =13.2kΩ rπ 2 + βo2 +1( )16kΩ[ ] rπ 3 + βo3 +1( )8.2kΩ[ ]≅13.2kΩ

Rout1 =60 + 8.7597.2μA

1+75 33kΩ( )

13.2kΩ +19.3kΩ + 33kΩ

⎝ ⎜ ⎜

⎠ ⎟ ⎟ = 27.4 MΩ

IC2 =7576

0 − 0.7V − −3.95V( )16kΩ

⎝ ⎜ ⎜

⎠ ⎟ ⎟ = 201μA | Rout2 = ro2 1+

βo 16kΩ( )Rth2 + rπ 2 +16kΩ

⎝ ⎜ ⎜

⎠ ⎟ ⎟

Rth2 =13.2kΩ rπ1 + βo1 +1( )33kΩ[ ] rπ 3 + βo3 +1( )8.2kΩ[ ]≅13.2kΩ

Rout2 =60 + 8.75

201μA1+

75 16kΩ( )13.2kΩ + 9.33kΩ +16kΩ

⎝ ⎜ ⎜

⎠ ⎟ ⎟ = 11.0 MΩ

IC3 =7576

0 − 0.7V − −3.95V( )8.2kΩ

⎝ ⎜ ⎜

⎠ ⎟ ⎟ = 391μA | Rout3 = ro3 1+

βo 8.2kΩ( )Rth2 + rπ 2 + 8.2kΩ

⎝ ⎜ ⎜

⎠ ⎟ ⎟

Rth3 =13.2kΩ rπ1 + βo1 +1( )33kΩ[ ] rπ 2 + βo2 +1( )16kΩ[ ]≅13.2kΩ

Rout3 =60 + 8.75

391μA1+

75 8.2kΩ( )13.2kΩ + 4.80kΩ + 8.2kΩ

⎝ ⎜ ⎜

⎠ ⎟ ⎟ = 4.30 MΩ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 75: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-75

11.118

( )

( ) ( )( ) ( )[ ]( )

( )

( ) ( )( ) ( )[ ]( ) Ω=+Ω++

=+=

−=−−=−==

−−==+−

Ω=+Ω++

=+=

−=−−=−==

−−==+−

Ω=ΩΩ==Ω+Ω

Ω=

MAAkA

VVRgrR

VVVVVAIxIVVIx

MAAkA

VVRgrR

VVVVVAIxIVVI

MMMRVMM

MVV

moout

GSDSGSD

DGSGSD

moout

GSDSGSD

DGSGSD

EQEQ

21028.702.010.10250247010.10

28.7501

28.76 , 28.1 , 0.10105.2

21 | 6107.412

2.2269.702.011.44250210011.44

59.7501

59.76 ,59.1 , 1.44105.2

21 | 61012 :esaturazion la suppone Si

00.122 | 00.622

212

2222

2222

42

2225

1111

1111

41

1115

μμμ

μ

μμμ

μ

11.119 *Problema 11.119 – Figura P11.118 VCC 1 0 DC 12 R1 1 2 100K R4 1 3 2MEG R3 3 0 2MEG R2 1 4 470K M1 5 3 2 2 PFET M2 6 3 4 4 PFET VD1 5 0 DC 0 VD2 6 0 DC 0 .MODEL PFET PMOS VTO=-1 KP=250U LAMBDA=0.02 .OP *.TF I(VD1) VD1 .TF I(VD2) VD2 .END Risultati: IO1 = 44.4 μA, ROUT1 = 22.1 MΩ, IO1 = 10.1 μA, ROUT1 = 209 MΩ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 76: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-76 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.120

AkV

RVI REF

FO μα 2.9950

5121120 A, grandePer =

Ω=≅

+

-

v-A v e g m v

veR

vx

ixr o

( ) ( ) ( ) ( )( )( ) ( ) ( ) ( )

( )

.r attraverso base di corrente di perdita della causa a eccedere puònon

2.73121605 | 6052.99

1050

11 e 1for 11111

:Combinando | 1 | 1= | ,precedente segnale piccolo di modello ilPer

π

ππ

π

βμ

μβμ

ooout

outo

fooo

f

x

xout

eexeeeomxex

rR

MkRkAVVr

AGAgrgAgG

AivR

vAgGviAvvAvvrvgivv

Ω=Ω=Ω=+

=

>>+>>++≅+++++

==

++=+−=−−−+=

11.121 ROUT è limitata a βoro del BJT. Dobbiamo aumentare il guadagno effettivo di corrente del transistore, ciò può essere fatto sostituendo Q1 con due transistori in configurazione Darlington.

+

-A Q2

Q1

Io

+V CC

R

-V EE

VREF

Ora ROUT si avvicina al prodotto βoro del Darlington che è Rout ≅23

βo2ro2. Si veda il prob. 11.48

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 77: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-77

11.122

AkV

RVI REF

O μ10050

5 A, grandePer =Ω

=≅

+

-

v-A v s

gm v

vsR

vx

ixr o

( ) ( ) ( )

( )[ ]

( )( ) ( )[ ]( )( )[ ] !! 1057.6105150438.0160050

438.01002.01101082

600100

1050 | 11

:Combinando | | 1= | ,precedente segnale piccolo di modello ilPer

114

44

Ω=+Ω+Ω+Ω=

=+=

Ω=+

=+++==

=+−=−−−+=

−−

xxkmSkkR

mSxg

kA

VVrARgrRivR

RivAvvAvvrvgivv

out

m

omox

xout

xssssomxsx

μ

11.123

( )

( )

( )( )

( )[ ]

( ) ( ) ( )

( ) ( ) ( )

( )

( )( ) ( )

( )( ) ( )( ) (b). e (a) parte della stesse le sono risposte Le

5.96 1065.636062.440

9.40 1112.162.4202

, terminalesingolo a uscitaun'Per

3602402286.22

24085146.81

46.834.9

03.970 | 22834.9025.085 b

03.9,34.9 62.7,62.4 62.7,62.4 :

16.762.42.1127.0 | 62.42

34.98685

2

03.97.024034.98586127.012

34.9240866.22

03.97.0128585

6.223091 | 03.93091

9112

431

333

33

213

21

3

33

cdBxMARgCMRR

dBMARgA

Mkkk

kMRrR

RrR

MA

VrkAVr

VAVAVAPuntiQ

VAMVVAAIII

VkARIV

AVkk

II

kkkRVkk

kVVa

outm

Cmv

Eth

Eooout

o

ECECC

FCC

EEEC

BC

EQEQ

=Ω==

+=Ω==

Ω=⎟⎠⎞

⎜⎝⎛

Ω+Ω+ΩΩ

+Ω=⎟⎟⎠

⎞⎜⎜⎝

⎛++

+=

Ω=+

=Ω==

=Ω+−−===⎟⎠⎞

⎜⎝⎛===

=−Ω−=−−=

=ΩΩ+Ω

−−==

Ω=ΩΩ==Ω+Ω

Ω=

μ

μ

β

μμ

μμμ

μμμα

μ

μ

π

π

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 78: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-78 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.124

( )

( )( )

( )( )

( ) ( ) ( )

( )

( ) ( )( ) ( )[ ]( )( )( ) ( )( ) ( )[ ]( ) ( )

( )

( ) ( )dBkmSRg

CMRR

kk

RR

kmSkkxxrRgA

kkxxkRgrR

kA

VVr

VAVAVAVVIVVVV

VIVV

VAAVAIII

VVAIxIVVI

kkkRVkk

kVVa

outm

out

D

oDmdd

Smoout

o

GSDSDDSDS

DGSDS

GSD

DD

GSDD

GSGSD

EQEQ

6.51 378903419.0CMRR è CMRR del taapprossima stima Una

dB 50.7or 3420199.0

2/6.13

199.0903236

2A , terminalesingolo a uscitaun'Per

6.13325419.0332364.1002.011082.11042

9035.73.1002.011063.3104211661

166363

3.1050 b

3.10 ,363 4.10 ,182 4.10 ,1824.103600015

3.10157500

95.1400236321 | 182

2

35.2 , 363 | 104

21 | 75001593.9

:esaturazion la suppone Si | 8.3351100 | 93.951100

10015

31

3cd

442

44333

3

111121

313

13

21

3343

333

=Ω=≅

==

−=Ω

Ω−=−≅

−=Ω=ΩΩ+−=−=

Ω=Ω++Ω=+=

Ω=+

=

=−−−=−===−−−−=

=+====

==+=++−=−

Ω=ΩΩ=−=Ω+Ω

Ω−=

−−

−−

μ

μμμ

μμμ

μ

11.125

( )( ) ( )dBVCMRR

rgCMRRr

Rr

RARgA

rR

Ao

fooom

oo

C

oo

Ccc

Cmdd

ooout

103 000,140701002020 :parametri nostri i oUtilizzand

22= | =

22

| 2

, terminalesingolo a uscitaun'Per ingresso. di ri transistodei quella a rispetto doppia è corrente di generatore

del collettore di corrente la che dato 2

= identici, siano dispositii i tuttiche Supponendo

11

11111

1111

1

11

==≅

=−⎟⎠⎞

⎜⎝⎛

−=−=

β

μββββ

β

(Si noti che questa analisi trascura il contributo della resistenza di uscita ro della coppia di ingresso. Se si include questa resistenza, avviene un annullamento teorico e Acc = 0!

Certamente l’espressione della resistenza di uscita Rout =βoro

2 non è precisa, ma un

miglioramento nell’espressione del CMRR è comunque possibile.)

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 79: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-79

11.126

Rout = ro 1+ gmRS( )≅ μF RS = gmroRS ≅ 2KnID1

λID

RS

VRS= ID RS =

λ ID1.5( )Rout

2Kn

=0.02 10−4( )1.5

5x106( )2 5x10−4( )

= 3.16 V

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 80: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-80 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.127 *Problema 11.127 - Fig. 11.49(a) – Analisi Monte Carlo di un generatore di corrente BJT *Generatore di tensione con tolleranza del 5% IEE 0 5 DC 1 REE 5 0 RTOL 15 EEE 1 0 5 0 -1 * VO 4 0 AC 1 RE 1 2 RTOL 18.4K R1 1 3 RTOL 113K R2 3 0 RTOL 263K Q1 4 3 2 NBJT .OP .DC VO 0 0 .01 .AC LIN 1 1000 1000 .PRINT AC IM(VO) IP(VO) .MODEL NBJT NPN BF=150 VA=75 .MODEL RTOL RES (R=1 DEV 5%) .MC 1000 DC I(VO) YMAX *.MC 1000 AC IM(VO) YMAX .END Risultati - 3σ limiti: IO = 199 μA ± 32.5 μA, ROUT = 11.8 MΩ ± 2.6 MΩ

*Problema 11.127 - Fig. 11.49(b) – Generatore di corrente MOSFET * Generatore di tensione con tolleranza del 5% IEE 0 5 DC 1 REE 5 0 RTOL 15 EEE 1 0 5 0 -1 * VO 4 0 AC 1 RS 1 2 RTOL 18K R3 1 3 RTOL 240K R4 3 0 RTOL 510K M1 4 3 2 2 NFET .OP .DC VO 0 0 .01 .AC LIN 1 1000 1000 .PRINT AC IM(VO) IP(VO) .MODEL NFET NMOS KP=9.95M VTO=1 LAMBDA=0.01 .MODEL RTOL RES (R=1 DEV 5%) .MC 1000 DC I(VO) YMAX *.MC 1000 AC IM(VO) YMAX .END Risultati- 3σ limiti: IO = 201 μA ± 34.7 μA, ROUT = 21.7 MΩ ± 3.6 MΩ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 81: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-81

11.128

4.02kΩ 1+ 0.15( )1− 0.03( )≤ R ≤ 4.02kΩ 1+ 0.15( )1+ 0.03( ) | 4.48kΩ ≤ R ≤ 4.76kΩ

11.129

IC1 = IS1 exp VBE1

VT

⎝ ⎜

⎠ ⎟ | IC2 = IS 2 exp VBE2

VT

⎝ ⎜

⎠ ⎟ | IC2

IC1

=IS 2

IS1

exp VBE2 −VBE1

VT

⎝ ⎜

⎠ ⎟ | ΔVBE = VBE2 −VBE1

ΔIS = IS1 − IS2 | IS =IS1 + IS2

2 | IS1 = IS 1+

ΔIS

2IS

⎝ ⎜

⎠ ⎟ | IS 2 = IS 1−

ΔIS

2IS

⎝ ⎜

⎠ ⎟

a( ) IC2 = IC1 : ΔVBE = VT ln IC2

IC1

IS1

IS2

⎝ ⎜

⎠ ⎟ = 0.025ln 1()

IS 1+ΔIS

2IS

⎝ ⎜

⎠ ⎟

IS 1−ΔIS

2IS

⎝ ⎜

⎠ ⎟

⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥

= 0.025ln1.05( )0.95( )

⎣ ⎢ ⎢

⎦ ⎥ ⎥

= 2.50 mV

b( ) ΔVBE = 0.025ln1.10( )0.90( )

⎣ ⎢ ⎢

⎦ ⎥ ⎥

= 5.02 mV

c( ) IS1

IS 2

=1+

ΔIS

IS

⎝ ⎜

⎠ ⎟

1−ΔIS

IS

⎝ ⎜

⎠ ⎟

= exp VBE2 −VBE1

VT

⎝ ⎜

⎠ ⎟ = exp 0.001

0.025⎛

⎝ ⎜

⎠ ⎟ =1.04 →

ΔIS

IS

= 0.02 or 2%

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 82: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-82 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.130 ( )

( ) ( ) ( )

( )

( ) ( ) ( )

( )

( ) ( ) ( )[ ]

( ) mVVRI

VVRg

VV

RIRRRRIVd

VVVV

VV

VV

VIIV

gIV

VV

VVIIII

VV

VVI

VV

VV

VVIIII

VV

VVII

VV

VVIIc

mVVIIV

gIV

VV

VVIIII

VV

VVIIII

VV

VVII

VV

VVIIb

VVVvva

CC

ODT

Cm

ODOS

CCCCCCCOD

OSA

CE

A

CE

A

CE

C

CT

m

COS

A

CE

T

BES

CCC

A

CE

T

BES

A

CE

A

CE

T

BESCCC

A

CE

T

BESC

A

CE

T

BESC

C

CT

m

COS

A

CE

T

BES

CCC

A

CE

T

BESCCC

A

CE

T

BESC

A

CE

T

BESC

OS

BEBE

25.105.0025.0

05.0025.0025.0

114 ,1.0Per

+105.0025.0 | +1exp

2

05.0exp=975.011.025-1exp=

025.01+1exp |

025.01+1exp

25.105.0025.0

+1exp2

| +1exp05.0==

+1exp025.01 | +1exp025.01

te.disallinea saranno base di correnti le Solo .0= Quindi, stesse le sono collettore di correnti le e ,=0 = Per

21

12

21

2112

21

2121

====

=−−+=

==

⎟⎟⎠

⎞⎜⎜⎝

⎟⎟⎠

⎞⎜⎜⎝

=⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=

+=

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+−⎟⎟

⎞⎜⎜⎝

⎛≅−Δ

⎟⎟⎠

⎞⎜⎜⎝

⎛−⎟⎟

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=

==Δ

=

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=

+=⎟⎟

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛−Δ

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+=⎟⎟

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛−=

=

μ

11.131

( ) ( )

AAIAAI

VV

VV

IIIIIIIIII

IIII

VVI

VVI

BB

FF

S

SS

SSSSSSS

SSS

S

T

BES

T

BES

μμμμ

ββ

855.0117

100 | 813.0123

100

11750101025.01100 | 123

50101025.01100

%7.7=04.108.0 | 04.1=

2 | 08.0=

08.1 | 08.1=025.0002.0exp | 002.0expexp

21

21

221

221

212

112

11

====

=⎟⎠⎞

⎜⎝⎛ +−==⎟

⎠⎞

⎜⎝⎛ ++=

=Δ+

=−=Δ

=⎟⎠⎞

⎜⎝⎛=⎟⎟

⎞⎜⎜⎝

⎛ +=⎟⎟

⎞⎜⎜⎝

Nota: IOS = -42.0 nA.

