Capabilities of the icpTOF for Laser Ablation … of the icpTOF for Laser Ablation Applications ......

32
Capabilities of the icpTOF for Laser Ablation Applications Yannick Bussweiler TOFWERK AG, Switzerland Webinar: Laser Ablation with icpTOF 2017.10.04

Transcript of Capabilities of the icpTOF for Laser Ablation … of the icpTOF for Laser Ablation Applications ......

Capabilities of the icpTOF for Laser Ablation Applications

Yannick Bussweiler

TOFWERK AG, Switzerland

Webinar: Laser Ablation with icpTOF2017.10.04

1. Instrumentation

2017.10.042

3. Fast Spot Analysis

2. Fast Multi-Element Imaging

Webinar: Laser Ablation with icpTOF

• In-situ analysis of solid samples using a pulsed laser beam

• High spatial resolution, spot size in the low μm range

• Fast multi-element analysis

Laser Ablation Inductively Coupled Plasma

Mass Spectrometry (LA-ICP-MS)

3

m/Q analyzer

Gundlach-Graham, A., Günther, D., Anal.Bioanal.Chem., 2016

Instrumentation

2017.10.04 Webinar: Laser Ablation with icpTOF

iCAP RQ

• ICP source

• Water cooled interface

• Primary ion optics

• Qcell

TOFWERK

• Notch filter

• TOFMS

InstrumentationicpTOF – Time-of-Flight Mass Spectrometer

4 Webinar: Laser Ablation with icpTOF2017.10.04

5

Time-of-Flight Principle

Webinar: Laser Ablation with icpTOF

Instrumentation

➢33,000 complete mass spectra per second

2017.10.04

Hendriks, L., et al., JAAS, 2017

Burger, M., et al., JAAS, 2017

Reduced aerosol dispersion

Spot-resolved imaging

Fast-Washout Laser Ablation Cells

6

Analyte G2 193 nm ArF excimer laser

Webinar: Laser Ablation with icpTOF

Instrumentation

Aerosol Rapid Introduction System (ARIS)HelEx II Dual Volume cell

2017.10.04

Gundlach-Graham, A., Günther, D., Anal.Bioanal.Chem., 2016

Van Malderen, S. J., et al., JAAS, 2016

• Synchronized communication between LA

system and icpTOF

• Trigger pulse with each laser shot to start

data acquisition at icpTOF

• Delay time between ablation and

detection = Aerosol Transfer Delay

• Dependent on sample material and

ablation parameters

7

Precise Triggering Approach Instrumentation

Webinar: Laser Ablation with icpTOF2017.10.04

• Aerosol Transfer Delay in ms

• Can be shifted so that signal arrives

within integration window

• Signal width of single laser shot defines

max. laser repetition rate

Precise Triggering Approach

8

Instrumentation

Webinar: Laser Ablation with icpTOF2017.10.04

Bussweiler, Y., et al., Spectroscopy, 2017

http://www.tofwerk.com/tofpilot-software-laser-ablation-icptof-white-paper/

LA-ICP-TOFMS for high-speed, high-spatial resolution,

multi-element imaging

Webinar: Laser Ablation with icpTOF2017.10.04

Garnet grain (~5 by 7 mm) in micaschist from

South Carpathians, Romania (courtesy of Gavril

Săbău, Geological Institute of Romania)

Laser Ablation Imaging of Garnet

10

Multi-Element Imaging

Webinar: Laser Ablation with icpTOF

Element distribution map for Mn recorded with Electron Microprobe in ~10 hours.

2017.10.04

Integrated Control Software for

Real-Time Imaging

11 Webinar: Laser Ablation with icpTOF

Multi-Element Imaging

2017.10.04

http://www.tofwerk.com/tofpilot-software-laser-ablation-icptof-white-paper/

• Laser: Analyte G2, 193 nm

• Aerosol Rapid Introduction

System (ARIS)

• 100 Hz repetition rate,

20 µm spot size,

3 J/cm2 fluence,

one laser shot per pixel

➢Multi-element image acquired

in ~55 min

12

55Mn

Webinar: Laser Ablation with icpTOF

Multi-Element ImagingLaser Ablation Imaging of Garnet

2017.10.04

• Time dependent mass calibration

• Accurate baseline subtraction

• Peak deconvolution

• Fast treatment of large data

➢ Efficient processing of large and

complex datasets

13

Tofware for Post-Processing

Webinar: Laser Ablation with icpTOF

Multi-Element Imaging

2017.10.04

Iolite for Quantification

14

Garnet image

NIST SRM 612

Webinar: Laser Ablation with icpTOF

Multi-Element Imaging

2017.10.04

Paton, C., et al., JAAS, 2011

• Quantified images using Iolite (using NIST SRM 612 and 29Si as internal standard)

