Canadian Energy Research Institute oilsands report - 2011

88
ZĞůĞǀĂŶƚ ͻ /ŶĚĞƉĞŶĚĞŶƚ ͻ KďũĞĐƚŝǀĞ Canadian Energy Research Institute Canadian Oil Sands Supply Costs and Development Projects (20102044) Dinara Millington Mellisa Mei Study No. 122 May 2011

Transcript of Canadian Energy Research Institute oilsands report - 2011

Page 1: Canadian Energy Research Institute oilsands report -  2011

 

   

 

 

         

Canadian  Energy  Research  Institute    

Canadian   Oil   Sands   Supply   Costs   and  Development  Projects  (2010-­‐2044)    Dinara  Millington  Mellisa  Mei                                              Study  No.  122    May  2011    

Page 2: Canadian Energy Research Institute oilsands report -  2011

 

   

Page 3: Canadian Energy Research Institute oilsands report -  2011

 

 

 

 

 

 

 

 

CANADIAN  OIL  SANDS  SUPPLY  COSTS  AND  DEVELOPMENT  PROJECTS  (2010-­‐2044)  

   

Page 4: Canadian Energy Research Institute oilsands report -  2011

 

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)  

 

Copyright  ©  Canadian  Energy  Research  Institute,  2011  Sections  of  this  study  may  be  reproduced  in  magazines  and  newspapers  with  acknowledgement  to  the  Canadian  Energy  Research  Institute                  Study  No.  122  ISBN  1-­‐896091-­‐94-­‐4      Authors:   Dinara  Millington     Mellisa  Mei          Acknowledgements:    The  authors  of  this  report  would  like  to  extend  their  thanks  and  gratitude  to  everyone  involved  in  the  production  and  editing  of  the  material,  including,  but  not  limited  to  Megan  Murphy  and  Peter  Howard                    CANADIAN  ENERGY  RESEARCH  INSITTUTE  150,  3512    33  Street  NW  Calgary,  Alberta      T2L  2A6  Canada  www.ceri.ca            May  2011  Printed  in  Canada  

Page 5: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   iii  

  May  2011  

Table  of  Contents    LIST  OF  FIGURES  ..............................................................................................................................     v  LIST  OF  TABLES  ................................................................................................................................     vii  EXECUTIVE  SUMMARY  ....................................................................................................................     ix     Assumptions  and  Scenarios  ............................................................................................................     ix     Supply  Cost  Results  ........................................................................................................................     xii     Projection  Results  ...........................................................................................................................     xiii  CHAPTER  1   INTRODUCTION  .......................................................................................................     1     Background.....................................................................................................................................     1     Approach  and  Methodology  ..........................................................................................................     2     Organization  of  the  Report  .............................................................................................................     2  CHAPTER  2   OIL  SANDS  REVIEW  .................................................................................................     3     Oil  Sands,  Background  ....................................................................................................................     3     Oil  Sands  Development  Scenarios    .................................................................................................     5  CHAPTER  3   OIL  SANDS  OVERVIEW    SUPPLY  COSTS  ..................................................................     13     Methodology  and  Assumptions  .....................................................................................................     13     Light-­‐Heavy  Differential..................................................................................................................     16     Estimating  Inflation  ........................................................................................................................     18     Supply  Cost  Results  ........................................................................................................................     25  CHAPTER  4   OIL  SANDS  PROJECTIONS  ........................................................................................     29     Methodology  ..................................................................................................................................     29     Oil  Sands  Projections    Results  and  Analysis  ..................................................................................     31  CHAPTER  5   TRENDS  AND  CHALLENGES  IN  THE  OIL  SANDS  DEVELOPMENT  ................................     43     Environmental  Issues  .....................................................................................................................     43     Tailings  Management  .....................................................................................................................     50     Technology  Options  and  Efficiency  Improvements  ........................................................................     53     Oil  Sands  Merger  and  Acquisition  Revival  ......................................................................................     59  CHAPTER  6   TRANSPORTATION  ..................................................................................................     61     Current  Transportation  (Pipeline)  Capacity....................................................................................     61     Transportation  Capacity  Expansions  ..............................................................................................     63  CHAPTER  7   CONCLUSION  ...........................................................................................................     67      

Page 6: Canadian Energy Research Institute oilsands report -  2011

iv   Canadian  Energy  Research  Institute  

May  2011  

 