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 83: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-83

11.132

a( ) ID =250( ) 1± 0.05( )

2μAV 2 2 − 1± 0.025( )[ ]2

| IDmax =

250( ) 1+ 0.05( )2

μAV 2 1+ 0.025[ ]2 =138μA

IDmin =

250( ) 1− 0.05( )2

μAV 2 1− 0.025[ ]2 =113μA

ID =138μA +113μA

2=125.5μA | ΔID =138μA −113μA = 25μA | ΔID

ID

=19.8%

b( ) IDmax =

250( ) 1+ 0.05( )2

μAV 2 3+ 0.025[ ]2 =1.20mA

IDmin =

250( ) 1− 0.05( )2

μAV 2 3 − 0.025[ ]2 =1.05mA

ID =1.20mA +1.05mA

2=1.125mA | ΔID =1.20mA −1.05mA = 0.150mA | ΔID

ID

=13.3%

11.133

VGS1 = VTN +2IDS1

Kn' W

L⎛ ⎝ ⎜

⎞ ⎠ ⎟

1

= VTN +2IDS1

Kn' W

L⎛ ⎝ ⎜

⎞ ⎠ ⎟

1

1+Δ W /L( )2 W /L( )

≅ VTN +2IDS1

Kn' W

L⎛ ⎝ ⎜

⎞ ⎠ ⎟

1−Δ W /L( )4 W /L( )

⎝ ⎜

⎠ ⎟

VGS2 = VTN +2IDS2

Kn' W

L⎛ ⎝ ⎜

⎞ ⎠ ⎟

2

= VTN +2IDS 2

Kn' W

L⎛ ⎝ ⎜

⎞ ⎠ ⎟

1

1−Δ W /L( )2 W /L( )

≅ VTN +2IDS2

Kn' W

L⎛ ⎝ ⎜

⎞ ⎠ ⎟

1+Δ W /L( )4 W /L( )

⎝ ⎜

⎠ ⎟

IDS2 = IDS1 : VGS 2 −VGS1 =2IDS 2

Kn' W

L⎛ ⎝ ⎜

⎞ ⎠ ⎟

Δ W /L( )2 W /L( )

⎝ ⎜

⎠ ⎟ = VGS −VTN( ) Δ W /L( )

2 W /L( )⎛

⎝ ⎜

⎠ ⎟

a( ) ΔVGS = VGS −VTN( ) Δ W /L( )2 W /L( )

⎝ ⎜

⎠ ⎟ = 0.5( ) 0.10

2⎛ ⎝ ⎜

⎞ ⎠ ⎟ = 25 mV

b( ) Δ W /L( )W /L( )

= 2 ΔVGS

VGS −VTN( )= 2 0.003

0.5=1.2 % | c( ) Δ W /L( )

W /L( )= 2 ΔVGS

VGS −VTN( )= 2 0.001

0.5= 0.4 %

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 84: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-84 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.134

( ) ( ) ( )

( )

( ) ( ) ( ) ( )[ ]( )( )( ) ( ) ( )

( )

( ) ( ) ( ) ( )[ ]

( )

( ) ( ) ( )[ ]

( ) ( ) mVVVVI

IRg

VA

VV

RIRRRRIVmVVV

VVV

IIVV

gIV

VVIIII

VVVVVVKIIIc

mVVVVVIIVV

gIV

VVIVVVVVKI

VVVVVVVKIIIb

mVVIIVV

gIVII

VVVKL

WL

WIIIa

TNGSD

D

Dm

OD

vt

ODOS

DDDDDDDOD

OSDS

DS

DS

D

DTNGS

m

DOS

DS

DSDDDD

DSDSDSDSTNGSn

DDD

OSTNTND

DTNGS

m

DOS

TNGS

DTNTNGSTNDS

nD

TNTNGSTNTNGSDSn

DDD

D

DTNGS

m

DOSDD

DSTNGSn

DDD

8.1875.0025.0205.0

05.0025.0025.0 d 71.1 ,1.0 If

1205.075.0

2 |

105.0

025.01025.012

50 ,1 If | 05.02

1.01.012

025.0025.012

8.18205.075.0

2 | 05.0

12

:attiva regionein ntofunzioname il suppone Si

12

212

2212

2'

1212

==−===

=−−+===

⎟⎟⎠

⎞⎜⎜⎝

⎛+

⎟⎠⎞

⎜⎝⎛=

Δ−=

Δ=

+=−=Δ

−+−++−=−=Δ

===Δ

−=Δ

=

−=−+=Δ

−−−+−+=−=Δ

=⎟⎠⎞

⎜⎝⎛=

Δ−=

Δ==Δ

+−⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛−⎟

⎠⎞

⎜⎝⎛=−=Δ

λλ

λλλ

λλλλ

λ

λ

λ

11.135

a( ) IOX =

WL

⎝ ⎜

⎠ ⎟

X

WL

⎝ ⎜

⎠ ⎟

1

IREF1+ λVDSX

1+ λVDS1

| RoutX =

+ VDSX

IOX

VDS1 = VGS1 = VTN +2ID1

Kn

= 0.75+2 30x10−6( )4 25x10−6( )

=1.52V

IO2 =104

30μA( )1+ 0.015 10( )

1+ 0.015 1.52( )= 84.3μA | Rout2 =

10.015

+10

84.3μA= 909kΩ

IO3 =204

30μA( )1+ 0.015 8( )

1+ 0.015 1.52( )= 164μA | Rout3 =

10.015

+ 8

164μA= 455kΩ

IO4 =404

30μA( )1+ 0.015 12( )

1+ 0.015 1.52( )= 346μA | Rout 4 =

10.015

+12

346μA= 227kΩ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 85: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-85

11.135 cont.

b( ) IOX =

WL

⎝ ⎜

⎠ ⎟

X

WL

⎝ ⎜

⎠ ⎟

1

IREF1+ λVDSX

1+ λVDS1

| RoutX =

+ VDSX

IOX

VDS1 = VGS1 = VTN +2ID1

Kn

= 0.75+2 50x10−6( )4 25x10−6( )

=1.75V

IO2 =104

50μA( )1+ 0.015 10( )

1+ 0.015 1.75( )= 140μA | Rout2 =

10.015

+10

140μA= 548kΩ

IO3 =204

50μA( )1+ 0.015 8( )

1+ 0.015 1.75( )= 273μA | Rout3 =

10.015

+ 8

273μA= 274kΩ

IO4 =404

50μA( )1+ 0.015 12( )

1+ 0.015 1.75( )= 575μA | Rout 4 =

10.015

+12

575μA=137kΩ

c( ) IO2 =104

30μA( )= 75 μA | Rout2 = ∞ | IO3 =204

30μA( )=150 μA | Rout3 = ∞

IO4 =404

30μA( )= 300 μA | Rout 4 = ∞

11.136

a( ) IOX =

WL

⎝ ⎜

⎠ ⎟

X

WL

⎝ ⎜

⎠ ⎟

1

IREF1+ λVDSX

1+ λVDS1

| VDS1 = VGS1 = VTN +2ID1

Kn

= 0.75+2 30x10−6( )

2.5 25x10−6( )=1.73V

IO2 =102.5

30μA( )1+ 0.015 10( )

1+ 0.015 1.73( )= 135 μA | IO3 =

202.5

30μA( )1+ 0.015 8( )

1+ 0.015 1.73( )= 262 μA

IO4 =402.5

30μA( )1+ 0.015 12( )

1+ 0.015 1.73( )= 552 μA

b( ) VDS1 = 0.75+2 20x10−6( )6 25x10−6( )

=1.27V | IO2 =106

20μA( )1+ 0.015 10( )

1+ 0.015 1.27( )= 37.6 μA

IO3 =206

20μA( )1+ 0.015 8( )

1+ 0.015 1.27( )= 73.3 μA | IO4 =

406

20μA( )1+ 0.015 12( )

1+ 0.015 1.27( )= 154 μA

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 86: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-86 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.137

( )

( )

LSBIILSB

IILSB

II

AIAIAIb

AAIAAIAAIPa

O

O

O

O

O

O

OOO

OOO

613.075

300346 , 187.075

150164 , 124.075

753.84346 ,164 ,3.84 12.8, Prob. dal

30044030 ,150

42030 ,75

41030 ,0=er

2

4

2

3

2

2

432

232

=−

=−

=−

===

=⎟⎠⎞

⎜⎝⎛==⎟

⎠⎞

⎜⎝⎛==⎟

⎠⎞

⎜⎝⎛=

μμμ

μμμμμμλ

11.138 *Problema 11.135(a) – Generatore di corrente multiplo NMOS IREF 0 1 DC 30U VD2 2 0 DC 10 AC 1 VD3 3 0 DC 8 AC 1 VD4 4 0 DC 12 AC 1 M1 1 1 0 0 NFET W=4U L=1U M2 2 1 0 0 NFET W=10U L=1U M3 3 1 0 0 NFET W=20U L=1U M4 4 1 0 0 NFET W=40U L=1U .MODEL NFET NMOS KP=25U VTO=0.75 LAMBDA=0.015 .OP .AC LIN 1 1000 1000 .PRINT AC IM(VD2) IM(VD3) IM(VD4) IP(VD2) IP(VD3) IP(VD4) .END I risultati sono identici ai calcoli manuali.

11.139

ID1 =5+ VGS1

R | 15x10-6

221

⎝ ⎜

⎠ ⎟ VGS1 + 0.9( )2

1− 0.01VGS1( )=5+ VGS1

3x104 → VGS1 = −2.985V

IREF =5− 2.985

3x104 = 67.2μA

IO2 =15x10-6

281

⎝ ⎜

⎠ ⎟ −2.985+ 0.9( )2

1− 0.01 −5( )[ ]= 274μA | Rout2 =

+ VDS 2

IO2

=100 + 5274μA

= 383kΩ

IO3 =15x10-6

2161

⎝ ⎜

⎠ ⎟ −2.985+ 0.9( )2

1− 0.01 −10( )[ ]= 574μA | Rout3 =100 +10574μA

=192kΩ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 87: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-87

11.140

a( ) ID1 =5+ VGS1

R | 15x10-6

23.31

⎝ ⎜

⎠ ⎟ VGS1 + 0.9( )12 1− 0.01VGS1( )=

5+ VGS1

3x104 → VGS1 = −2.655V

IREF =5− 2.655

3x104 = 78.2μA | IO2 =15x10-6

281

⎝ ⎜

⎠ ⎟ −2.655+ 0.9( )2

1− 0.01 −5( )[ ]=194μA

IO3 =15x10-6

2161

⎝ ⎜

⎠ ⎟ −2.655+ 0.9( )2

1− 0.01 −10( )[ ]= 407μA

b( ) ID1 =5+ VGS1

R | 15x10-6

241

⎝ ⎜

⎠ ⎟ VGS1 + 0.9( )12 1− 0.01VGS1( )=

5+ VGS1

5x104 → VGS1 = −2.241V

IREF =5− 2.241

3x104 = 55.2μA | IO2 =15x10-6

281

⎝ ⎜

⎠ ⎟ −2.241+ 0.9( )2

1− 0.01 −5( )[ ]=113μA

IO3 =15x10-6

2161

⎝ ⎜

⎠ ⎟ −2.241+ 0.9( )2

1− 0.01 −10( )[ ]= 237μA

11.141 *Problema 11.141 – Generatore di corrente multiplo PMOS RREF 0 1 30K VSS 4 0 DC 5 VD2 2 0 DC 0 AC 1 VD3 3 0 DC -5 AC 1 M1 1 1 4 4 PFET W=2U L=1U M2 2 1 4 4 PFET W=8U L=1U M3 3 1 4 4 PFET W=16U L=1U .MODEL PFET PMOS KP=15U VTO=-0.9 LAMBDA=0.01 .OP .AC LIN 1 1000 1000 .PRINT AC IM(VD2) IM(VD3) IP(VD2) IP(VD3) .END I risultati sono identici ai calcoli manuali.

11.142

ID2 =K p

'

2WL

⎝ ⎜

⎠ ⎟ VGS 2 −VTP( )2

1+ λVDS 2[ ] | 55x10-6 =15x10-6

281

⎝ ⎜

⎠ ⎟ VGS1 + 0.9( )2

1+ 0.01−5[ ]

VGS1 = −1.834V | ID2

IREF

=

WL

⎝ ⎜

⎠ ⎟

2

1+ λVDS 2[ ]WL

⎝ ⎜

⎠ ⎟

1

1+ λVDS1[ ] | 55μA

IREF

=

81

⎝ ⎜

⎠ ⎟

2

1+ 0.01 5( )[ ]21

⎝ ⎜

⎠ ⎟

1

1+ 0.01 1.834( )[ ]→ IREF =13.3μA

IREF =5+ VGS1

R | R = 5−1.834

13.3μA= 238 kΩ

11.143 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 88: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-88 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

( ) ( )

( )

( )

( )

( ) ( )

( )

( )

( )

( )

( )

( )

( )

Ω=+

=+

==

=++

+=

++

+

+=

Ω=+

=+

===++

+=

++

+

+=⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=

⎟⎟⎠

⎞⎜⎜⎝

⎛+

++⎟⎟

⎞⎜⎜⎝

⎛=

++++==

−−=

Ω=+

=+

==

=++

+=

++

+=

Ω=+

=+

==

=++

+=

++

+=⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=

⎟⎟⎠

⎞⎜⎜⎝

⎛++⎟⎟

⎞⎜⎜⎝

⎛=+++==

−=

kmA

VVI

VVrR

mAA

VV

VV

II

kAVV

IVVrRAAI

VV

VV

IV

VVVII

VV

VVII

IIIAx

Ic

QVb

kxI

VVrR

mAA

VV

VV

II

kxI

VVrR

AAI

VV

VV

IV

VVVII

VV

VVIIIIIA

xIa

C

CEAoout

A

BE

FOFO

A

CE

REFO

C

CEAooutO

A

BE

FOFO

A

CE

REFA

CE

T

BESO

A

BE

FOFOT

BESREF

FO

BCREFREF

BE

C

CEAoout

A

BE

FO

A

CE

REFO

C

CEAoout

O

A

BE

FO

A

CE

REFA

CE

T

BESO

A

BE

FOT

BESREFBCREFREF

5.5220.1

360

20.1

604.1

51503.141

6031

1413.821

3.141

13.8

2.87745

560 | 745

604.1

51503.141

6051

1415

21

3.141

151exp5

21

3.141exp

13.851 | 141

105.77.07.012

area. sua della modifica alla dovuti di nella icambiament piccolo il trascuraQuesto (a). parte dallamodifiche sono cinon e stessi, gli sono corrente di rapporti i identica, manierain scalate sono aree le tutteche Dato

8.611002.1

360

02.1

607.0

503.141

6031

1513.83.141

13.8

1031031.6

560

631

607.0

503.141

6051

1515 | 3.141

151exp5

3.141exp | 3.851 | 151105.7

7.012

3

333

3

3

2

2222

2

22

14

1

33

333

3

3

42

222

2

2

22

14

μ

ββ

μμμ

ββ

ββ

βμ

μ

β

μμ

β

βμ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 89: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-89

11.144 *Problema 11.144 – Figura P11.143(a) – Generatore di corrente multiplo NPN RREF 2 1 75K VCC 2 0 DC 12 VC2 3 0 DC 5 AC 1 VC3 4 0 DC 3 AC 1 Q1 1 1 0 NBJT 1 Q2 3 1 0 NBJT 5 Q3 4 1 0 NBJT 8.3 .MODEL NBJT NPN BF=50 VA=60 .OP .AC LIN 1 1000 1000 .PRINT AC IM(VC2) IM(VC3) IP(VC2) IP(VC3) .END *Problema 11.144 – Figura 11.143(b) – Generatore di corrente multiplo NPN con buffer RREF 2 5 75K VCC 2 0 DC 12 VC2 3 0 DC 5 AC 1 VC3 4 0 DC 3 AC 1 Q1 5 1 0 NBJT 1 Q2 3 1 0 NBJT 5 Q3 4 1 0 NBJT 8.3 Q4 2 5 1 NBJT 1 .MODEL NBJT NPN BF=50 VA=60 .OP .AC LIN 1 1000 1000 .PRINT AC IM(VC2) IM(VC3) IP(VC2) IP(VC3) .END I risultati sono identici ai calcoli manuali

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 90: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-90 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.145

a( ) IREF = IC1 + 1+ 5+ 8.3( )IB = IC1 +14.3IB = IS exp VBE

VT

⎝ ⎜

⎠ ⎟ 1+

14.3βFO

+VBE

VA

⎝ ⎜

⎠ ⎟

IREF ≅ IS exp VBE

VT

⎝ ⎜

⎠ ⎟ 1+

14.350

+0.760

⎝ ⎜

⎠ ⎟ =1.298IS exp VBE

VT

⎝ ⎜

⎠ ⎟

IO3 = 8.3IS exp VBE

VT

⎝ ⎜

⎠ ⎟ 1+

VCE3

VA

⎝ ⎜

⎠ ⎟ = 8.3IREF

1+VCE2

VA

1.298 | IREF =

150μA 1.298( )8.3 1+

360

⎝ ⎜

⎠ ⎟

= 22.3μA

IREF =12 − 0.7

R | R = 12 − 0.7

22.3μA= 507 kΩ | IO2 = 5IREF

1+VCE2

VA

1.298= 5 22.3μA( )

1+5

601.298

= 93.1 μA

b( ) IREF = IC1 + 1+ 5 + 8.3( ) IB

βFO +1= IC1 +

14.3IB

βFO +1= IS exp VBE

VT

⎝ ⎜

⎠ ⎟ 1+

14.3βFO βFO +1( )

+2VBE

VA

⎝ ⎜ ⎜

⎠ ⎟ ⎟

IREF ≅ IS exp VBE

VT

⎝ ⎜

⎠ ⎟ 1+

14.350 51( )

+1.460

⎝ ⎜ ⎜

⎠ ⎟ ⎟ =1.029IS exp VBE

VT

⎝ ⎜

⎠ ⎟

IO3 = 8.3IS exp VBE

VT

⎝ ⎜

⎠ ⎟ 1+ VCE3

VA

⎝ ⎜

⎠ ⎟ = 8.3IREF

1+ VCE2

VA

1.029 | IREF =

150μA 1.029( )8.3 1+

360

⎝ ⎜

⎠ ⎟

=17.7μA

IREF =12 − 0.7 − 0.7

R | R = 12 −1.4

17.7μA= 599 kΩ | IO2 = 5IREF

1+VCE2

VA

1.029= 5 17.7μA( )

1+5

601.029

= 93.2 μA

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 91: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-91

11.146

a( ) IREF =12 − 0.775x103 =151 μA | IREF = IC1 + 1+

52

+8.32

⎝ ⎜

⎠ ⎟ IB | IREF = IS exp VBE

VT

⎝ ⎜

⎠ ⎟ 1+

7.65βFO

+VBE

VA

⎝ ⎜

⎠ ⎟

IO2 =52

IS exp VBE

VT

⎝ ⎜

⎠ ⎟ 1+

VCE2

VA

⎝ ⎜

⎠ ⎟ = 2.5IREF

1+VCE2

VA

1+7.65βFO

+VBE

VA

| IO2 = 2.5 151μA( )1+

575

1+7.65125

+0.775

= 376 μA

IO3 =8.32

IREF

1+VCE3

VA

1+7.65βFO

+VBE

VA

= 4.15 151μA( )1+

375

1+7.65125

+0.775

= 609 μA

b( ) IREF =12 − 0.7 − 0.7

75x104 =141 μA | IREF = IC1 + 1+52

+8.32

⎝ ⎜

⎠ ⎟

IB

βFO +1

IREF = IS exp VBE

VT

⎝ ⎜

⎠ ⎟ 1+

7.65βFO βFO +1( )

+2VBE

VA

⎝ ⎜ ⎜

⎠ ⎟ ⎟

IO2 =52

IS exp VBE

VT

⎝ ⎜

⎠ ⎟ 1+

VCE2

VA

⎝ ⎜

⎠ ⎟ = 2.5IREF

1+VCE2

VA

1+7.65

βFO βFO +1( )+

2VBE

VA

IO2 = 2.5 141μA( )1+

575

1+7.65

125 126( )+

1.475

= 370 μA

IO3 =8.32

IREF

1+VCE3

VA

1+7.65

βFO βFO +1( )+

2VBE

VA

= 4.15 141μA( )1+

375

1+6.65

125 126( )+

1.475

= 596 μA

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 92: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-92 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.147

IREF =12 − 0.7 − 0.7

100x103 =106 μA | IREF = IC1 + 1+53

+8.33

⎝ ⎜

⎠ ⎟

IB

βFO +1

IREF = IS exp VBE

VT

⎝ ⎜

⎠ ⎟ 1+

5.43βFO βFO +1( )

+2VBE

VA

⎝ ⎜ ⎜

⎠ ⎟ ⎟

IO2 =53

IS exp VBE

VT

⎝ ⎜

⎠ ⎟ 1+

VCE2

VA

⎝ ⎜

⎠ ⎟ =

53

IREF

1+VCE2

VA

1+5.43

βFO βFO +1( )+

2VBE

VA

IO2 =53

106μA( )1+

575

1+5.43

100 101( )+

1.475

=185 μA

IO3 =8.33

IREF

1+VCE3

VA

1+5.43

βFO βFO +1( )+

2VBE

VA

=8.33

106μA( )1+

375

1+5.43

100 101( )+

1.475

= 299 μA

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 93: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-93

11.148

( ) ( )

( )

( )

( ) ( ) ( )

( )

( )

( ) Correct. - 38302.17551

3.73502.1

15 :oVerificand

1453.73

4.112= | 7.07.012

3.73

75313.8

02.1620 | 02.1

13.81exp3.8

exp029.175

4.11261253.141exp

21

3.141exp1

3.141

3.851

620

757.0

1253.141

7531

7.803.83.141

13.8

383

757.0

1253.141

7551

7.805 | 3.141

151exp5

3.141exp | 3.851 | 7.80104.1

7.012

2

2

2

33

11

3

3

2

2

22

15

AAVV

II

kA

RR

I

AAIVV

IV

VVVII

VVI

VVII

VV

VVIIIIIIb

AA

VV

VV

II

AAI

VV

VV

IV

VVVII

VV

VVIIIIIA

xIa

A

CE

REFO

REF

REFA

CE

REFA

CE

T

BESO

T

BES

T

BESREF

A

BE

FOFOT

BES

FO

BC

FO

BCREF

A

BE

FO

A

CE

REFO

O

A

BE

FO

A

CE

REFA

CE

T

BESO

A

BE

FOT

BESREFBCREFREF

μμ

μ

μμ

ββββ

μμ

β

μμ

β

βμ

=+

=+

=

Ω=−−−

=

=⎟⎠⎞

⎜⎝⎛ +

=+

=⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=

⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛++⎟⎟

⎞⎜⎜⎝

⎛=

⎟⎟⎠

⎞⎜⎜⎝

⎛+

++⎟⎟

⎞⎜⎜⎝

⎛=

++=

++++=

=++

+=

++

+=

=++

+=

++

+=⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=

⎟⎟⎠

⎞⎜⎜⎝

⎛++⎟⎟

⎞⎜⎜⎝

⎛=+++==

−=

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 94: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-94 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.149

Utilizzo βFO = 50 e VA = 60 V.