15 Webinar: Laser Ablation with icpTOF

Multi-Element ImagingLaser Ablation Imaging of Garnet

2017.10.04

• Quantified using Iolite Add-On Monocle

Laser Ablation Imaging of Garnet

16 Webinar: Laser Ablation with icpTOF

Multi-Element Imaging

2017.10.04

Petrus, J.A., et al., Chemical Geology, 2017

Laser Ablation Imaging of Biological Samples

17 Webinar: Laser Ablation with icpTOF

Multi-Element Imaging

2017.10.04

5 µm laser spot, 20 Hz repetition rate

Laser Ablation Imaging of Biological Samples

18 Webinar: Laser Ablation with icpTOF

Multi-Element Imaging

2017.10.04

http://www.tofwerk.com/imaging-plant-root-app-note/

High Speed, High Resolution, Multi-Element Imaging of Plant Root Cross Sections

to Highlight Nutrient Transport Pathways: App Note

Yannick Bussweiler¹, Olga Borovinskaya¹, Søren Husted², Daniel Olof Persson², Thomas Hesselhøj Hansen², Ciprian Cosmin Stremtan³

¹ TOFWERK AG, Thun, Switzerland | ² University of Copenhagen, Denmark | ³ Teledyne CETAC Technologies, Omaha, USA

• A. thaliana root sections

• 3 μm laser spot size

• 20 Hz repetition rate

• 3 J/cm2 laser fluence

LA-ICP-TOFMS for accelerated spot analysis

Webinar: Laser Ablation with icpTOF2017.10.04

Collaboration with Stéphane Poitras and Graham Pearson at the University of Alberta, Canada

• Exploration samples from the Horn Plateau,

Northwest Territories, Canada (Poitras et al., 2016)

• EPMA: CAMECA SX-50 microprobe with

wavelength-dispersive spectrometers

total analysis time per grain: ~60 s

• LA-ICP-SF-MS: Resonetics 193 nm excimer laser,

Thermo Element XR sector-field ICP-MS,

90 μm spots, 10 Hz repetition rate

total analysis time per grain: ~110 s

➢ > 3 minutes for full characterization

Samples and Routine Analytical Methods

20

1-inch mount with 296 garnet grains

30 s

background

40 s ablation

40 s delay

Geographical location of the Horn Plateau

(Pronk, 2009)

Webinar: Laser Ablation with icpTOF

Spot Analysis

2017.10.04

• icpTOF in normal mode (no reaction gases)

100 ms integration time (3,300 mass spectra)

• Analyte G2 193 nm excimer laser with HelEx II cell

and ARIS device (Teledyne Cetac Technologies)

• LA-ICP-MS analysis “compressed in time

and space”: 50 µm spots, 100 Hz, 300 pulses

3 s per analysis

➢ ~20 s for full characterization

icpTOF and Fast-Washout Laser Ablation

21

Analyte G2 with HelEx II cell and Aerosol Rapid Introduction System (ARIS)

Webinar: Laser Ablation with icpTOF

Spot Analysis

2017.10.04

Limits of Detection for LA-ICP-TOFMS on Garnet

22

NIST SRM 612

for calibration

Webinar: Laser Ablation with icpTOF

Spot Analysis

2017.10.04

Comparison of LA-ICP-TOFMS to EPMA data

23

N = 17

Mean of ratios ± 1 SD

Webinar: Laser Ablation with icpTOF

Spot Analysis

2017.10.04

Comparison of LA-ICP-TOFMS to LA-ICP-SFMS data

24

N = 17

Mean of ratios ± 1 SD

Webinar: Laser Ablation with icpTOF

Spot Analysis

2017.10.04

Normalized REE patterns

25

Normalized to chondrite values from Sun & McDonough (1989)

Webinar: Laser Ablation with icpTOF

Spot Analysis

2017.10.04

20 s per pattern110 s per pattern

Comparison of LA-ICP-TOFMS to LA-ICP-SFMS data

26

LA-ICP-TOFMS uncertainty:

± 2 SD from 3 replicate

measurements per grain

LA-ICP-SFMS uncertainty:

± 2 SE from single

measurement

Webinar: Laser Ablation with icpTOF

Spot Analysis

2017.10.04

Element Signature of Micro-Inclusions

27

No Ni-sulphides,

but Co-Ni-Pt alloys!