Page 7: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   v  

  May  2011  

List  of  Figures    Figure  1   US  and  BRIC  Oil  Consumption  Shares  ..............................................................................     xi  Figure  2   Realistic  Emissions  Compliance  Costs  ..............................................................................     xii  Figure  3   Realistic  Oil  Sands  Supply  Costs  .......................................................................................     xiii  Figure  4   Bitumen  Production  Projections  ......................................................................................     xiv  Figure  5   Initial  Capital  Requirements  .............................................................................................     xv  Figure  6   Greenhouse  Gas  Emissions  ..............................................................................................     xvi  Figure  7   Industry  Compliance  Costs  ...............................................................................................     xvii  Figure  8   Provincial  Bitumen  Royalties............................................................................................     xviii  Figure  2.1    ...........................................................................................................     3  Figure  2.2   Firebag,  In  Situ  .................................................................................................................     4  Figure  2.3   Suncor  Mining  Operations  ...............................................................................................     5  Figure  2.4   US  and  BRIC  Oil  Consumption  ..........................................................................................     6  Figure  2.5   Realistic  Oil  Prices  ............................................................................................................     7  Figure  2.6   Realistic  Emissions  Compliance  Costs  ..............................................................................     8  Figure  2.7   Protracted  Slowdown  Oil  Prices  .......................................................................................     8  Figure  2.8   Protracted  Slowdown  Emissions  Compliance  Costs  ........................................................     9  Figure  2.9   Energy  Security  Oil  Prices  .................................................................................................     10  Figure  2.10   Energy  Security  Emissions  Compliance  Costs  ..................................................................     10  Figure  3.1   Electricity  Price  Projections  ..............................................................................................     15  Figure  3.2   Natural  Gas  Price  Projections  ...........................................................................................     15  Figure  3.3   Light-­‐Heavy  Differential  ...................................................................................................     17  Figure  3.4   Bitumen  Royalty  Rates  .....................................................................................................     18  Figure  3.5   Effect  of  the  Oil  Price  on  Refinery  Construction  Costs  .....................................................     20  Figure  3.6   Historic  and  Projected  WTI  Prices  and  Construction  Cost  Inflation  Rates,  2007-­‐2044  ....     20  Figure  3.7   Effect  of  the  Oil  Price  on  the  Canadian-­‐US  Exchange  Rate  ..............................................     22  Figure  3.8   Historic  and  Projected  WTI  Prices  and  the  Canadian-­‐US  Exchange  Rate,  2007-­‐2044......     22  Figure  3.9   Effect  of  the  Oil  Price  on  Refinery  Operating  Costs  .........................................................     24  Figure  3.10   Historic  and  Projected  WTI  Prices  and  Operating  Cost  Inflation  Rates,  2007-­‐2044  ........     25  Figure  3.11   Natural  Gas  and  Oil  Price  Projection  ................................................................................     25  Figure  3.12   Realistic  Oil  Sands  Supply  Costs  .......................................................................................     26  Figure  3.13   Realistic  Oil  Sands  Supply  Costs  (Contribution)  ...............................................................     27  Figure  4.1   Bitumen  Capacity  Projections  ..........................................................................................     31  Figure  4.2   Bitumen  Production  Projections  ......................................................................................     33  Figure  4.3   Initial  Capital  Requirements  .............................................................................................     34  Figure  4.4   Sustaining  Capital  Requirements  .....................................................................................     35  Figure  4.5   Natural  Gas  Requirements  ...............................................................................................     35  Figure  4.6   Greenhouse  Gas  Emissions  ..............................................................................................     36  Figure  4.7   Industry  Compliance  Costs  ...............................................................................................     37  Figure  4.8   Provincial  Bitumen  Royalties............................................................................................     38  Figure  4.9   Realistic  Bitumen  Production  Projections  ........................................................................     39  Figure  4.10   Project  Distribution  ..........................................................................................................     40  Figure  4.11   Realistic  Scenario    Initial  Capital  Requirements  .............................................................     41  Figure  4.12   Realistic  Scenario    Sustaining  Capital  Requirements  .....................................................     41  Figure  4.13   Realistic  Scenario    Total  Cost  Requirements  ..................................................................     42  Figure  5.1   States  with  GHG  Emission  Reduction  Targets  ..................................................................     46  Figure  5.2   Regional  Cap-­‐and-­‐Trade  Schemes....................................................................................     47  Figure  5.3   Sources  of  Emissions  Reductions  Under  the  Cap     Main  Policy  Case  Relative  to  the  Reference  Case,  2012-­‐2020  .........................................     50  Figure  5.4   MFT  Surface  after  14  Days  ...............................................................................................     51  