( ) ( )

( )

( )

( ) ( )

( )

( )

calcoli. dei precisione la entro Concorda - 7472479

25.7138

1 | 138472

560

692113103759 |

430113103472 | 430

113103472

a aliproporzion sono e | 10310

7.011

.in ocambiamentNessun | 479

607.0

503.141

6061

1135

759

607.0

503.141

6031

1133.83.141

13.8

472

607.0

503.141

6051

1135 | 3.141

151exp5

3.141exp | 3.851 | 11310

7.012

5262

22

2

222

23

32

325

32

3

3

2

2

22

15

AAAII

Ak

VrVIk

AIVVrRd

AAAAIII

AAAAIA

AAAI

IIIAIc

IAAIb

AA

VV

VV

II

AAI

VV

VV

IV

VVVII

VV

VVIIIIIAIa

VOVO

oO

C

CEAoout

OREFO

OO

REFOOREF

OO

A

BE

FO

A

CE

REFO

O

A

BE

FO

A

CE

REFA

CE

T

BESO

A

BE

FOT

BESREFBCREFREF

μμμ

μμ

μμμμ

μμμμμ

μμμ

μ

μμ

μμ

β

μμ

β

βμ

=−=−

=ΔΩ=+

=+

==

==∝

====

=−

=

=++

+=

=++

+=

++

+=

=++

+=

++

+=⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=

⎟⎟⎠

⎞⎜⎜⎝

⎛++⎟⎟

⎞⎜⎜⎝

⎛=+++==

−=

−−

11.150

IREF =15− 0.76x104 = 238μA | IREF = 2IC1 + 2 +1+ 6 + 9( )IB = 2βFO 1+

VEC1

VA

⎝ ⎜

⎠ ⎟ IB +18IB

IB = 238μA

18 + 2 50( )1+0.760

⎝ ⎜

⎠ ⎟

= 2.00μA

IO2 = βFO 1+VEC2

VA

⎝ ⎜

⎠ ⎟ IB = 50 1+

1560

⎝ ⎜

⎠ ⎟ 2.00μA( )=125μA | Rout2 = ro2 =

60 +151.25x10−4 = 600 kΩ

IO3 = 6βFO 1+VEC3

VA

⎝ ⎜

⎠ ⎟ IB = 300 1+

960

⎝ ⎜

⎠ ⎟ 2.00μA( )= 690μA | Rout3 = ro3 =

60 + 96.90x10−4 =100 kΩ

IO4 = 9βFO 1+VEC 4

VA

⎝ ⎜

⎠ ⎟ IB = 450 1+

2760

⎝ ⎜

⎠ ⎟ 2.00μA( )=1.31mA | Rout 4 = ro4 =

60 + 271.31x10−3 = 66.4 kΩ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 95: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-95

11.151

IREF =15 − 0.7

R= 238μA | IREF = 2IC1 + 2 +1+ 6 + 9( )IB = 2βFO 1+

VEC1

VA

⎝ ⎜

⎠ ⎟ IB +18IB

IREF = IB 18 + 2 50( )1+0.760

⎝ ⎜

⎠ ⎟

⎣ ⎢

⎦ ⎥ =119IB | IO3 = 6βFO 1+

VEC3

VA

⎝ ⎜

⎠ ⎟ IB | IB =

65μA

300 1+9

60⎛

⎝ ⎜

⎠ ⎟

= 0.189μA

IREF =119IB = 22.4μA | R =15 − 0.722.4μA

= 63.8 kΩ

IO2 = βFO 1+VEC2

VA

⎝ ⎜

⎠ ⎟ IB = 50 1+

1560

⎝ ⎜

⎠ ⎟ 0.189μA( )=11.8 μA

IO4 = 9βFO 1+VEC 4

VA

⎝ ⎜

⎠ ⎟ IB = 450 1+

2760

⎝ ⎜

⎠ ⎟ 0.189μA( )=123 μA

11.152

IO4

15 V

6A 9A2A

Q3

Q4

A

Q2

Q1

R

-12 V+6 V

A

Q5

IO3IO2

R =15V − 0.7V − 0.7V

25μA= 544kΩ | IREF = IC1 +

2 +1+ 6 + 9( )IB

βFO +1

IREF = 2βFO 1+VEC1

VA

⎝ ⎜

⎠ ⎟ IB +

18IB

βFO +1 | IB =

25μA

2 50( )1+1.460

⎝ ⎜

⎠ ⎟ +

1851

= 0.2435μA

IO2 = βFO 1+VEC2

VA

⎝ ⎜

⎠ ⎟ IB = 50 1+

1560

⎝ ⎜

⎠ ⎟ IB =15.2 μA

IO3 = 6βFO 1+VEC3

VA

⎝ ⎜

⎠ ⎟ IB = 300 1+

960

⎝ ⎜

⎠ ⎟ IB = 84.0 μA

IO4 = 9βFO 1+VEC 4

VA

⎝ ⎜

⎠ ⎟ IB = 450 1+

2760

⎝ ⎜

⎠ ⎟ IB =159 μA | IC5 = αF IE5 =

5051

18IB = 4.30 μA

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 96: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-96 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.153

1052

:collettore di corrente di ensità

stessa lacon operare devono ri transistodue i ,emettitore-base tensioniuguali averePer

232

3

322

3

23333222

=→==

−+=→+=+

nnAI

nAI

AId

RVVI

RRIRIVRIV

EEE

BEBEEEEBEEBE

11.154

IREF = IC1 + 7IB | IC1 ≅IREF

1+775

=IREF

1.093 | IE1 =

IC1

αF

=7675

IREF

1.093⎛

⎝ ⎜

⎠ ⎟ =

IREF

1.079

12 = IREF 10kΩ( )+ 0.7V +IREF

1.07910kΩ( ) | IREF =

12V - 0.7V10kΩ 1.927( )

= 586μA | IE1 = 543μA

IE2 = 2IE1 | IO2 = αF 2IE1( )= 2 7576

543μA( )=1.07mA | VE1 = 543μA 10kΩ( )= 5.43V

IE3 = 4IE1 | IO3 = αF 4IE1( )= 4 7576

543μA( )= 2.14mA | 1gm1

=1

40 536μA( )= 46.6Ω

Rth = R 1gm1

+ R1

⎝ ⎜

⎠ ⎟ =10kΩ 46.6Ω +10kΩ( )= 5.01kΩ | Rth2 = Rth rπ 3 + βo3 +1( )2.5kΩ( )[ ]

rπ 2 =75 0.025V( )

1.07mA=1.75kΩ | rπ 3 =

75 0.025V( )2.14mA

= 0.876kΩ | ro2 =60 + 10 − 5.43( )

1.07mA= 60.4kΩ

Rth2 = 5.01kΩ 0.876kΩ + 76( )2.5kΩ( )[ ]= 4.88kΩ

Rout2 = ro2 1+βoR2

Rth2 + rπ 2 + R2

⎝ ⎜

⎠ ⎟ = 60.4kΩ 1+

75 5kΩ( )4.88kΩ +1.75kΩ + 5kΩ

⎝ ⎜ ⎜

⎠ ⎟ ⎟ = 2.01 MΩ

ro3 =60 +10 − 5.43( )V

2.14mA= 30.2kΩ | Rth2 = Rth rπ 2 + βo +1( )5kΩ( )[ ]

Rth3 = 5.01kΩ 1.75kΩ + 76( )5kΩ( )[ ]= 4.95kΩ

Rout3 = ro3 1+βoR3

Rth + rπ 3 + R3

⎝ ⎜

⎠ ⎟ = 30.2kΩ 1+

75 2.5kΩ( )4.95kΩ + 0.876kΩ + 2.5kΩ

⎝ ⎜ ⎜

⎠ ⎟ ⎟ = 710 kΩ

11.155

( )32= |

2 | 1553 | =Per 32

23

232233 ,32 n

nAI

AIkkR

IIRRIRIVV OO

O

OOOBEBE =Ω=Ω===

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 97: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-97

11.156

IREF = IC1 +13IB | IC1 ≅IREF

1+1375

=IREF

1.173 | IE1 =

IC1

αF

=7675

IREF

1.173⎛

⎝ ⎜

⎠ ⎟ =

IREF

1.158

12 = IREF 10kΩ( )+ 0.7V +IREF

1.07920kΩ( ) | IREF =

12V - 0.7V10kΩ 2.73( )

= 414μA | IE1 = 357μA

IE2 = 4IE1 | IO2 = αF 4IE1( )= 4 7576

357μA( )=1.41 mA | VE1 = 357μA 20kΩ( )= 7.14V

IE3 = 8IE1 | IO3 = αF 8IE1( )= 8 7576

357μA( )= 2.82 mA | 1gm1

=1

40 352μA( )= 71.0Ω

Rth = R 1gm1

+ R1

⎝ ⎜

⎠ ⎟ =10kΩ 71.0Ω + 20kΩ( )= 6.68kΩ | Rth2 = Rth rπ 3 + βo3 +1( )2.5kΩ( )[ ]

rπ 2 =75 0.025V( )

1.41mA=1.33kΩ | rπ 3 =

75 0.025V( )2.82mA

= 0.665kΩ | ro2 =60 + 10 − 7.14( )

1.41mA= 44.6kΩ

Rth2 = 6.68kΩ 0.665kΩ + 76( )2.5kΩ( )[ ]= 6.45kΩ

Rout2 = ro2 1+βoR2

Rth2 + rπ 2 + R2

⎝ ⎜

⎠ ⎟ = 44.2kΩ 1+

75 5kΩ( )6.45kΩ +1.33kΩ + 5kΩ

⎝ ⎜ ⎜

⎠ ⎟ ⎟ =1.35 MΩ

ro3 =60 +10 − 7.14( )V

2.82mA= 22.3kΩ | Rth2 = Rth rπ 2 + βo +1( )5kΩ( )[ ]

Rth3 = 6.68kΩ 1.33kΩ + 76( )5kΩ( )[ ]= 6.57kΩ

Rout3 = ro3 1+βoR3

Rth + rπ 3 + R3

⎝ ⎜

⎠ ⎟ = 22.3kΩ 1+

75 2.5kΩ( )6.57kΩ + 0.665kΩ + 2.5kΩ

⎝ ⎜ ⎜

⎠ ⎟ ⎟ = 452 kΩ

11.157

( ) ( )

( )

. che dato valida,zioneapprossimaun' e simile molto risultato

un , 0.1615.07551100 quindi ,15.0 ipotizza si Se :Nota

10.57.15

575 | 7.15147.075511001

147.0 ottiene si etneiterativam Risolvendo | 1050

445.1 | 1100

15

27.0 | 1

| 15=

1

21

22

2

611

3111

11

ACE

OFO

CB

ooutBA

CEFOO

BB

CE

A

CEB

n

DTNGSBECE

A

CEFO

CBREFC

VV

AAIAII

MAVrRAAI

VVI

AIxIV

VVAI

KIVVVV

VV

IIAII

<<

=⎟⎠⎞

⎜⎝⎛ +==≅

Ω=+

===⎟⎠⎞

⎜⎝⎛ +=⎟⎟

⎞⎜⎜⎝

⎛+=

=+=

⎟⎟⎠

⎞⎜⎜⎝

⎛+

=

++=+=

⎟⎟⎠

⎞⎜⎜⎝

⎛+

==

μμμβ

μμμβ

μμ

βμ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 98: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-98 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.158 I risultati con SPICE erano IC1 = 11.0 μA, IO = 11.7 μA and Rout = 5.06 MΩ. �ELTOL��� VNTOL���� ��an����� ���� �� ������������ Questi risultati sono molto vicini ai calcoli manuali. Si ricordi che SPICE utilizza

ro3 =VA + VCB

IC

≅75 + 4.3( )V15.7μA

= 5.05 MΩ .

11.159

( ) ( )

( )( )

( )( )( )

Ω=Ω=⎥⎦⎤

⎢⎣⎡≅

=Ω====

===

⎟⎟⎠

⎞⎜⎜⎝

⎛+

=

⎟⎟⎠

⎞⎜⎜⎝

⎛+

⎟⎟⎠

⎞⎜⎜⎝

⎛+

+=

⎟⎟⎠

⎞⎜⎜⎝

⎛+

=⎟⎟⎟⎟

⎜⎜⎜⎜

+≅

⎥⎥⎦

⎢⎢⎣

+=

−=−==

−−−

kRkmS

R

rgkmS

rmSAg

SxxxgAI

rgrg

grg

rggrg

rgrR

rgrgvrg

rgv

rrgrrg

vv

vrirvgiviv

Ra

inin

mm

mD

m

m

m

m

mm

m

mf

oin

m

mref

m

m

refm

mrefbe

beforefobemrefrefref

refin

35.5 ottiene si SPICECon (b) 35.5905.0905.2

600.01

905.0 167600.0100 600.01540

1042.510294.010502 e ,294.0 11.157, Prob. Dal

21

2

11

21

22

1

21

|

1311

6663

1

13

13

1

13

131

13

131

1

13

13

13

13

213

2131

111111

ππ

π

π

π

π

π

π

π

π

π

π

ππ

ππ

μ

μ

μ

μ

11.160

( )

( ) ( )( )[ ]

( )

( ) ( )[ ] Ω=+Ω=+≅Ω=−+

=

=Ω≅=→⎟⎟⎠

⎞⎜⎜⎝

⎛=

Ω=Ω+Ω=+≅

Ω=−+

=

=Ω≅=→⎟⎟⎠

⎞⎜⎜⎝

⎛=

⎟⎟⎠

⎞⎜⎜⎝

⎛=≅=

Ω−−

=

MMRgrRMA

r

VkAVAII

AIx

MkAMRgrR

RRMA

r

VkAVAII

AI

II

IIVRIIA

kVVVI

moouto

EOO

O

moout

tho

EOO

O

S

S

O

CTOCREF

2.15147.040121.21 | 21.23.29

147.0560

147.05 3.29 | 3.291

12860ln025.0105

2.3110 4.1240123.51

piccola. è su tensionela anche e piccola è | 23.54.12

124.0560

124.010 4.12 | 4.1212860ln025.010

ln | 86010

7.07.010

33333

332

33

2222

22

222

24

1

2

2

1221

μ

μμμ

μμ

μμμ

μ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 99: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-99

11.161

R =10 − 0.7 − 0.7( )V

75μA=115kΩ | R2 =

VT

Io2

ln IREF

IO2

IS2

IS1

⎝ ⎜

⎠ ⎟ =

0.025V5μA

ln 75μA5μA

21

⎝ ⎜

⎠ ⎟ =17.0 kΩ

Io3R3 = VT ln IREF

IO3

IS3

IS1

⎝ ⎜

⎠ ⎟ | 10μA( ) 2kΩ( )= 0.025V ln 75μA

10μAn1

⎝ ⎜

⎠ ⎟ → n = 0.297

11.162 *Problema 11.162 – Generatore di corrente di Widlar NPN con buffer RREF 1 3 115K VCC 1 0 DC 10 VC2 2 0 DC 5 AC 1 Q1 3 4 0 NBJT 1 Q2 2 4 5 NBJT 2 R2 5 0 17K Q3 2 4 6 NBJT 0.297 R3 6 0 2K Q4 1 3 4 NBJT 1 .MODEL NBJT NPN BF=100 VA=60 .OP .AC LIN 1 1000 1000 .PRINT AC IC(Q2) IC(Q3) .END Risultati: IC1 = 75.7 μA, IO2 = 5.18 μA, IO3 = 10.5 μA, ROUT2 = 53.4 MΩ ROUT3 = 11.1 MΩ

11.163

( )

( )

( ) ( ) ( )[ ]

( )

( ) ( )[ ] Ω=+Ω=+≅Ω=−+

=

=Ω≅=→⎟⎟⎠

⎞⎜⎜⎝

⎛Ω

=

Ω=+Ω=+=+≅

Ω=−+

=

=Ω≅=→⎟⎟⎠

⎞⎜⎜⎝

⎛Ω

=

⎟⎟⎠

⎞⎜⎜⎝

⎛=≅=

Ω−−−−

=

MMRgrRMA

r

VkAVAII

Ak

VI

MMRIrRgrR

RRMA

r

VkAVAII

Ak

VI

II

II

RVIIA

kVVVVI

moouto

EOO

O

Comoout

tho

EOO

O

S

S

O

CTOCREF

17.9114.040165.11 | 65.15.45

114.0570

114.05.24.45 | 5.45120215ln

5.2025.0

3.18114.040130.34011

. piccola. è su tensionela anche e piccola è | 30.37.22

114.0570

114.057.22 | 7.221

10215ln5025.0

ln | 21540

57.07.05

33333

333

3

2222222

22

222

2

1

2

2

1

221

μ

μμμ

μ

μμμ

μ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 100: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-100 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.164

R =5 − 0.7 − 0.7 − −5( )[ ]V

50μA=172 kΩ

R2 =VT

Io2

ln IREF

IO2

IS 2

IS1

⎝ ⎜

⎠ ⎟ =

0.025V10μA

ln 50μA10μA

101

⎝ ⎜

⎠ ⎟ = 9.78 kΩ

Io3R3 = VT ln IREF

IO3

IS 3

IS1

⎝ ⎜

⎠ ⎟ | 10μA( )2kΩ( )= 0.025V ln 50μA

10μAn1

⎝ ⎜

⎠ ⎟ → n = 0.445

11.165

( )( )

( ) ( )

( )

( ) ( )

( )