Webinar: Laser Ablation with icpTOF

Spot Analysis

2017.10.04

Analysis of Fluid-Inclusions

28 Webinar: Laser Ablation with icpTOF

Spot Analysis

2017.10.04

Fig. 12

Fast Multi-Element Imaging

➢ Spot-resolved multi-element imaging

➢ Each laser shot = one pixel with complete

mass spectrum

➢ No need to pre-select analytes

➢ Repetition rate defined by signal width

(up to 100 Hz and higher)

Accelerated Spot Analysis

➢ One method (LA-ICP-TOFMS) vs. two (EPMA & LA-ICP-MS)

➢ Significantly faster than conventional LA-ICP-MS:

180 vs. 20 grains per hour

➢ Good precision and accuracy for major, minor, and trace

elements

➢ Full elemental information allows identification of micro-

inclusions

Summary

29 Webinar: Laser Ablation with icpTOF2017.10.04

icpTOF combined with fast-washout laser ablation enables:

• Geological Institute of Romania

• Ghent University

• University of Copenhagen

• University of Alberta

• Université de Lorraine

• ETH Zürich

• Teledyne CETAC

• ESI NewWave

• Iolite Software

• ACEnano

Acknowledgements

30

Thanks

Webinar: Laser Ablation with icpTOF2017.10.04

TOFWERK AG

Uttigenstrasse 22

CH-3600 Thun, Switzerland

www.tofwerk.com/icp

+41 33 511 1156

• Dr. Yannick Bussweiler – Application Specialist

[email protected]

• Dr. Olga Borovinskaya – Application Specialist

[email protected]

• Dr. Martin Tanner – Product Manager icpTOF

[email protected]

Contacts

31

Contact us

2017.10.04 Webinar: Laser Ablation with icpTOF

References

32 Webinar: Laser Ablation with icpTOF2017.10.04

Burger, M., Schwarz, G., Gundlach-Graham, A., Käser, D., Hattendorf, B., & Günther, D. (2017). Capabilities of laser ablation inductively coupled plasma

time-of-flight mass spectrometry. Journal of Analytical Atomic Spectrometry.

Bussweiler, Y., Borovinskaya, O., Tanner, M. (2017). Laser Ablation and Inductively Coupled Plasma–Time-of-Flight Mass Spectrometry—A Powerful

Combination for High-Speed Multielemental Imaging on the Micrometer Scale. Spectroscopy, 32(5), 14-20.

Gundlach-Graham, A., & Günther, D. (2016). Toward faster and higher resolution LA–ICPMS imaging: on the co-evolution of LA cell design and ICPMS

instrumentation. Analytical and bioanalytical chemistry, 408(11), 2687-2695.

Harlaux, M., Borovinskaya, O., Frick, D. A., Tabersky, D., Gschwind, S., Richard, A., Günther, D. & Mercadier, J. (2015). Capabilities of sequential and

quasi-simultaneous LA-ICPMS for the multi-element analysis of small quantity of liquids (pl to nl): insights from fluid inclusion analysis. Journal of

Analytical Atomic Spectrometry, 30(9), 1945-1969.

Hendriks, L., Gundlach-Graham, A., Hattendorf, B., & Günther, D. (2017). Characterization of a new ICP-TOFMS instrument with continuous and discrete

introduction of solutions. Journal of Analytical Atomic Spectrometry, 32(3), 548-561.

Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data.

Journal of Analytical Atomic Spectrometry, 26(12), 2508-2518.

Petrus, J. A., Chew, D. M., Leybourne, M. I., Kamber, B. S., (2017). A new approach to laser-ablation inductively-coupled-plasma mass-spectrometry (LA-

ICP-MS) using the flexible map interrogation tool ‘Monocle’. Chemical Geology, 463, 76-93.

Van Malderen, S. J., Managh, A. J., Sharp, B. L., & Vanhaecke, F. (2016). Recent developments in the design of rapid response cells for laser ablation-

inductively coupled plasma-mass spectrometry and their impact on bioimaging applications. Journal of Analytical Atomic Spectrometry, 31(2), 423-

439.

Van Malderen, S. J., Laforce, B., Van Acker, T., Nys, C., De Rijcke, M., De Rycke, R., De Bruyne, M., Boone, M. N., De Schamphelaere, K., Borovinskaya,

O. & De Samber, B. (2017). Three-Dimensional Reconstruction of the Tissue-Specific Multielemental Distribution within Ceriodaphnia dubia via

Multimodal Registration Using Laser Ablation ICP-Mass Spectrometry and X-ray Spectroscopic Techniques. Analytical Chemistry, 89(7), 4161-

4168.