( ) ( ) ( ) VVVVVVdVMARIVc

MA

VrRAAIb

MA

VrRAAIa

nfornIInnIn

nIIInI

IIIIIInIIIn

I

InIInIIIIII

EEEECBoutOCS

oooutO

oooutO

FREFREF

F

REF

FFF

FFO

F

OREF

F

FO

F

OREFBREFCC

F

F

F

FEFOE

F

FC

BBBFBBCEBFC

40.107.07.0= 27700.19146

0.19146

3.442

1252

| 14650

12531

3

8.556.49

57.0402

1252

| 6.4950

12511

1

1

111

11

111

| 111

| 11

=++= | :bassoin corrente di specchio loPer

3

322332

222211322

≥→≥−−=Ω==

Ω==≅=+

Ω=−−−

=≅=+

>>≅+

+++

++

=→⎟⎟⎠

⎞⎜⎜⎝

⎛−

+++

=

−=−=++

+==

++=

++=

μ

μβμμ

μβμμ

β

ββββ

ββββ

β

βββ

ββα

ββ

ββ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 101: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-101

11.166

+

-

ix

+

-

r π3

i

ixve

vx

v1βo i1i1

ro3

r o2 i

vb

1gm1

( )

( )222

1 | 22

2 |

211

2

| 2

12

=

1er 2122=

corretti sono segnale piccoloper parametri i quindi 0

|

333

133

131

3133

21

31

11

23

3131232131

321

2331

331

ooooo

mx

xout

xooox

m

xooxex

xeb

x

f

xomxeb

mxb

m

x

f

o

m

xoxe

ofmff

omoomm

CCC

b

e

om

mx

x

xout

rrrgi

vRirrigiriivv

ivvgirigiggivv

ggivgi

giggiv

pgggggggggg

IIIvv

gggggggi

ivR

ββββ

μ

μβ

βμμμ

β

πππ

ππ

ππππ

ππ

ππ

≅++==++=−+=

=−=≅⎟⎟⎠

⎞⎜⎜⎝

⎛+−=

Δ+

−=−

Δ−

−=≅⎟⎟⎠

⎞⎜⎜⎝

⎛+

Δ+

=

>>>>≅⎟⎟⎠

⎞⎜⎜⎝

⎛++=++Δ

≅≅

⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡+−

−+=⎥

⎤⎢⎣

⎡=

11.l67 ( )

( ) Ω=≅=≅≅ MnAn

RnI

VIVrR out

REF

Ao

O

Aoooout

50502

40125 11.165, Prob. ilPer | 222 μβββ

11.168 ( )

VVVVfA

AfA

AVVV

AI

n

IAAInnI

IInIII

IIV

IIVVV

VVVVVVVVV

EECBEBE

CF

F

FF

CREF

F

C

CF

F

F

C

F

C

F

CC

S

CT

S

CTBEBE

BEBEEECEEBEBECCB

16.1 | 16.115

0.72ln3

1.72ln025.0

0.721111

1 | 1.7215

12551

5

1 :165.15

Prob. Dal | 1 | lnln

0

323

313

3311

11

1

3

313

2332333

+−≥=⎟⎟⎠

⎞⎜⎜⎝

⎛+=+

=+

++==

+=

+≅

+≅=+++=+

++−≥→≥−−−−=

μμ

μβ

β

ββ

μμ

β

ββ

αββ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 102: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-102 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.169

( )

( ) ( )

( ) ( ) ( )

( )

( )

( ) ( )

( )[ ]

.7.21 ,5.87 ,381.1 ,336.1 :ottiene si calcolo di foglioun on . nuova unacon provo allora primo, ilcon accordoin ènon di valoresecondo il Se

.4

e 30

55120

2 , che Dato

12

5 Quindi | Provo

:iterativo approccioUn . I anche eleggerment quindi e V cambierà ma e,riflession di rapporto il

intaccherànon 0 ,M e M traequilibrioin sia V che Supponendoecalcolator al assistita o iterativa soluzione una di usol' richiede parte Questa b

180 |

20422 | richiede

M e Msu drain di tensionedella ntobilanciame Il . 8.214

and 2.87

025.121019.2109 :ndoriarrangia e1025= oUtilizzand

105.15.330 |

30204

275.054

275.05

204275.0 |

54275.02

305 |

4= ,bilanciate sianodrain di tensionile che supponendo

31

11

131

1'

1313

12

1

'

11

REFGS

21DS

4'

'

4

34

21

5286-'

'

''

'3'1

11

31

2

113

AIAIVVVVCVI

IIk

VVI

VKIVVII

VVVKIV

LW

KIV

KL

WIVVV

AIIAI

IxIxxK

KIIk

kK

IK

I

I

KIV

KI

KIVV

kVVII

LWL

W

IIIa

OREFGSGS

GSD

REFD

GSGSREF

GSn

DSTNGSDD

GSTNGSn

DGS

n

REFTN

n

REFTNGSGS

REFOREF

REFREFn

n

REFREF

n

REF

n

REF

REF

n

REFGS

n

REF

n

DTNGS

GSGSREF

REFREFDD

μμ

λ

λ

λ

μμ

====

=Ω−−

=

−++==

+−=

=⎟⎠⎞

⎜⎝⎛+=

⎟⎠⎞

⎜⎝⎛

+=

===

=+−

−=ΩΩ

−−−−=

+=+=+=

Ω−−

=⎟⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛

==

Nota: Non ci sono cambiamenti sostanziali dalla prima risposta!

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 103: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-103

11.169 cont. (c) *Problema 11.169 – Generatore di Wilson NMOS RREF 1 0 30K VSS 4 0 DC -5 M1 3 3 4 4 NFET W=5U L=1U M2 2 3 4 4 NFET W=20U L=1U M3 0 1 3 3 NFET W=20U L=1U M4 1 1 2 2 NFET W=80U L=1U .MODEL NFET NMOS KP=25U VTO=0.75 LAMBDA=0.015 .OP .END

11.170

IO = IREF

WL

⎝ ⎜

⎠ ⎟

1

WL

⎝ ⎜

⎠ ⎟

2

| Rout = μ f 2ro3 = μ f 21

λ3IO

=1λ2

2Kn

ID2

1λ3IO

Rout =1λ2

2 WL

⎝ ⎜

⎠ ⎟

2

Kn'

IREF

1λ3IREF

WL

⎝ ⎜

⎠ ⎟

2

WL

⎝ ⎜

⎠ ⎟

1

=1

λ2λ3

WL

⎝ ⎜

⎠ ⎟

2

IREF

⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥

32

2Kn'

WL

⎝ ⎜

⎠ ⎟

1

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 104: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-104 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.171

M3

ro2 gm1

1

gm2 v

+

-

v

ix

vx+-

ix = go2vx + gm2v1 | v1 = vx

gm 31

gm1

⎝ ⎜

⎠ ⎟

1+ gm 31

gm1

⎝ ⎜

⎠ ⎟

=vx

2 | gm1 = gm 3 | v1 =

vx

2

ix = go2vx + gm2vx

2 | Rin = vx

ix

= ro2

gm 2

≅ 2gm2

11.172

( )

( )( )

( )( ) V

AVA

AVAVVV

VKIV

KIVV

VVVVVVVVVVV

AA

LWL

W

IIID

D

TNn

DTN

n

DTND

TNGSGSDTNGSGSDTNGSDS

REFDD

09.825205.372

2555.37275.010

2210

10 | 10 |

5.37=4

150= ,0= che ato

22

3

33

33

1

113

33133313333

2

113

−=+++−≥

−++++−≥

−++−≥−≥+−−−≥

⎟⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛

==

μμ

μμ

μμλ

11.173

( )

( ) ( )[ ] ( ) 180.3

105.221051560125.0

2

21 11.71, Eq.l' ndo Utilizza| 15660.1

250

60.1500125.0

11 | 50=== |

5

52

'22

22

22

32

33

1232

===⎟⎠⎞

⎜⎝⎛

==ΩΩ

==

Ω==≅⇒⎟⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛≅

xx

KI

LW

IK

MM

rR

MAI

rAIIL

WL

WrR

n

Df

D

nf

o

outf

DoREFOofout

λμ

λμμ

μλμμ

11.174 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 105: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-105

Il circuito è lo stesso della Fig. 12.20 con l’aggiunta di RREF in parallelo con ro2. Richiediamo RREF >> ro2 al fine di non ridurre il guadagno dell’anello di retroazione. Un generatore di corrente con un resistore che fornisce ROUT = ro(1+gmRs) dovrebbe essere sufficiente. Anche un generatore di Wilson o cascode dovrebbe andare bene.

11.175

( )

( )

( )( ) ( )( )( )

VVVVckVRIVb

GRMSx

Sxxxg

MA

rMA

r

VVVVVVx

xV

AIIKrRa

GSDDoutOCS

outf

m

oo

TNGSGS

REFOnofout

11.2680.043.1 )( ! 3.20 )(

16.1 | 25078.41024.5

1024.543.150125.01105.1710752=

78.45.17

43.150125.01

| 65.45.17

43.10125.01

680.075.043.1 | 43.11075

105.17275.0

5.17 :stessi gli sono Tutti | )(.equilibrioin sono M e M

41min

54

5664

42

3336

6

1

24

21

=+=Δ+===

Ω==Ω=

=−+

Ω=−+

=Ω=+

=

=−=−=Δ=+=

===

−−−

μ

μμ

μμ

11.176 *Problema 11.176 – Generatore cascode NMOS IREF 0 1 DC 17.5U VDD 2 0 DC 5 M1 3 3 0 0 NFET W=3U L=1U M2 4 3 0 0 NFET W=3U L=1U M3 1 1 3 3 NFET W=3U L=1U M4 2 1 4 4 NFET W=3U L=1U .MODEL NFET NMOS KP=25U VTO=0.75 LAMBDA=0.0125 .OP .TF I(VDD) VDD .END Risultati: IO = 17.5 μA ROUT = 1.17 GΩ I risultati sono identici ai calcoli manuali.

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 106: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-106 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.177

( )

( )

( ) ( )( ) nAxIVV

KI

KI

KI

KIV

KIVVVV

VgIMMV

MMLWI

AII

LWL

W

IMMa

oDS

n

D

n

D

n

D

n

DTN

n

DTNGSGSDS

DSoo

DS

O

REFREFO

89.30218.0105.170125.0 | 0218.050

5.172026.0

2026.095.02222

dove è effetto questo di stima Unaile. trascurabsarà errore questo ma , e tra di mentodisallinea piccoloun

crea mentodisallinea Il . e di / dalla dipendenon ordine, primo Al b

5% del erroreun ,4.1805.1 quindi ,equilibrioin sono e

6

3334

4

3

343

2

21

43

1

221

==Δ==Δ

=−=⎟⎟⎠

⎞⎜⎜⎝

⎛+−⎟

⎟⎠

⎞⎜⎜⎝

⎛+=−=Δ

Δ=Δ

==⎟⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛

=

μ

11.178

( )

( ) ( )[ ] ( ) 180.3

105.221051560125.0

2

21 11.71, Eq.l' ndo Utilizza| 15660.1

250

60.1500125.0

11 | 50=== |

5

52

'42

44

4

44

24

22

1224

===⎟⎠⎞

⎜⎝⎛

==ΩΩ

==

Ω==≅⇒⎟⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛=

xx

KI

LW

IK

MM

rR

MAI

rAIIL

WL

WrR

n

DSf

D

nf

o

outf

DoREFOofout

λμ

λμμ

μλμμ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 107: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-107

11.179

( )

( )

( )( ) ( )( )( )

VVVVcakVRIVba

MRMSx

Sxxxg

MA

rMA

r

VVVVVVVxxV

AIIKrRaa

GSDDoutOCS

outf

m

oo

TNGSGS

REFOnofout

39.2817.057.1 )-( ! 2.17 )(

689 | 21138.31025.6

1025.657.150125.01102510752=

38.325

57.150125.01

| 26.325

57.10125.01

817.075.057.1 | 57.110751025275.0

25 :stessi gli sono i Tutti | )(

41min

54

5664

42

3336

6

1

24

=+=Δ+===−

Ω==Ω=

=−+

Ω=−+

=Ω=+

=

=−=−=Δ=+=

===−

−−−

μ

μμ

μμ

( )

( )

( )( ) ( )( )( )

VVVVcbkVRIVbb

MRMSx

Sxxxg

MA

rMA

r

VVVVVVVxxV

AIIKrRab

GSDDoutOCS

outf

m

oo

TNGSGS

REFOnofout

07.316.191.1 )-( ! 0.12 )(

240 | 14766.11083.8

1083.891.150125.01105010752=

66.150

91.150125.01

| 64.150

91.10125.01

16.175.091.1 | 91.110751050275.0

25 :stessi gli sono i Tutti | )(

41min

54

5664

42

3336

6

1

24

=+=Δ+===−

Ω==Ω=

=−+

Ω=−+

=Ω=+

=

=−=−=Δ=+=

===−

−−−

μ

μμ

μμ

11.180

R =1

gm3

+1

gm1

=2

gm1

=2

2 75x10−6( )17.5x10−6( )= 39.0 kΩ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 108: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-108 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.181

a( ) IREF = IC3 + IB3 + IB 4 = IE3 + IB 4 = IC1 +2IC1

βF

+IC2

βF +1= IC1 +

2IC1

βF

+IC1

βF +1

IC1 =IREF

1 + 2βF

+1

βF +1

| IO = IC 4 = αF IC2 = αF IC1 =βF

βF +1IREF

1 + 2βF

+1

βF +1

IO =110111

17.5μA

1 + 2110

+1

111

⎜ ⎜ ⎜

⎟ ⎟ ⎟

=16.9 μA | Rout =βoro

2≅

110 50( )2 16.9μA( )

=163 MΩ

b( ) VCS = IO Rout =16.9μA 163MΩ( )= 2750 V c( ) VCC ≥ 2VBE =1.40 V

11.182 *Figura 11.182 – Generatore di corrente cascode NPN IREF 0 1 17.5U VCC 2 0 DC 5 Q1 3 3 0 NBJT 1 Q2 4 3 0 NBJT 1 Q3 1 1 3 NBJT 1 Q4 2 1 4 NBJT 1 .MODEL NBJT NPN BF=110 VA=50 .OP .TF I(VCC) VCC .END Risultati: IO = 16.9 μA Rout = 164 MΩ I risultati sono identici ai calcoli manuali

11.183

R =

1gm3

+1

gm1

rπ 2

⎝ ⎜

⎠ ⎟ rπ 4 + βo4 +1( )ro2[ ]≅

1gm3

+1

gm1

≅2

gm1

=2

40 17.5μA( )= 2.86 kΩ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 109: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-109

11.184 ( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )Ω=⎟

⎠⎞

⎜⎝⎛

Ω+Ω+ΩΩ

+Ω=

==Ω==Ω=−+

=

=→⎟⎟⎠

⎞⎜⎜⎝

⎛Ω

=⎟⎟⎠

⎞⎜⎜⎝

⎛=

=→⎟⎟⎠

⎞⎜⎜⎝

⎛Ω

=

Ω=⎟⎠⎞

⎜⎝⎛

Ω+Ω+ΩΩ

+Ω=

⎟⎟⎟⎟

⎜⎜⎜⎜

+++=

==Ω==Ω=−+

=

=→⎟⎟⎠

⎞⎜⎜⎝

⎛Ω

=⎟⎟⎠

⎞⎜⎜⎝

⎛=

==

Mkkk

kkR

mSAgkmA

rkmA

Vr

AII

AVAA

II

RVIc

AII

AVIb

Mkkk

kkRr

g

RrR

mSAgkmA

rkmA

Vr

AII

AVAA

II

RVI

a

out

mo

OOE

E

O

REFTO

OO

O

m

ooout

mo

OOE

E

O

REFTO

97.15.09.21313.0

5.01001614

2.38040 | 9.21114.0

025.0100 | 614114.0

057.01060

1141480ln500025.0ln

12905.12080ln500025.0

89.15.07.19313.0

5.010015511

1

2.38040 | 7.19127.0

025.0100 | 551127.0

0635.01060

1272080ln500025.0ln

:60VV e 80 Supponendo

122

1

2

2

221

22

122

1

2

2

Ao

μ

μμ

μμ

β

μ

μμ

β

π

π

π

11.185

( )

( ) ( )

( )

( )

( ) ( )

( )Ω=⎟

⎠⎞

⎜⎝⎛

Ω+Ω+ΩΩ

+Ω=

⎟⎟⎟⎟

⎜⎜⎜⎜

+++=

==Ω==Ω=−+

=

=→⎟⎟⎠

⎞⎜⎜⎝

⎛Ω

=⎟⎟⎠

⎞⎜⎜⎝

⎛=

Ω=⎟⎠⎞

⎜⎝⎛

Ω+Ω+ΩΩ

+Ω=

⎟⎟⎟⎟

⎜⎜⎜⎜

+++=

==Ω==Ω=−+

=

=→⎟⎟⎠

⎞⎜⎜⎝

⎛Ω

=⎟⎟⎠

⎞⎜⎜⎝

⎛=

==

Mkkk

kMRr

g

RrR

mSAgkA

rMA

Vr

AII

AVAA

II

RVIb

Mkkk

kMRr

g

RrR

mSAgkmA

rMmA

Vr

AII

AVAA

II

RVIa

m

ooout

mo

OOE

E

O

REFTO

m

ooout

mo

OOE

E

O

REFTO

89.3935.07.48714.0

935.0100136.111

40.13540 | 7.483.51

025.0100 | 36.13.51

0480.01060

3.511035ln935025.0ln

59.3935.01.39714.0

935.0100109.111

40.13540 | 1.39064.0

025.0100 | 09.1064.0

0598.01060

642035ln935025.0ln

:60VV e 80 Suppoendo

221

22

122

1

2

2

221

22

122

1

2

2

Ao

π

π

π

π

β

μμμ

μμ

β

μ

μμ

β

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 110: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-110 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.186

a( ) R2 =VT

IO

ln IREF

IO

AE 2

AE1

⎝ ⎜

⎠ ⎟ =

0.025V22μA

ln 73μA22μA

20⎛

⎝ ⎜

⎠ ⎟ = 4.77 kΩ

b( ) R2 =VT

IO

ln IREF

IO

AE 2

AE1

⎝ ⎜

⎠ ⎟ =

0.025V5.7μA

ln 73μA5.7μA

20⎛

⎝ ⎜

⎠ ⎟ = 24.3 kΩ

c( ) R2 =VT

IO

ln IREF

IO

AE 2

AE1

⎝ ⎜

⎠ ⎟ =

0.025V5.7μA

ln 73μA5.7μA

10⎛

⎝ ⎜

⎠ ⎟ = 21.3 kΩ

11.187

a( ) R2 =VT

IO

ln IREF

IO

AE 2

AE1

⎝ ⎜

⎠ ⎟ =

0.025V12μA

ln 62μA12μA

10⎛

⎝ ⎜

⎠ ⎟ = 8.22 kΩ

b( ) R2 =VT

IO

ln IREF

IO

AE 2

AE1

⎝ ⎜

⎠ ⎟ =

0.025V512μA

ln 62μA512μA

10⎛

⎝ ⎜

⎠ ⎟ = 8.22 kΩ

11.188 *Problema 11.188 – Generatore di corrente Widlar NPN IREF 2 1 50U VCC 2 0 DC 10 Q1 1 1 0 NBJT 1 Q2 2 1 3 NBJT 20 R2 3 0 4K .MODEL NBJT NPN BF=110 .OP .DC IREF 50U 5M 50U .PROBE IC(Q2) .END

0A 1.0mA 2.0mA 3.0mA 4.0mA 5.0mA

50uA

40uA

30uA

20uA

IREF

IO2

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 111: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-111

11.189

IO = αF IE 2 = αFVBE1

R2

+ IB1

⎝ ⎜

⎠ ⎟ ≅

VBE1

R2

=VT

R2

ln IC1

IS1

IC1 =VEE −VBE 2 −VBE1

R1

− IB 2 ≅VEE −VBE 2 −VBE1

R1

a( ) IC 2 ≅0.025V2.2kΩ

ln 15 −1.4104 10−15( )

= 318 μA | Note : VBE1

R2

≅0.7V

2.2kΩ= 318 μA

b( ) IC 2 ≅0.025V2.2kΩ

ln 3.3−1.4104 10−15( )

= 295 μA | Note : VBE1

R2

≅0.7V

2.2kΩ= 318 μA

c( ) IC 2 ≅VT

R2

lnVCC −VEB1 −VEB 2

IS1R1

=0.025V10kΩ

ln 5 −1.4104 10−15( )

= 66.5 μA | 0.7V10kΩ

= 70 μA

11.190

( )

( )

( )

( )Ω=

⎟⎟⎠

⎞⎜⎜⎝

=−

=⎟⎟⎠

⎞⎜⎜⎝

⎛+==

Ω=−

≅−−−

==

Ω=−

⎟⎟⎠

⎞⎜⎜⎝

=−

=⎟⎟⎠

⎞⎜⎜⎝

⎛+==

Ω=−

≅−−−

==

kAA

fAAV

IIIIV

RIR

VII

kA

II

VVVRII

kAA

fAAV

IIIIV

RIR

VII

kA

II

VVVRII

BF

O

S

CT

BEB

FEFO

BC

EBEBCCOC

BF

O

S

CT

BBE

FEFO

BC

BEBEEEOC

2.21

130630

130131

1.06ln0258.0ln

|

3176

4.13.3 | 2.0 Scelgo

pnp. storicon transi toimplementa circuito stesso lo è Questo b

2.21

130630

130131

1.06ln0258.0ln

|

3176

4.13.3 | 2.0 Scelgo a

1

1

1

212

12

21

1211

1

1

1

212

12

21

1211

μμ

μ

α

αα

μ

μμ

μ

α

αα

μ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 112: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-112 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.191

+

-

Rth

i

ix

+

-

r π4

ix

+

-

ve

vx

v 1−βo ii

ro4

ro2

( ) ( ) ( ) ( )

( ) ( )

othooo

oout

ooo

ooxxofx

fo

fx

o

ox

ox

mmth

th

ox

oxooxxoxooxex

rRprrR

rrrrivpiii

rrrii

rriiir

ggR

Rrriii

riiriiviiriiriivvv

βμββ

ββμμβ

μ

ββ

π

πππ

π

>><<≅⎟⎠⎞

⎜⎝⎛ +≅

⎟⎠⎞

⎜⎝⎛ −++=>>≅

+

+−

≅<<+=+

−=

−++=−=−+−=+=

f244

4

24

42224

2

24

2

4

24

234

2

2412411

2 e er 2

12

2 | 2er

22=

2= | 2 | 11 dove 2

2 | | 2

11.192

( ) ( )[ ]

( ) ( )

( ) ( )

( )[ ]

( ) ( )

( ) ( )

( )[ ]. 183 e , 536 ,744.2 ottiene si iterazioni leCon

1010 |

1500010017.0+1105.2275.0

15 |

10000*017.075.02105.21

17.175.02105.2

=

nuova una scelgo e 1 passo nel con confronto Lo .3

+12 .2

e R

2+1

V+12= o

V+12

= Quindi . Scelgo 1.

:iterativa soluzione una richiesta é

122

212

14-

11

21

22

4-

22

4-

2

221

212

211

111

2

21

12

222

DD2

222

2

12DD2

222

22

AIAIIVVk

VVIIx

IV

kVI

Vx

Vx

I

VIR

VVVI

RIVKIVV

RVI

VVK

VVK

I

RIVVKIV

DDOGS

GSGSD

D

DGS

GSD

GS

GS

D

GSDGSGSDD

D

DDDn

DTNGS

GSD

TNGSn

TNGSn

D

DTNGSn

DGS

μμ

λ

λ

λ

λ

====

Ω−−

=−

+=

Ω=

−+

−−−−−

−−=

−+=

=−

−−

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 113: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-113

11.193

( )

( ) ( )[ ] ( ) ( )[ ]

Ω=−−

=−−

=

Ω====

+−+−

=+=+=

==

kAI

VVVR

kAV

IVRVV

VVAAVVVVKI

Vxx

KIVVR

AII

D

GSGSDD

O

GSGS

GSGSGSGSTNGSn

D

n

DTNGS

OD

22515

09.153.16

5.1475

09.1 | 089.1 fornisce iterativa soluzione Una

53.1+175.02

250=15 | +12

=

Quindi, | 53.1102501075275.02 : resistore

del presenta laper ignorato essere può di effettoL' | 152.0 Scelgo

2

211

222

22

2122

222

2

6

6

1

1112

12

μ

μ

λμμλ

λμ

11.194

( ) ( )[ ]

( ) ( )

( ) ( )

( )[ ]

( ) ( )

( ) ( )

( )[ ]. 4.82 e, 110 ,984.1 ottiene si iterazioni Dalle

105 |

18000502.0+110275.0

18 |

10000*02.075.02

101

10.175.02

10

=

nuova una scelgo e 1 passo nel con Confronto .3

+12 .2

e

2+1

V+12= o

V+12

= Quindi . Scelgo 1.

:iterativa soluzione una richiesta é

121

211

24-

22

12

21

4-

21

4-

1

121

211

222

222

2

12

12

111

DD2

111

2

11DD2

111

11

AIAIIVVk

VVII

IV

kVI

V

VI

VIR

VVVI

RIVKIVV

RVI

RVVK

VVK

I

RIVVK

IV

DDOGS

SGSGD

D

DGS

GSD

GS

GS

D

GSDSGSGDD

D

DDDP

DTPGS

SGD

TPGSp

TPGSp

D

DTPGSp

DGS

μμ

λ

λ

λ

λ

===−=

Ω−−

=−

−−=

Ω=

++

+

−−−−−

−−=

−−=

=−

−−

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 114: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-114 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.195

( )

( ) ( )[ ] ( ) ( )[ ]

Ω=−−

=++

=

Ω==−=−=

+++−

−=−−=−=

==

kAI

VVVR

kA

VI

VRVV

VVAAVVVVK

I

Vxx

KIVVR

AII

D

GSGSDD

O

GSGS

GSGSGSGSTPGSp

D

P

DTPGS

OD

21025

33.243.19

4.11125

43.1 | 432.1 fornisce iterativa soluzione Una

33.2+175.02

100=25 | +12

=

Quindi, | 33.21010010125275.02 : resistore

del presenza laper ignorato essere può di effettoL' | 252.0 Scelgo

1

211

21

12

1212

111

1

6

6

2

2222

21

μ

μ

λμμλ

λμ

11.196

IC1 = IC 3 = 3IC 4 | IC 4 = IC 2 = VBE1 −VBE 2

R= VT

Rln IC1

IS1

− ln IC 2

IS 2

⎝ ⎜

⎠ ⎟ =

VT

Rln IC1

IC 2

IS 2

IS1

⎝ ⎜

⎠ ⎟

IC 2 =0.025V2.2kΩ

ln 3IC 2

IC 2

20AA

⎝ ⎜

⎠ ⎟ = 46.5 μA | IC1 = 3IC 2 =140 μA

11.197 *Problema 11.197 – Generatore di corrente di riferimento BJTP11.196 VCC 1 0 DC 1.5 AC 1 VEE 5 0 DC -1.5 Q4 2 2 1 PBJT 1 Q3 3 2 1 PBJT 3 Q1 3 3 5 NBJT 1 Q2 2 3 4 NBJT 20 R 4 5 2.2K .MODEL NBJT NPN BF=100 VA=50 .MODEL PBJT PNP BF=100 VA=50 .OP .AC LIN 1 1000 1000 .PRINT AC IC(Q1) IC(Q2) .END

Risultati: IC1 = 140 μA IC2 = 47.8 μA S V CC

IC1 = 2. 92 x10 −2 S V CC

IC2 = 9. 92 x10 −3

11.198

IC1 = IC 3 = 3IC 4 | IC 4 = IC 2 = VBE1 −VBE 2

R= VT

Rln IC1

IS1

− ln IC 2

IS 2

⎝ ⎜

⎠ ⎟ =

VT

Rln IC1

IC 2

IS 2

IS1

⎝ ⎜

⎠ ⎟

IC 4 = IC 2 =0.025V

4kΩln 3IC 2

IC 2

8AA

⎝ ⎜

⎠ ⎟ =19.9 μA | IC1 = 3IC 2 = 59.6 μA | IC 3 = IC1 = 59.6 μA

11.199 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 115: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-115

( )

31>n | 13 o 0ln

0 | 0. di maggioreesser deve

12

21

2121

>>

>=−−

AnA

IIII

VVVVV

SC

SC

TBEBEBEBE

11.200

a( ) IC1 = IC 3 = 3IC 4 | IC 4 = IC 2 = VBE1 −VBE 2

R= VT

Rln IC1

IS1

− ln IC 2

IS 2

⎝ ⎜

⎠ ⎟ =

VT

Rln IC1

IC 2

IS 2

IS1

⎝ ⎜

⎠ ⎟

VT =kTq

=1.38x10−23 323( )

1.6x10−19 = 0.0279V | R = VT

IC 2

ln IC1

IC 2

IS 2

IS1

⎝ ⎜

⎠ ⎟ =

27.9mV35μA

ln 3 ⋅ 5( )= 2.16 kΩ

b( ) VT =kTq

=1.38x10−23 273( )

1.6x10−19 = 0.0236V | R = VT

IC 2

ln IC1

IC 2

IS 2

IS1

⎝ ⎜

⎠ ⎟ =

23.6mV35μA

ln 3 ⋅10( )= 2.29 kΩ

11.201

( ) AIxKR

I

KIRI

KIV

KIVRIRIVV

II

Dn

D

n

DD

n

DTN

n

DTNDDGSGS

DD

μ 4.26 10255

15100

293.05

1293.0

211

102 |

202

102 |

. forza M-M corrente di specchio Lo

26'2

'2

2'2

'1

2221

2143

=⇒==

⎟⎠

⎞⎜⎝

⎛ −=−−+==−

=

11.202 ( )

( )( ) ( ) ( )

( )

( ) AIIK

II

KIRIV

KIVRI

RIVVVVVVb

AIxKR

I

KIRI

KIV

KIVRIRIVV

II

DDn

DSD

n

DDTO

n

DTOD

DTOFSBFTOTNTOTN

Dn

D

n

DD

n

DTN

n

DTNDDGSGS

DD

μ

φφγ

μ

96.36.0106.010

5.0102

10293.0

2026.06.05.0

102

6.06.05.022 |

86.6 10255

110293.0

51293.0

211

102 |

202

102 |

. forza M-M corrente di specchio Lo a

224

4'2

42

'2

2'1

2

221

264'2

'2

2'2

2'1

12221

2143

=→−+−=

−−+−−+=

−++=−++==

=⇒==

⎟⎠

⎞⎜⎝

⎛ −=−−+==−

=

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 116: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-116 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.203 Questo problema fa riferimento al Prob. 11.202 (a) e (b) *Problema 11.203(a) – Generatore di corrente di riferimento MOS VDD 1 0 DC 5 AC 1 VSS 5 0 DC -5 M1 3 3 5 5 NFET W=10U L=1U M2 2 3 4 5 NFET W=20U L=1U M3 3 2 1 1 PFET W=10U L=1U M4 2 2 1 1 PFET W=10U L=1U R 4 5 10K .MODEL NFET NMOS KP=25U VTO=0.75 PHI=0.6 GAMMA=0 LAMBDA=0.017 .MODEL PFET PMOS KP=10U VTO=-0.75 PHI=0.6 GAMMA=0 LAMBDA=0.017 *.MODEL NFET NMOS KP=25U VTO=0.75 PHI=0.6 GAMMA=0 LAMBDA=0 *.MODEL PFET PMOS KP=10U VTO=-0.75 PHI=0.6 GAMMA=0 LAMBDA=0 *Problem a11.203(b) - *.MODEL NFET NMOS KP=25U VTO=0.75 PHI=0.6 GAMMA=0.5 LAMBDA=0.017 *.MODEL PFET PMOS KP=10U VTO=-0.75 PHI=0.6 GAMMA=0.75 LAMBDA=0.017 .OP .AC LIN 1 1000 1000 .PRINT AC ID(M1) ID(M2) .END

Risultati: (a) ID2 = 13.9 μA ID2 = 12.3 μA SVDD

I D1 = 7.64x10−2 SVDD

I D 2 = 6.23x10−2

Le correnti sono molto diverse dai calcoli manuali.

Risultati: (b) ID1 = 8.19 μA ID2 = 7.24 μA SVDD

I D1 = 7.75x10−2 SVDD

I D 2 = 6.31x10−2

Le correnti sono molto diverse dai calcoli manuali.. Le correnti sono abbastanza sensibili al valore di λ. I calcoli manuali utilizzano λ = 0. Se la simulazione viene fatta con λ = 0, allora i risultati sono identici ai calcoli manuali. 11.204

IC 2 =VT

Rln IC1

A5AIC 2

⎝ ⎜

⎠ ⎟ | IC1 = IC 3 = 2IC 4 = 2IC 2 | IC 2 =

0.025V11kΩ

ln 2IC 2

A5AIC 2

⎝ ⎜

⎠ ⎟ = 5.23 μA

IC 7 = 5IC 4 = 5 5.23μA( )= 26.2 μA | IC 8 =VT

R8

ln IC 4

A3AIC 8

⎝ ⎜

⎠ ⎟ =

0.025V4kΩ

ln 15.7μAIC 8

⎝ ⎜

⎠ ⎟ → IC 8 = 6.00 μA

IC 5 = 2.5IC1 = 5IC 2 = 26.2 μA | IC 6 =VT

R6

ln IC1

AA

IC 6

⎝ ⎜

⎠ ⎟ =

0.025V3kΩ

ln 10.4μAIC 6

⎝ ⎜

⎠ ⎟ → IC 6 = 5.42 μA

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 117: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-117

11.205

IC 2 =VT

Rln IC1

A10AIC 2

⎝ ⎜

⎠ ⎟ | IC1 = IC 3 = IC 4 = IC 2 | IC 2 =

0.025V11kΩ

ln IC 2

A10AIC 2

⎝ ⎜

⎠ ⎟ = 5.23 μA

IC 7 = 5IC 4 = 5 5.23μA( )= 26.2 μA | IC 8 =VT

R8

ln IC 4

A3AIC 8

⎝ ⎜

⎠ ⎟ =

0.025V4kΩ

ln 15.7μAIC 8

⎝ ⎜

⎠ ⎟ → IC 8 = 6.00 μA

IC 5 = 2.5IC1 =13.1 μA | IC 6 =VT

R6

ln IC1

AA

IC 6

⎝ ⎜

⎠ ⎟ =

0.025V3kΩ

ln 5.23μAIC 6

⎝ ⎜

⎠ ⎟ → IC 6 = 3.45 μA

11.206

( )

( ) . e , , di aree dalle tiindipenden sono correnti Le o.cambiamentNessun 3.15 | 6.30 | 6.302

3.1572ln3.4025.0ln= | Q e Q da fissata 2

765

273165421

1

1

2

2

1

2

2

123421

QQQbAIIIAIIIIAII

AII

II

kV

II

II

RVIIIa

CCCCCCCCC

S

S

C

C

S

S

C

CTCCC

μμμ

μ

=========

=⎟⎟⎠

⎞⎜⎜⎝

⎛Ω

=⎟⎟⎠

⎞⎜⎜⎝

⎛=

11.207 *Problema 11.207 – Generatore di corrente cascode NPN VCC 1 0 DC 5 AC 1 Q4 2 2 1 PBJT 2 Q3 3 2 1 PBJT 1 Q5 4 3 2 PBJT 1 Q1 6 6 0 NBJT 1 Q2 5 6 7 NBJT 7 Q6 4 4 6 NBJT 1 Q7 3 4 5 NBJT 1 R 7 0 4.3K .MODEL NBJT NPN BF=100 VA=50 .MODEL PBJT PNP BF=50 VA=50 .OP .AC LIN 1 1000 1000 .PRINT AC IC(Q7) IC(Q5) .END Risultati: IC2 = 11.2 μA IC1 = 28.5 μA – Simili ai calcoli manuali. SVCC

IC1 =1.81x10−3 SVCC

IC 2 = 7.07x10−4

11.208

( )

( ) . e , , di aree dalle tiindipenden sono correnti Le o.cambiamentNessun 3.11 | 3.11 | 3.11

3.117ln3.4025.0ln= | Q e Q da fissata

765

273165421

1

1

2

2

1

2

2

123421

QQQbAIIIAIIIIAII

AII

II

kV

II

II

RVIIIa

CCCCCCCCC

S

S

C

C

S

S

C

CTCCC

μμμ

μ

=========

=⎟⎟⎠

⎞⎜⎜⎝

⎛Ω

=⎟⎟⎠

⎞⎜⎜⎝

⎛=

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 118: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-118 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.209 ( )

( ) ( )

( )

e.leggerment ocambierann M e M di source-drain di tensionile che dato ,dipendenza deboleuna sarà ci 0,Per attiva. regionein rimangono ri transistoi tuttiche a fino

M o M ,M di W/Lrapporto dal dipendononon correnti le 0, = Con 308 | 462

462 3083300

9.57

1025302

1025103

33001

302

1031

302

102 |

.5.1 forza M-M corrente di specchio Lo a

32

765

2731654

122

62

62

'2

'2

2

'2

'1

2221

2143

=======

==⇒=

⎟⎟⎠

⎞⎜⎜⎝

⎛−=⎟

⎟⎠

⎞⎜⎜⎝

⎛−=

−−+==−

=

−−

λλ

μμ

μμ

bAIIIAIIII

AIAII

xI

xI

KI

KI

RI

KIV

KIVRIRIVV

II

DDDDDDD

DDD

DD

n

D

n

DD

n

DTN

n

DTNDDGSGS

DD

11.210 *Problema 11.210 – Generatore di riferimento MOS VDD 1 0 DC 15 AC 1 M3 3 2 1 1 PFET W=10U L=1U M4 2 2 1 1 PFET W=15U L=1U M5 4 3 2 2 PFET W=10U L=1U M6 4 4 6 6 NFET W=10U L=1U M7 3 4 5 5 NFET W=10U L=1U M1 6 6 0 0 NFET W=10U L=1U M2 5 6 7 7 NFET W=30U L=1U R 7 0 3.3K *.MODEL NFET NMOS KP=25U VTO=0.75 LAMBDA=0 *.MODEL PFET PMOS KP=10U VTO=-0.75 LAMBDA=0 .MODEL NFET NMOS KP=25U VTO=0.75 LAMBDA=0.017 .MODEL PFET PMOS KP=10U VTO=-0.75 LAMBDA=0.017 .OP .AC LIN 1 1000 1000 .PRINT AC ID(M1) ID(M2) .END

Risultati: ID2 = 265 μA ID1 = 377 μA Questi risultati differiscono dai calcoli manuali a causa del valore di λ diverso da zero. La simulazione con λ = 0 fornisce risultati molto vicini ai calcoli manuali

SVDD

I D 2 = 9.82 x 10−4 SVDD

I D 2 = 6.99 x 10−4

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 119: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-119

11.211

( ) ( )

AIIIAIIII

AIAII

xI

xI

KI

KI

RI

KIV

KIVRIRIVV

IIMM

DDDDDDD

DDD

DD

n

D

n

DD

n

DTN

n

DTNDDGSGS

DD

μμ

μμ

107 | 107

107 1073300

1.34

1025151025533001

302

1021

302

102 |

. forza - corrente di specchio Lo

2731654

122

62

62

'2

'2

2

'2

'1

2221

2143

=======

==⇒=

⎟⎟⎠

⎞⎜⎜⎝

⎛−=⎟

⎟⎠

⎞⎜⎜⎝

⎛−=

⎟⎟⎠

⎞⎜⎜⎝

⎛+−⎟

⎟⎠

⎞⎜⎜⎝

⎛+==−

=

−−

11.212

Modello dello specchio di corrente:

+

-

rο3

v 3

gm4 v3

r o41g m3

iccicc

( ) ( )( ) ( )

( )

( )dBxx

CMRR

xMk

RrA

Rv

Rggvi

riv

ggigg

gggigg

igivgi

A

kmSxrgrrgA

V

SS

o

fcd

SSic

SSm

miccc

f

occod

mmf

ccom

ommcc

om

ccmccmcc

cd

omoomdd

DS

122 10 26.11028.61.79=

10 28.650500

11.7921

211 |

21

21

1= :grande molto è M didrain al comune modo di uscita di resistenza la

che dato uscita di tensionela generareper r attraverso passa errore di corrente Questa

for 1

1=-+

:eriflession di rapporto del erroredall' odeterminat è

1.79250316.01050

1050101052

2

:osconosciut è che dato 1<< oSuppponend

65-

54

31

1

3

42

o4

43333

343

33434

4-4-444

1421

=

=ΩΩ

⎥⎦

⎤⎢⎣

⎡+

=⎟⎟⎠

⎞⎜⎜⎝

⎛+

=≅+

=

+

=++

+−=

+=

=Ω=⎟⎟⎠

⎞⎜⎜⎝

⎛≅≅=

−−

μ

μ

μ

λ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 120: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-120 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.213 *Problema 11.213 – Amplificatore MOS con carico attivo VDD 1 0 DC 10 VSS 5 0 DC -10 V1 6 8 DC 0 AC 0.5 V2 7 8 DC 0 AC -0.5 VIC 8 0 DC 0 M3 2 2 1 1 PFET W=50U L=1U M4 3 2 1 1 PFET W=50U L=1U M1 2 6 4 4 NFET W=20U L=1U M2 3 7 4 4 NFET W=20U L=1U ISS 4 5 DC 199.5U RSS 4 5 25MEG .MODEL NFET NMOS KP=25U VTO=1 LAMBDA=0.02 .MODEL PFET PMOS KP=10U VTO=-1 LAMBDA=0.02 .OP .AC LIN 1 1000 1000 .PRINT AC VM(3) VP(3) .TF V(3) VIC .END

Risultati: Adm = 98.8 Acd = 6.16 x10-5. Questi valori sono simili ai calcoli manuali. Le discrepanze derivano dalla non inclusione di VDS nei calcoli manuali sia di gm che ro.

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 121: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-121

11.214

Modello di uno specchio di corrente:

+

-

rο3

v 3

gm4 v3

r o41g m3

iccicc

( ) ( )( ) ( )

( )

( )dBxx

CMRR

xMk

RrA

Rv

Rggvi

riv

r

ggigg

gggigg

igivgi

A

kmSxx

xxrgrrgA

V

SS

o

fcd

SSic

SSm

miccc

f

occod

o

mmf

ccom

ommcc

om

ccmccmcc

cd

omoomdd

DS

117 10 77.61097.62.47=

10 97.620133

12.4721

211 |

21

21

1= :grande molto è M didrain al comune modo di uscita di resistenza la

che dato uscita di tensionela produrreper attraverso passa errore di corrente questa

per 1

1=-+

:eriflession di rapporto nel erroredall' dato è

2.477.66707.0105

7.66105

7.6610510522

:asconosciut è che dato 1<< Supponendo

55-

54

31

1

3

42

4

43333

343

33434

44444

1421

=

=ΩΩ

⎥⎦

⎤⎢⎣

⎡+

=⎟⎟⎠

⎞⎜⎜⎝

⎛+

=≅+

=

+

=++

+−=

+=

=Ω=⎟⎟⎠

⎞⎜⎜⎝

⎛≅≅=

−−−−

μ

μ

μ

λ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 122: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-122 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.215 *Problema 11.214 – Amplificatore MOS con carico attivo VDD 1 0 DC 12 VSS 5 0 DC -12 V1 6 8 DC 0 AC 0.5 V2 7 8 DC 0 AC -0.5 VIC 8 0 DC 0 M3 2 2 1 1 PFET W=50U L=1U M4 3 2 1 1 PFET W=50U L=1U M1 2 6 4 4 NFET W=20U L=1U M2 3 7 4 4 NFET W=20U L=1U ISS 4 5 DC 1M RSS 4 5 10MEG .MODEL NFET NMOS KP=25U VTO=1 LAMBDA=0.02 .MODEL PFET PMOS KP=10U VTO=-1 LAMBDA=0.02 .OP .AC LIN 1 1000 1000 .PRINT AC VM(3) VP(3) .TF V(3) VIC .END

Risultati: Adm = 56.2 Acd = 6.82 x10-5. Questi valori sono simili ai calcoli manuali. Le discrepanze derivano dalla non inclusione di VDS nei calcoli manuali sia di gm che ro.

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 123: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-123

11.216

( ) ( ) ( )

( )

( )

( )( ) ( )

( ) ( )

mVVVVA

VV

dBxx

CMRRxA

AII

gg

VV

II

VVI

VVII

IVVII

VVI

VVVI

VVIIII

VVVVV

VI

V

VV

III

VVVgg

vvA

rRforvrg

vrRg

vrRr

rvv

vggrvgrrvgv

vgggvrr

ggggggg

AvvV

A

kmSrgrrgA

VV

OSdd

OS

cd

Fcd

FC

C

m

m

FAC

C

AC

ACC

CT

BESC

AC

A

CC

A

CCCCC

F

A

AC

AF

ACCC

ECEC

m

m

ic

ocd

of

ic

om

ic

omic

ooic

cm

fcm

m

mocmmoo

cmmo

cmmmm

cm

mmm

mmmm

cd

CCos

cd

omoomdd

ACE

400.01200

48.0 | 48.012560 | che nota Si

110 103104

1200= | 10412521

21 | 1 | 1 |

exp | 11

48.012560 | 1=7.021

7.01 :Early di tensioniuguali e

che suppone si :segue come trovatoessere può collettore di corrente nella squilibrio Lo21

>2 21

21

22

:da tivamenteapprossima data è uscita di tensioneLa corrente. di specchio dallo annullato è comune termineIl . e da amotiplicat è e su

sviluppa si che comune modo di tensioneLa | 2

2

:in mentodisallineaun

quindi e collettore di correnti nelle ametodisallilneun causa eriflession di rapporto Ildifficile!più ancora è VVper caso Il

.0= e corrente di specchio dello squiliblio allo uguale è collettore

corrente dalla indotto squilibrio lo caso, questoIn . forza che offset di tensioneuna applicaeretroazion la e atoretroazion oreamplificatun per ingresso di stadio come spesso usato è circuito Questo :

120030000.41060

10601040

2

:asconosciut è che dato << Supponendo

53-

3-

2

20

001

01

021

1124

34

2

2

21222212212

2

2

2

222242

2121

21

C2C1

21

4-4-44

2422

=≅=≅ΔΔ

===

==Δ

≅ΔΔ

≅Δ

≅=Δ

=⎟⎟⎠

⎞⎜⎜⎝

⎛ Δ−+−⎟⎟

⎞⎜⎜⎝

⎛+=−=Δ

==≅Δ⎟⎟⎠

⎞⎜⎜⎝

⎛ Δ−

++

Δ++

⇒=

Δ+=

Δ≅=

>=≅≅++

=

Δ=Δ=Δ=

Δ−=

Δ+=

=

=Ω=⎟⎟⎠

⎞⎜⎜⎝

⎛≅≅= −

βββ

ββ

μβ

μ

π

ππ

πππ

ππππ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 124: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-124 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.216 cont.

( ) ( )3V. tivamenteapprossima Vo-2.9 serve Ci

9.25.17.07.0 | ntecorrettame funzionareper capi suoi ai 7.0= di bisogno abbia corrente di generatore il che suppone Si

2.27.05.1 | 0 :VPer 331IC

±±=−−+=−+≥≥−−−

=+=+≥≥−−=

VVVVVVVVVVV

VVVVVVVV

ICBECSEECSEEBEIC

CS

EBICCCICEBCCCB

Questi risultati possono venire facilmente verificati con SPICE – Si veda il Problema 11.217

11.217 *Figura 11.83 – Amplificatore differenziale BJT con carico attivo VCC 1 0 DC 5 VEE 5 0 DC -5 Q4 3 2 1 PBJT 1 Q3 2 2 1 PBJT 1 Q1 2 6 4 NBJT 1 Q2 3 7 4 NBJT 1 *Applico una tensione di offset per bilanciare le tensioni di collettore V1 6 8 DC 0.4107M AC 0.5 *V1 6 8 DC 0 AC 0.5 V2 7 8 DC 0 AC -0.5 VIC 8 0 DC 0 I1 4 5 199.8U R1 4 5 25MEG .MODEL NBJT NPN BF=125 VA=60 .MODEL PBJT PNP BF=125 VA=60 .OP .AC LIN 1 1000 1000 .PRINT AC VM(3) VP(3) VM(4) VP(4) .TF V(3) VIC .END

Risultati: Adm = 1200 Acd = 5.11x10-6. CMRR = 167 dB. Questi valori sono simili ai calcoli manuali. Si noti che un valore molto alto di CMRR si ottiene quando il circuito viene riportato in equilibrio, come nel caso di uno stadio di ingresso con amplificatore operazionale retroazionato. Per il caso senza tensione di offset, Acd = 3.73x10-3, e ΔV = 0.49 V. In accordo con l’analisi nel Prob. 11.216. Il valore della tensione di offset richiesta è molto simile ai calcoli manuali

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 125: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-125

11.218 ( )

( ) ( ) ( )

( )

( )

( )( ) ( )

2

2

21222212212

2

2

2

222242

2121

21

C2C1

21

5554

2422

21

>2 21

21

22

:da tivamenteapprossima data è uscita di tensioneLa corrente. di specchio dallo annullato è comune termineIl . e da amotiplicat è e su

sviluppa si che comune modo di tensioneLa | 2

2

:in mentodisallineaun

quindi e collettore di correnti nelle ametodisallilneun causa eriflession di rapporto Ildifficile!più ancora è VVper caso Il

.0= e corrente di specchio dello squiliblio allo uguale è collettore

corrente dalla indotto squilibrio lo caso, questoIn . forza che offset di tensioneuna applicaeretroazion la e atoretroazion oreamplificatun per ingresso di stadio come spesso usato è circuito Questo :

150075000.210575

1057510540

2

:asconosciut è che dato << Supponendo a

m

m

ic

ocd

of

ic

om

ic

omic

ooic

cm

fcm

m

mocmmoo

cmmo

cmmmm

cm

mmm

mmmm

cd

CCos

cd

omoomdd

ACE

gg

vvA

rRforvrg

vrRg

vrRr

rvv

vggrvgrrvgv

vgggvrr

ggggggg

AvvV

A

kmSxx

xrgrrgA

VV

Δ≅=

>=≅≅++

=

Δ=Δ=Δ=

Δ−=

Δ+=

=

=Ω=⎟⎟⎠

⎞⎜⎜⎝

⎛≅≅= −−

μβ

μ

π

ππ

πππ

ππππ

VVVVV

VI

V

VV

III

VVV

F

A

AC

AF

ACCC

ECEC

60.012575 | 1=7.021

7.01 ::Early di tensioniuguali e

che suppone si :segue come trovatoessere può collettore di corrente nella squilibrio Lo

1124

34

==≅Δ⎟⎟⎠

⎞⎜⎜⎝

⎛ Δ−

++

Δ++

⇒=

Δ+=

ββ

ΔIC = IC1 − IC 2 = IC 0 1+ VC1

VA

⎝ ⎜

⎠ ⎟ − IC 0 1+ VC1 − ΔV

VA

⎝ ⎜

⎠ ⎟ = IC 0

ΔVVA

| IC 0 = IS exp VBE

VT

≅ IC

ΔIC = IC 0ΔVVA

≅ ICΔVVA

| ΔIC

IC

≅ΔVVA

=1

βF

| Δgm2

gm2

=ΔIC

IC

=1

βF

| Acd =1

2βF

Acd =1

2 125( )= 4x10-3 | CMRR = 1500

4 x10-3 = 3.75x105 112 dB( )

11.218 continua nella pagina seguente

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 126: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-126 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.218 cont.

( ) ( )3V. tivamenteapprossima o V-2.9 di bisogno Abbiamo

9.25.17.07.0 | ntecorrettame funzionareper capi suoi ai 7.0= di bisogno abbia corrente di generatore il che suppone Si

2.27.05.1 | 0 :Per

400.01500

60.0 | 60.012575 | che noti Si

331

±±=−−+=−+≥≥−−−

=+=+≥≥−−=

=≅=≅ΔΔ

VVVVVVVVVVV

VVVVVVVVV

mVVVVA

VV

ICBECSEECSEEBEIC

CS

EBICCCICEBCCCBIC

OSdd

OS

( ) ( ) ( ) ( )

( ) ( )

( ) ( )3V. tivamenteapprossima o V-2.9 di bisogno Abbiamo

9.25.17.07.0 | ntecorrettame funzionareper capi suoi ai 7.0= di bisogno abbia corrente di generatore il che suppone Si

2.27.05.1 | 0 :For

114 1000.5104

2000= | 10412521

21 | 1 | 1 |

exp | 11

80.0125

100 | 1=7.021

7.01 |

21

200000.100.2105

100105

100105402

331

53-

3-

2

20

001

01

021

11242

2

5554

2422

±±=−−+=−+≥≥−−−

=+=+≥≥−−=

===

==Δ

≅ΔΔ

≅Δ

≅=Δ

=⎟⎟⎠

⎞⎜⎜⎝

⎛ Δ−+−⎟⎟

⎞⎜⎜⎝

⎛+=−=Δ

==≅Δ⎟⎟⎠

⎞⎜⎜⎝

⎛ Δ−

++

Δ++

⇒=Δ

≅=

=Ω=⎟⎟⎠

⎞⎜⎜⎝

⎛≅≅= −−

VVVVVVVVVVV

VVVVVVVVV

dBxx

CMRRxA

AII

gg

VV

II

VVI

VVII

IVVII

VVI

VVVI

VVIIII

VVVVV

VI

V

VV

IIIgg

vvA

MmSxx

xrgrrgAb

ICBECSEECSEEBEIC

CS

EBICCCICEBCCCBIC

cd

Fcd

FC

C

m

m

FAC

C

AC

ACC

CT

BESC

AC

A

CC

A

CCCCC

F

A

AC

AF

ACCC

m

m

ic

ocd

omoomdd

βββ

ββ

11.219 Risultati: Per VA = 75 V, Adm = 1470 e Acd = 6.92x10-3. CMRR = 106 dB. Questi valori sono simili ai calcoli manuali. Si noti che un valore molto alto di CMRR si ottiene quando il circuito viene riportato in equilibrio, come nel caso di uno stadio di ingresso con amplificatore operazionale retroazionato. Per il caso con la tensione di offset, Acd = 2.71x10-7.

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 127: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-127

11.220

( )

( )( )

( )( )

( )( ) ( ) ( ) ( ) ( )

( )

( )( )( ) ( )[ ] ( )

( ) ( )

( ) . 2X di ntomigliorameun ad porta Wilson di generatore Il - 152601675479.0

60110

25.1017.01

|

.)2 di presenza dalla ridotto è Wilson di generatore del anellod' guadagno il che noti (Si

323675479.010

7.8017.01

7.8017.0110105.2402

32

25.1,-100 25.1,-100 50.2,-100 70.8,100 70.8,100 :25.1 | 70.810

50.2 | 25.1108010275.02

20.1105.240

10275.02

1002

43311

11

445

225322

44515421

5435

4

4

4345

5

4

1

112

12345

=ΩΩ=

Ω=⎟⎟⎟⎟

⎜⎜⎜⎜

⎛ +==

=Ω=⎟⎟⎟⎟

⎜⎜⎜⎜

⎛ ++=

≅⎟⎟⎠

⎞⎜⎜⎝

⎛=

−−====−−++==

−=+=−=−−=−===

=+=+==

======

−−−

kkmSA

krrrgAc

rR

kmSxA

rgrrgAb

VAVAVAVAVAPtsQVVVVVVVVVV

VVVVVKIVVVV

VxK

IVVV

AIIIIIIa

dd

ooomdd

oout

dd

omofomdd

GSDSDSGSGSGSDSDS

GSDSDSp

DTPGSGSGS

n

DTNGSGS

SSDDDDD

μ

μμμμμ

μ

11.221 M 1 2 3 4 5

ID(μA) 101 99.0 101 99.0 99.0

VDS

(V) 8.69 7.33 -2.48 -1.24 -2.60

Risultati: Adm = 313. Il guadagno e i punti Q sono simili ai calcoli manuali.

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 128: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-128 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.222

( )( )( )

( )

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )A,1.25V125 A,1.25V125 A,2.50V125 A,-2.79V125 A,-2.79V125 A,1.54V125 A,1.54V125 :PtsQ

79.254.125.150.25550.2 | 25.1 | 54.1

54.11040

1025.1275.02 PMOS storiPer transi

25.1105.2401025.1275.02 NMOS storiPer transi

1252

| 1252

31534

765667321

5

4

5

4

1276543

112

μμμμμμμ

μμ

−−=+−−+−=−−−+−==

=+=====−==

−=−−=−=

=+=+=

=−========

VVVVVVVVVVVVVVVVVV

VxKIVV

Vxx

KIVV

AIIIIIIIAIII

GSGSDSDSDS

GSGSDSGSDSDSGSDSDS

p

DTPGS

n

DTNGS

DDDDDDD

RL

M3v id

2M 1

b( ) Add = gm 2 μ f 4ro2 μ f 5ro7( )≅

μ f 2μ f 4

2

gm2 = 2 40( ) 2.5x10−5( )1.25x10−4( )1+ 0.017 1.54( )[ ]= 0.507mS | ro3 =

10.017

+1.54

1.25x10−4

⎜ ⎜ ⎜

⎟ ⎟ ⎟

= 483kΩ

gm4 = 2 40( ) 10−5( )1.25x10−4( )1+ 0.017 2.79( )[ ]= 0.324mS | ro4 =

10.017

+ 2.79

1.25x10−4

⎜ ⎜ ⎜

⎟ ⎟ ⎟

= 493kΩ

Add ≅μ f 2μ f 4

2=

0.507mS( ) 483kΩ( ) 0.324mS( ) 493kΩ( )2

=19600

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 129: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-129

11.223 *Figura P11.222 – Amplificatore CMOS con carico attivo VDD 1 0 DC 5 VSS 10 0 DC -5 *Deve essere applicata una tensione di offset per portare l’uscita a -2.5V V1 4 11 DC -5.085M AC 0.5 V2 5 11 DC 0 AC -0.5 VIC 11 0 DC 0 M1 2 4 6 6 NFET W=40U L=1U M2 3 5 6 6 NFET W=40U L=1U M3 8 6 2 2 PFET W=40U L=1U M4 7 6 3 3 PFET W=40U L=1U M5 8 9 10 10 NFET W=40U L=1U M6 9 9 10 10 NFET W=40U L=1U M7 7 8 9 9 NFET W=40U L=1U I2A 1 2 DC 250U I2B 1 3 DC 250U I1 6 10 DC 250U .MODEL NFET NMOS KP=25U VTO=0.75 LAMBDA=0.017 .MODEL PFET PMOS KP=10U VTO=-0.75 LAMBDA=0.017 .OP .AC LIN 1 1000 1000 .PRINT AC VM(7) VP(7) VM(6) VP(6) VM(8) VP(8) .TF V(7) VIC .END Risultati: Add = 23700, Acd = 1.81x10-4. Rout = 47.7 MΩ, CMRR = 1.31 x 10

8. I valori di Add e

Rout sono simili ai calcoli manuali. Acd e il CMRR sono limitati dai disaccoppiamenti residui nei parametri del dispositivo

( )( )Ω=

ΩΩ=≅=

Ω==Ω==

MkkmSrrrR

krmSgkrmSg

ofofofout

omom

4.392

493493324.02

493 | 324.0 | 483 | 507.0 11.222, Problema Dal

247524

4432

μμμ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 130: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-130 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.224

I1

1

1 1

+5 V

M1

M2

M3

R

25

25 25

M2

M1

-5V

I2 I2

110

110

( )( ) Ω=

−−==+=+==−

=−

−−

kAV

xRV

xx

KIVVV

VV

n

DTNGSNGSP

GSNGSP

7.22105.2

16.216.210 | 16.2102510105.2275.02

:con 1:1 corrente di specchio uno eA 250 di toriferimien di corrente una oUtilizzand

46

4

μ

11.225

( ) . 171 e 589.020201589.0

21 , che Dato

17120

589.0200 | 589.010

20200

ln025.0

10

200ln025.0 | |

10200ln025.0

1 | .0 ,Per

344334

22

2

2

1

2

21

21

12

1

222

1

2243

AIIVkkVVII

Ak

AIVVfA

kVA

V

fAR

VAV

RVI

fAIAV

RRVR

RVVVVI

CCEBBESS

CBE

BE

BE

BE

BEBE

BE

BEBE

BEEBBEBF

μ

μμμ

μμ

β

===⎟⎠⎞

⎜⎝⎛

ΩΩ

+===

−==→⎟⎟⎟⎟

⎜⎜⎜⎜

⎛Ω

−=

⎟⎟⎟⎟

⎜⎜⎜⎜

⎛ −==⎟⎟

⎞⎜⎜⎝

⎛ −=

⎟⎟⎠

⎞⎜⎜⎝

⎛+=+=+=∞=

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 131: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-131

11.226 a( ) βF = ∞ : VBE 3 + VEB 4 = VBE1 + VEB 2

VT ln IO

ISONAE 3

AEO

+VT ln IO

ISOPAE 4

AEO

-VT ln I2

ISONAE1

AEO

- VT ln I2

ISOPAE 2

AEO

= 0

VT ln IO2 AEO

2

ISON ISOP AE 3AE 4

ISON ISOP AE1AE 2

I22AEO

2

⎣ ⎢

⎦ ⎥ = 0 →

IO2 AE1AE 2

I22AE 3AE 4

=1 | IO = I2AE 3AE 4

AE1AE 2

b( ) IO = 300μA AE 3AE 4

3AE 3 3AE 4

=100 μA

11.227

a( ) ID8 = IREF = 250μA | ID10 = ID9 = 2ID8 = 500μA

ID1 = ID2 = ID3 = ID 4 =ID9

2= 250μA | VDS 8 = VGS 8 = 0.75+

2 250μA( )10 25x10−6( )

= 2.16V

ID5 = ID11 = ID10 = 500μA | VGS11 = 0.75+2 500μA( )5 25x10−6( )

= 3.58V

VGS6 = −VGS 7 =VGS11

2=1.789V | ID 7 = ID6 =

10 25x10−6( )2

1.789 − 0.75( )2=135μA

−VDS 4 = −VDS 3 = −VGS3 = VGS 2 = VTN +2ID2

Kn2

= 0.75+2 250μA( )

20 25x10−6( )=1.75V

VDS1 = VDS 2 = 5−VSD 4 − −VGS2( )= 5.00V | VDS10 = −VDS 5 = 5−VGS11

2= 3.21V

VDS6 = −VDS 7 = 5.00V | VDS9 = 5−VGS 2 = 5−1.75 = 3.25V

1 2 3 4 5 6 7 8 9 10 11 ID (μA) 250 250 250 250 500 135 135 250 500 500 500 VDS (V) 5.00 5.00 -1.75 -1.75 -3.21 5.00 -5.00 2.16 3.25 3.21 3.58 SPICE

ID (μA) 255 255 255 255 509 139 139 250 509 509 509 VDS (V) 4.97 4.99 -1.74 -1.73 -3.24 5.01 -5.00 2.14 3.28 3.23 3.52

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 132: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-132 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

( ) ( )[ ] ( )[ ][ ]( )( )( ) ( )[ ]

( )( )( ) ( )[ ][ ][ ][ ]

( )

[ ] 20651 29.63

27.64

quindi, corrente, della quadrato al aleproporzion teinversamen è ioneamplificaz di fattore Il 41301 9.63 7.64 | 9.63

1241000.5

21.38.58 | 03.121.3017.011000.5101002

7.64 | 242105.2

75.18.58 | 255105.2

00.58.58 | 8.58017.011

521.000.5017.011050.21025202

1

321

3212

451245

5

14442

462

1255422321

=⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡≅=

====

Ω=+

===+=

=Ω=+

=Ω=+

===

=+=

==

−−−

−−

−−

vtvtvtdm

vtvtvtdmvt

oom

Voo

m

oomoomvtvtvtdm

AAAA

cAAAAA

kAV

xrrmSxg

AkAV

xrk

AV

xrV

mSxxg

rrgrrgAAAAb

λ

Risultati SPICE: Adm = 4000, Acm = 0.509, Rout = 1.81 kΩ.

11.228

( ) ( ) 8000020

10016000 640025010016000

1 a,

11 1 MOSFET, ilPer | 4

52

522

52

====

∝→∝∝

∝∴∝≅

AAAb

AAAa

IAIIeIIM

IIA

IA

dmdm

REFdmREFDREFD

DDdm

Df

ffdm

μμ

μμ

μμμ

11.229 ( )[ ] ( )[ ][ ]

( )( )

( ) ( )( )( ) ( )[ ]

( )( )

( )( )( ) ( )[ ][ ][ ][ ]

( ) .g di calcolo nel a trascuratè V+1 if 10900126001 115 110 | 115

338102

73.88.58 | 678.073.8017.01102101002

73.8 | 54.210255

200275.0 | 2

10

110 | 60210

38.18.58 | 68810

108.58 | 8.58017.011

342.010017.011001025202 | 0.1010

38.1102520

100275.02 | 200

1002

| 200=2== | 100==

1

mDS

3212

451245

5

5126512

14442

62242

62

2234125

11432110111210

1255422321

λ

μλ

μ

μμ

μμμ

=====

Ω=+

===+=

=−==+=−=−=

=Ω=+

=Ω=+

===

=+==−−+=

−=−−=−−=−====

=====

==

−−−

−−

dm

vvvdmv

oom

DSDSGSGGGSGG

DSDS

voo

mGSDSDS

n

DSTNGSGSDSDD

DDDDDDDDREFD

oomoomvvvdm

AAAAAA

kAV

xrrmSxg

VVVVx

AVVVV

AkAVrk

AVrV

mSAxgVVVV

Vx

AKIVVVVAII

AIIIIIAIIIAII

rrgrrgAAAA

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 133: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-133

11.230 *Figura P11.229 – Amplificatore CMOS con carico attivo VDD 8 0 DC 10 VSS 14 0 DC -10 *Si usa una tensione di offset per fissare Vo approssimativamente a zero. V2 1 15 DC 0.3506M AC 0.5 V1 2 15 DC 0 AC -0.5 VIC 15 0 DC 0 M1 3 1 5 14 NFET W=20U L=1U M2 4 2 5 14 NFET W=20U L=1U M3 3 3 8 8 PFET W=50U L=1U M4 4 3 8 8 PFET W=50U L=1U M5 6 4 8 8 PFET W=100U L=1U *L’offset può essere corretto a zero modificando il valore di W/L *M5 6 4 8 8 PFET W=89.5U L=1U M6 8 6 13 14 NFET W=10U L=1U M7 14 7 13 8 PFET W=25U L=1U MGG 6 6 7 14 NFET W=5U L=1U M10 9 9 14 14 NFET W=10U L=1U M11 5 9 14 14 NFET W=20U L=1U M12 7 9 14 14 NFET W=20U L=1U IREF 0 9 DC 100U .MODEL NFET NMOS KP=25U VTO=0.75 LAMBDA=0.017 .MODEL PFET PMOS KP=10U VTO=-0.75 LAMBDA=0.017 *.MODEL NFET NMOS KP=25U VTO=0.75 GAMMA=0.6 LAMBDA=0.017 *.MODEL PFET PMOS KP=10U VTO=-0.75 GAMMA=0.75 LAMBDA=0.017 .OP .AC LIN 1 1000 1000 .PRINT AC VM(13) VP(13) VM(4) VP(4) .TF V(13) VIC .END Risultati: Adm = 11200, Acm = 0.604, Rout = 3.10 kΩ.

(a) 1 2 3 4 5 6 7 GG 10 11 12 IDS (μA) 112 112 112 112 223 44.2 44.2 223 100 223 223 VDS (V) 9.96 9.99 -1.41 -1.37 -8.70 10.0 -10.0 -2.60 1.63 8.63 8.70

(b) IDS (μA) 110 110 110 110 219 0 0 219 100 219 219 VDS (V) 11.2 11.2 -1.40 -1.37 -8.85 10.0 -9.97 -3.79 1.63 7.41 7.35

Si noti che l’effetto body ha aumentato le tensioni di soglia di M6 e M7 al punto che non sono più in conduzione. VTN6 = 2.24 V e VTP7 = -2.61V. Il rapporto W/L di MGG deve essere rivisto per risolvere il problema.

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 134: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-134 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.231 ID10 = IREF = 250μA | ID11 = 2ID10 = 500μA | ID12 = 4ID10 =1000μA

ID1 = ID 2 = ID3 = ID 4 =ID11

2= 250μA | VDS10 = VGS10 = 0.75 +

2 250μA( )10 25x10−6( )

= 2.16V

ID5 = IDGG = ID12 =1000μA | VGSGG = 0.75 +2 1000μA( )5 25x10−6( )

= 4.75V

VGS6 = −VGS 7 =VGSGG

2= 2.375V | ID 7 = ID6 =

10 25x10−6( )2

2.375 − 0.75( )2 = 330μA

VDS4 = VDS 3 = VGS 3 = −VGS 2 = −VTN −2ID 2

Kn 2

= −0.75 −2 250μA( )

20 25x10−6( )= −1.75V

VDS1 = VDS 2 = 7.5 + VDS 4 − −VGS 2( )= 7.50V | VDS12 = −VDS 5 = 7.5 +VGSGG

2= 5.13V

VDS6 = −VDS 7 = 7.5V | VDS11 = 7.5 −VGS 2 = 7.5 −1.75 = 5.75V

M 1 2 3 4 5 6 7 GG 10 11 12 IDS (μA) 250 250 250 250 1000 330 330 1000 250 500 1000 VDS (V) 7.50 7.50 -1.75 -1.75 -5.13 7.50 -7.50 4.75 2.16 5.75 5.13 SPICE

IDS (μA) 264 266 -264 -266 1050 359 -359 1050 250 530 1050 VDS (V) 7.46 7.09 -1.76 -2.14 -5.20 7.54 -7.46 4.69 2.14 5.78 5.11 Adm = Av1Av2Av3 = gm2 ro2 ro4( )[ ] gm5 ro5 ro12( )[ ] 1[ ]

gm2 = 2 20( ) 25x10−6( )250μA( ) 1+ 0.017 7.50( )[ ]= 0.531mS

=1

0.017= 58.8V | ro2 =

58.8 + 7.502.5x10−4

VA

= 265kΩ | ro4 =58.8 +1.752.5x10−4

VA

= 242kΩ | Av1 = 67.2

gm5 = 2 100( ) 10−5( )10−3( )1+ 0.017 5.13( )[ ]=1.48mS | ro12 = ro5 =58.8 + 5.13

10−3VA

= 63.9kΩ

Av2 = 47.3 | Adm = Av1Av 2Av3 = 67.2[ ] 47.3[ ] 1[ ]= 3180 Risultati SPICE: Adm = 2950, Acm = 0.03, Rout = 1.10 kΩ.

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 135: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-135

11.232 ( )

( ) ( )( )

( )( )

( ) ( )( )

( )( )

( ) ( )( )

( )( )

VVVVVVV

VVM

VVVx

AKIVV

MVVVV

xA

KIVVVVVVV

MM

VVVVx

AV

xA

KIVVVVV

M

VVVVx

AKIVV

xA

KIVVVVV

M

SSDD

SSDD

GSDS

DDp

DDDDS

DDGSGS

n

DGSGSDDGSGSDDDS

SSSSGSGG

n

DGSGGSSSS

GSGGDS

SSSSn

DSTNGS

n

DSGSSSSSGSDS

27.2 e,simmetrich onialimentazi di caso ilPer 27.2 90.1 :sono minime tensioniLe

e.g. :esaturazionin sempre sono M e

90.1633.01010100

20022254.2=

: di esaturazion laPer 633.0 :

633.0102520

10022+=

: e di esaturazion laPer

16.2894.0254.2 | 54.2

10255200275.0

894.0102520

2002222

0=

: di esaturazion laPer

27.2894.038.1 | 38.1102520

100275.02

894.0102520

200220=

: di esaturazion laPer a

6676

65

55

5

13

61

113131

21

6

612

1212

12

62

22

611

112211

11

≥=≥≥

≥→==≥−−

≥−=

==≥+=−−+

≥→≥−=+=

==≥−=−−−

≥→≥−=+=+=

==≥−=−−−

μ

μ

μ

μ

μ

μ

( )

( )

( )

( )

VVVVVVV

VVVVV

M

VVVVVV

MVVVVVVVV

MMVVVVVVV

VVMVV

SSDD

SSDD

DDDDSD

SSSSSSGSGG

DS

DDDDGSICSGDDDS

SSSSSSGSICDS

IC

SSDD

25.7 e,simmetrich onialimentazi di caso ilPer 25.7 90.6 :sono minime onealimentazi di tensioniLe

90.6633.05254.2=

: di esaturazion laPer

25.7894.0254.25

25=

richiede di esaturazion la 5V, di uscita di intervalloun Per 63.5633.038.1+38.15=

: e di esaturazion laPer 27.7894.0538.1=

,5con di esaturazion laPer comune. modo di ingresso di tensionileper ivosignificat intervalloun forniscononon (a) parte nella e di valoriI b

5

5

12

12

131

21

211

11

≥=≥≥

≥→≥−−

≥→≥−−=−−−−

≥→≥−−=−−−

≥→≥−−=−−−−=

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 136: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-136 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.233 ID9 = ID10 = ID12 = ID11 = IREF = 250μA | ID6 = ID 7 = ID8 = 3ID12 = 750μA

ID1 = ID 2 = ID13 = ID 5 = ID3 = ID 4 =ID9

2=125μA

VDS10 = VDS12 = VDS11 = VGS12 = VTN +2ID12

Kn12

= 0.75 +2 250μA( )5 25x10−6( )

= 2.75V

VGS1 = 0.75 +2 125μA( )

40 25x10−6( )=1.25V | VDS 9 = −VGS1 − −10 + VGS12( )= 6V

VDS7 = VO − −10 + VGS12 + VGS11 −VGS 7( )= 0 +10 − 2.75 − 2.75 + 0.75 +2 750μA( )

15 25x10−6( )= 7.25V

VDS8 =10 −VDS 7 = 2.75V

VDS6 = − 10 −VO( )= −10V + 0 = −10V | VDS 5 = VDS13 = VDS 3 = VDS4 = −0.75 −2 125μA( )

80 10x10−6( )= −1.31V

M 1 2 3 4 5 6 7 8 9 10 11 12 13

ID (μA) 125 125 125 125 125 750 750 750 250 250 250 250 125

VDS (V) 8.63 8.63 -1.31 -1.31 -1.31 -10 7.25 2.75 6.00 2.75 2.75 2.75 -1.31

b( ) Kn'

2WL

⎛ ⎝ ⎜

⎞ ⎠ ⎟

6

VGS 6 −VTP( )2 =10−5

2WL

⎛ ⎝ ⎜

⎞ ⎠ ⎟

6

−VDS 4 −VDS 5 + 0.75( )2 = 750μA

10−5

2WL

⎛ ⎝ ⎜

⎞ ⎠ ⎟

6

−2.62 + 0.75( )2 = 750μA →WL

⎛ ⎝ ⎜

⎞ ⎠ ⎟

6

= 42.9

Add = Av1Av 2 = gm 2ro2( ) gm6ro6( )= μ f 2μ f 6 | μ f 2 ≅1λn

2Kn2

ID 2

=1

0.0172 40( ) 25x10−6( )

125x10−6 = 235

μ f 6 ≅1λp

2K p 6

ID6

=1

0.0172 42.9( ) 10x10−6( )

750x10−6 = 62.9 | Add = 235 62.9( )=14800

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 137: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-137

11.234 *Figura P11.233 – Amplificatore CMOS con carico attivo VDD 8 0 DC 10 VSS 14 0 DC -10 *Collego la retroazione per determinare Vos *V1 1 13 DC 0 *Bisogna utilizzare la tensione di offset per fissare Vo a zero. V1 1 15 DC 0.4423M AC 0.5 V2 2 15 DC 0 AC -0.5 VIC 15 0 DC 0 M1 3 1 5 5 NFET W=40U L=1U M2 4 2 5 5 NFET W=40U L=1U M3 6 7 8 8 PFET W=80U L=1U M4 7 7 8 8 PFET W=80U L=1U M5 4 3 7 7 PFET W=80U L=1U M6 13 4 8 8 PFET W=42.9U L=1U * L’offset può essere corretto a zero modificando il valore di W/L *M6 13 4 8 8 PFET W=37.25U L=1U M7 13 9 12 12 NFET W=15U L=1U M8 12 10 14 14 NFET W=15U L=1U M9 5 9 11 11 NFET W=5U L=1U M10 11 10 14 14 NFET W=5U L=1U M11 9 9 10 10 NFET W=5U L=1U M12 10 10 14 14 NFET W=5U L=1U M13 3 3 6 6 PFET W=80U L=1U IREF 0 9 DC 250U .MODEL NFET NMOS KP=25U VTO=0.75 LAMBDA=0.017 .MODEL PFET PMOS KP=10U VTO=-0.75 LAMBDA=0.017 .OP .AC LIN 1 1000 1000 .PRINT AC VM(13) VP(13) VM(4) VP(4) .TF V(13) VIC .END

Risultati: Vos = 0.4423 mV, Adm = 22500, Acm = 0.2305, CMRR = 99.9 dB, ROUT = 90.3 MΩ. I valori di Add e Rout sono simili ai calcoli manuali. Acd e il CMRR sono limitati dal disaccoppiamento indotto dell’offset nei dispositivi. Con il rapporto W/L di M6 corretto, Vos ≈ 0, Adm = 20800, Acm = 9.28 x 10-3. Rout = 90.3 MΩ, CMRR = 127 dB.

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 138: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-138 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.235 +V

DD

M10

IREFI1

I2

-VSS

M3

401

M1

v2

501

M8251 M9

501

101

251

M 11

v1

12.51

501

vOM2

501

M4

201

201

M5

M6

M7

Il rapporto W/L è stato scalato per mantenere gli stessi punti Q e lo stesso guadagno. Si noti che lo stadio di uscita dovrebbe rimanere una coppia di inseguitori di emettitore.

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 139: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-139

11.236

v1

Q1

Q2

Q5

I 1

v2

I2

Q3

Q7

Q9

Q7

Q8

Q10

IREF

A A 5A

A

Q4

A

RL

vO

AE5

A

A

5A

5A Q 11

Q 12

VCC

-VEE

stesso. lo è oreamplificatdell' resto del tensionedi guadagnoIl guadagno. elevatoun avrà npn toreun transiscon oreamplificatl'

, tivamenteapprossima è stadio primo del guadagno Il

ari.complement emettitore di iinseguitor da formato essere dovrebbe uscita di stadio lo che noti Si

5

55

1511

QIIrgA o

C

Cmv βπ ==

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 140: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-140 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.237

VEB 7 + VEB 8 = VEB 6 + VEB 4 = 2VT ln IC 4

IS4

= 2VT ln IC14

2IS4

= 0.05ln 250μA2 15 fA( )

⎣ ⎢

⎦ ⎥ =1.142V

VEB 7 + VEB 8 = VT ln IC 7

IS 7

+ VT ln IC 8

IS 8

IC 7 = αF IB 8 = αFIC 8

βF

=6061

IC 8

60=

IC 8

61

VEB 7 + VEB 8 = VT ln IC 8

61 15 fA( )+ VT ln IC 8

4 15 fA( )→ 0.025ln IC 8

2

61 15 fA( ) 4( ) 15 fA( )=1.142

IC 8 =1.946 mA | IC16 ≅ IC 8 | AE16 =IC16

IC12

AE12 =1946μA250μA

1( )= 7.78

VBE 6 = VEB10 = 0.025ln 75μA15 fA

⎝ ⎜

⎠ ⎟ = 0.558V | RBB =

2 0.5583V( )1.946 mA

= 574 Ω

Adm = Av1Av2Av3 ≅ gm2 ro2 rπ 7 + βo +1( )rπ 8[ ]{ }[ ] βo +1( )rπ 8

rπ 7 + βo +1( )rπ 8

gm8 ro8 ro16( )⎡

⎣ ⎢

⎦ ⎥ 1[ ]

Adm = Av1Av2Av3 ≅ gm2 ro2 rπ 7 + βo +1( )rπ 8( )[ ] βo +1( )rπ 8

rπ 7 + βo +1( )rπ 8

μ f 8

2⎛

⎝ ⎜

⎠ ⎟

⎣ ⎢

⎦ ⎥ 1[ ]

Adm ≅ gm 2 ro2 2rπ 7( )[ ]μ f 8

4≅

IC 2

IC 7

βo7

μ f 8

2=

125μA31.8μA

6040( ) 60 + 4.3( )

2= 3.03 x 105

Rid = 2rπ1 = 2150 0.025V( )

125μA= 60 kΩ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 141: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-141

11.238 *Figura P11.237 – Operazionale bipolare VCC 1 0 DC 5 VEE 14 0 DC -5 V1 6 15 DC -74.17U AC 0.5 V2 7 15 DC 0 AC -0.5 VIC 15 0 DC 0 Q1 4 6 8 NBJT 1 Q2 5 7 8 NBJT 1 Q3 4 4 2 PBJT 1 Q4 5 4 3 PBJT 1 Q5 2 3 1 PBJT 1 Q6 3 3 1 PBJT 1 Q7 14 5 10 PBJT 1 Q8 11 10 1 PBJT 4 Q9 1 11 12 NBJT 1 Q10 14 13 12 PBJT 1 Q12 9 9 14 NBJT 1 Q14 8 9 14 NBJT 1 Q16 13 9 14 NBJT 7.78 IB 0 9 250U RBB 11 13 574 .MODEL NBJT NPN BF=150 VA=60 IS=15F .MODEL PBJT PNP BF=60 VA=60 IS=15F .OP .AC LIN 1 1000 1000 .PRINT AC VM(12) VP(12) .TF V(12) VIC .END Risultati SPICE: Vos = -74.17μV, Adm = 2.83 x 105, Acm = 0.507, CMRR = 115 dB,

Rid = 81.6 kΩ, Rout = 523 Ω.

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 142: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-142 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.239 ( )

( )

( )

( )( ) ( )

( )( ) ( )

VVVVVVVVVVVVP

VVVVVVVPer

VVVVVVVVPVVVVVVVV

bVVVV

VVVVVVPVVVVVVP

VVVVVVPVVVVVV

a

EECC

CCCCBEOEBCCBC

EEBEEEEBOCB

CCCCICEBEBCCCB

EEEEBEEEBEICCB

EECC

CCBEEBCCBC

EEBEEEEBCB

CCEBEBCCCB

EEBEEEBECB

4.2 e 4.2 Quindi4.207.017.0 :Qer

4.101 :Q 1V, di uscita di intervalloun Per

4.2017.07.0 :Qer 4.207.07.01 :QPer

presente. Vcon diretta attiva regionein ri transistoi tuttidi ntofunsioname il oRichiediam 4.1 e 4.1 Qunidi

4.10 :Qer 4.100 :Qer

4.10 :Qer 4.100 :QPer

diretta. attiva regionein ri transistoi tuttidi ntofunsioname il oRichiediam

6888

14101616

4611

1411414

IC

6888

14101616

4611

1411414

≥≥≥→≥+−−=+−−=

≥→≥−=+−−−=±

≥→≥−−−=−−−=≥→=≥+−−−−=+−−−=

≥≥≥→≥−−=

≥→≥+−−−=≥→≥−−=

≥→≥+−−−=

11.240

( ) ( ) ( )

( ) ( )

( )

ione.polarizzaz di corrente dalla teindipenden tivamenteapprossimaè oreamplificatdell' interni stadi degli guadagno il laddove , da dipendenti

tedirettamen sono oreamplificatdell' ingresso di resistenza la e ingresso di ionepolarizzaz di corrente La

3.19426ln25.6ln

426 | 1283

426100

227.07.022

72.90.46ln25.60.46ln4025.0ln

| 0.46 | 1383

0.46100

37.07.03

1

111

201

22242223

2022

1111

201

22242223

1

20222022

Ic

AII

AAI

IR

VI

AIIAII

Ak

VVIIb

AII

AAI

Ak

VI

IR

VI

AIIAII

Ak

VVR

VVVVIIa

CT

CCCC

CC

CT

CCCC

EEBEEBCCCC

μμμ

μμ

μ

μμμμ

μμ

μ

=→⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛=

====

−−−−==

==→⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛Ω

=⎟⎟⎠

⎞⎜⎜⎝

⎛=

====

−−−−=

−−−−==

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 143: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-143

11.241

I2 = 3IREF → IREF =250μA

3= 83.3 μA | I3 = IREF = 83.3 μA

IREF =VCC −VEB 22 −VBE 20 − −VEE( )

R1

| R1 =12 − 0.7V − 0.7 − −12( )

83.3VμA

= 271 kΩ

R2 =VT

I1

ln IREF

I1

⎝ ⎜

⎠ ⎟ =

0.025V50μA

ln 83.3μA50μA

⎝ ⎜

⎠ ⎟ = 255 Ω

11.242 IREF = I3 = 300 μA | I2 = 3IREF = 900 μA

IREF =VCC −VEB 22 −VBE 20 − −VEE( )

R1

| R1 =15 − 0.7V − 0.7 − −15( )

300VμA

= 95.3 kΩ

R2 =VT

I1

ln IREF

I1

⎝ ⎜

⎠ ⎟ =

0.025V75μA

ln 300μA75μA

⎝ ⎜

⎠ ⎟ = 462 Ω

11.243

( )( )

( )

VVVVVVVVV

VVVVVVVVVbVVVV

VVVVVVVVVa

VVVVVVVVVVVVV

VVVVQ

VVVVVVVVQ

EECC

IBEOCC

CCEBCCRBEEEIC

EECC

CCEBCCRBEEEIC

RBEEEEERBEEBEB

IBECC

ICEBCC

CB

RBEBEBEBEICEE

BC

8.3 e 4.2 :ottiene si risultati questi Combinando 4.2=7.0+7.0+1= uscita, di stadio dello conto tienesi Se

7.11 | 8.341 ,1 8.2 e 4.1 :ottiene si risultati questi Combinando

7.00 | 8.24 ,0

1.23 4.1=7.0+7.0= uscita, di stadio loPer

0 , di diretta attiva regionein ntofunzioname ilPer

0 , di diretta attiva regionein ntofunzioname ilPer

315

9

9

111216

315

9

11

5731

33

1

1

15

1

≥≥++≥

≥→≥−≅++≥±=≥≥

≥→≥−≅+≥=

≅+≥→−−+≥−−+≥

≥−≥

+++++≥≥

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 144: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-144 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.244

( )

( ) ( ) ( )

( )

( )

. sottostima che

35.2501854.6 e 10 06.4

18501046.1

12.60, Fig. della risultati i ndo Utilizza.1r e g che sappiamo controllo, Come

84.2= | 10 06.4

84.21.20

6095.0952.0281.1 | 81.1025.0

13.201

1.20=25.71850= | 406.03.2020 :12.139 Eq.l' Utilizzano

3.20=32.71850= : a aleproporzion è ingresso di stadio dello corrente La

4-4

om

4-

446666

4

21

th

thidido

CC

thido

ooothooout

Cidido

C

R

MAAMRvx

AAvxi

II

MRvxi

MA

VrrrRrVkArR

AAAAIvmSvAi

AAAAII

Ω=⎟⎟⎠

⎞⎜⎜⎝

⎛Ω=−=⎟⎟

⎞⎜⎜⎝

⎛=

∝∝

Ω−=

Ω=====⎟⎠⎞

⎜⎝⎛ Ω

+≅

−=−=

μμ

μμ

μμ

μμμμμ

μμμμ

11.245

( )

( ) [ ]( ) ( )( ) 5

2111

22

222

10 11.635670.6256

cambiati sononon y parametri altri Gli | 35684.2407

aggiuntiva. una utilizza cascode generatore Il | 84.2666.0

7.15602

502

xkmSAc

kMkRRyb

VMmA

rRa

dm

out

EBoo

=Ω=

Ω=ΩΩ==

Ω=+

==

β

11.246

Q 24

+VCC

I3

23AQ

3A A

22AQ

A

20Q Q21

-VEE

I1

R1

A A

R2

22BQ

A

23BQ

I2

3A

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 145: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-145

11.247

gm10 = 40 19.8μA( )= 0.792mS | rπ10 =150 0.025V( )

19.8μA=189kΩ | ro10 =

60V19.8μA

= 3.03MΩ

gm11 = 40 0.666mA( )= 26.6mS | rπ11 =150 0.025V( )

0.666mA= 5.63kΩ | ro11 =

60V0.666mA

= 90.1kΩ

*Problema 11.247 – Parametri per piccolo segnale. V1 1 0 DC 0 V2 4 0 AC 1 RPI10 1 2 189K RO10 2 0 3.03MEG GM10 0 2 1 2 0.792M RE10 2 0 50K RPI11 2 3 5.63K RO11 4 3 90.1K GM11 4 3 2 3 26.6M RE11 3 0 100 R2 4 0 115K .TF I(V2) V1 .AC LIN 1 1000 1000 .PRINT AC IM(V2) IP(V2) IM(V1) IP(V1) .END

Ω==≅=Ω= − kymSySxyMy 9.81 | 66.6 | 010 27.3 | 38.2 :Risultati 1-2221

1012

1-11

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 146: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

11-146 ©Richard C. Jaeger and Travis N. Blalock - 3/10/07

11.248

( )

( )( )

( ) ( ) ( ) VVVVVVVVVVV

VVVVVV

IIAIIIAIII

AIIIAIIIAII

CEECEC

CECECECE

ECECCECE

F

CCCCCCCC

CCCC

CCREFCF

6.13157.07.00 | 9.124.1157.007.0 | 3.297.01515 | 4.17.07.0

7.0 | 7.157.015

2 | 50 | 50

50 | 502

| 100 : elevato Supponendo a

1123

10987

5421

89862731

46311

5411

=−−−−==+−−−====+−−==+==

===−−==

=======

========

βμμ

μμμβ

Q 1 2 3 4 5 6 7 8 9 10 11 IC (μA) 100 100 -50 -50 -50 -50 50 50 --- 100 100 VCE (V) 11.7 11.7 -12.9 -0.7 -0.7 -12.9 1.4 1.4 29.3 0.7 13.6 (b) Il transistore Q11 replica la corrente di riferimento. Questa corrente si divide in due e controlla due specchi di corrente identici formati da Q4-Q3 e Q5-Q6. Le correnti di Q1 e Q7, e Q2 e Q8 sono uguali alla corrente di uscita di Q3 e Q4.

(c) v1 è l’ingresso invertente; v2 è l’ingresso non invertente.

1gm5

Q6

Q2

+-

vid2

io2

Differential-mode Half Circuit

gm5 = gm6 | gm2 = 2gm6 | ro8 = ro6 | io = gm6ve6

ve6 = vidgm2

1+ gm21

gm5

1gm6

⎝ ⎜

⎠ ⎟

= 12

vid | io = gm612

vid

Gm =12

gm6 =14

gm2 =14

40( )100μA( )=1.00 mS

Rout = ro8 Rout6 = ro8 ro6 1+ gm6

1gm5 + gm2

⎝ ⎜

⎠ ⎟

⎣ ⎢

⎦ ⎥

Rout = ro8 1.33r06 =61.4V50μA

⎝ ⎜

⎠ ⎟ 1.33 72.9V

50μA⎛

⎝ ⎜

⎠ ⎟ = 752 kΩ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education

Page 147: Chapter 15 Solutions - highered.mheducation.comhighered.mheducation.com/sites/dl/free/8838615551/1096611/... · VCC 2 0 DC 12 Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill

©Richard C. Jaeger and Travis N. Blalock - 3/10/07 11-147

11.249

( )

( )( ) ( )

( ) VVVVVVVVVVV

VVVVVV

IIAIIIAIIAIIIII

IIIIAII

CECEEC

CEECEC

CECECECE

F

CCCCCCCC

CCFCC

F

CBCCREFCF

6.13157.07.00 | 7.0 | 4.1=7.0+7.0=3.297.01515 | 9.124.1157.00

4.17.07.0 | 7.157.015

2 | 50 | 505022

= | 100 : elevato Assumendo a

1098

743

6521

57642531

81043

889108

=−−−−===+−−==+−−−==

=+===−−==

===========

====

βμμμβ

βμβ

Q 1 2 3 4 5 6 7 8 9 10 IC (μA) 50 50 -50 -50 50 50 --- -100 --- --- VCE (V) 11.7 11.7 -12.9 -12.9 1.4 1.4 29.3 1.4 0.7 13.6 (b) I transistori Q9 e Q10 formano uno specchio di corrente che replica la corrente di base del transistore Q8. La corrente di uscita si divide in due e da origine alle correnti di base di Q3 e Q4. Dato che Q3 e Q4 sono uguali a Q8, le correnti di collettore di Q1-Q6 saranno tutte uguali a IREF/2.

(c) v1 è l’ingresso invertente; v2 è l’ingresso non invertente.

Q4

Q2

+-

vid2

io2

Differential-mode Half Circuit

gm2 = gm4 | ro6 = ro4 | io

2= gm4ve4 | io = 2gm4ve4

ve4 =vid

2gm2

1+ gm21

gm4

⎝ ⎜

⎠ ⎟

=14

vid | io = gm4vid

2

Gm =12

gm4 =12

gm2 =12

40( )50μA( )=1.00 mS

Rout = ro6 ROUT4 = ro6 ro4 1+ gm4

1gm2

⎝ ⎜

⎠ ⎟

⎣ ⎢

⎦ ⎥

Rout = ro6 2ro4 =61.4V50μA

⎝ ⎜

⎠ ⎟ 2 72.9V

50μA⎛

⎝ ⎜

⎠ ⎟ = 864 kΩ

Jaeger, Blalock, Microelettronica, 4e - ©2017 McGraw-Hill Education