Page 8: Canadian Energy Research Institute oilsands report -  2011

vi   Canadian  Energy  Research  Institute  

May  2011  

Figure  5.5   Well-­‐to-­‐Wheels  GHG  Emissions  for  Oil  Sands  and  Other  Crudes  ....................................     53  Figure  5.6   -­‐DSP Well  Configuration  ........................................................     55  Figure  5.7   ET-­‐DSP  ................................................................................................     56  Figure  5.8    ................................................................................................     57  Figure  5.9    ....................................................................................................................     58  Figure  5.10   Oil  Sands  Mergers  and  Acquisitions  .................................................................................     60  Figure  6.1   Alberta  Existing  and  Proposed  Regional  Pipelines  ...........................................................     64  Figure  6.2   Existing  and  Proposed  Export  Pipelines  ...........................................................................     64      

Page 9: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   vii  

  May  2011  

List  of  Tables    Table  2.1   In-­‐Place  Volumes  and  Established  Reserves  of  Crude  Bitumen  in  Alberta  ......................     5  Table  3.1   Design  Assumptions  by  Extraction  Method  .....................................................................     14  Table  3.2   Crude  Oil  Characteristics  ..................................................................................................     16  Table  4.1   Constraints  by  Scenario  and  Extraction  Method  .............................................................     30  Table  5.1   Annual  GHG  Emission  Caps  ..............................................................................................     48  Table  6.1   Alberta  Regional  and  Export  Pipelines  .............................................................................     62  Table  6.2   Potential  Pipeline  Expansions  ..........................................................................................     63      

Page 10: Canadian Energy Research Institute oilsands report -  2011

viii   Canadian  Energy  Research  Institute  

May  2011  

 

Page 11: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   ix  

  May  2011  

Executive  Summary  The   oil   sands   development   exhibited   moderate   growth   in   2010   relative   to   prior   years,   reflecting   the  resumption  of  the  many  oil  sands  projects  that  were  deferred  during  the  2008-­‐2009  economic  recession.  Since   then,   economic   conditions   have   improved posting   positive  economic   growth,   credit   is   becoming   available   to   oil   sands   proponents,   mergers   and   acquisitions   are  ramping  up,  and  West  Texas  Intermediate  (WTI)  oil  prices  increased  to  the  US$70-­‐85  per  barrel  range  in  2010,  a  range  in  which  oil  sands  greenfield  projects  currently  become  economic.    

In   response,   several   companies   are   now   actively   developing   project   phases   that   had   previously   been  placed  on  hold.  However,  producers  remain  cautious  about  future  oil  price  estimates  and  are  proceeding  at  a  more  balanced  pace  in  order  to  establish  a  better  controlled  cost  environment.  This  approach  should  help   producers   avoid   a   repeat   of   the   high   cost   inflation   environment   that   resulted   from   the   peak  investment  spending,  in  2007  and  2008,  associated  with  the  concurrent  development  of  several  large  oil  sands  projects.  The  past  cancellation  and  deferral  of  projects  should  keep  2010  costs  low,  relative  to  the  past  few  years.  

The  oil  sands  industry  has  attracted  the  attention  of  environmental  activists  who  are  concerned  about  the  negative  impact  that  oil  sands  development  would  have  on  land,  water  and  air  quality.  All  parties  involved  are   currently   working   on   minimizing   these   impacts   through   environmental   policies,   technological  advancements   and   their   implementation   with   one   goal   in   mind:   sustainable   and   socially   acceptable  development  of  an  oil  sands  industry  that  is  an  integral  part  of  the  Canadian  economy.  The  development,  no  matter  how  transparent,  will  be  carefully  monitored  by  other  governments  and  environmental  activists  as  this  vast  Canadian  resource  is  developed.  

The   purpose   of   this   report   is   twofold.   First,   modeling   results   for   the   potential   paths   of   oil   sands  development   and   supply   costs,   out   to   2044   are   presented.     T(CERI)  oil   sands  projections   and   supply   cost   analysis  have   been  valuable   to   industry,   governments,   and  other   stakeholders   as   part   of   their   market   analysis.   This   report   relies   upon   the   most   up-­‐to-­‐date  information  available  on  project  announcements  (updated  to  November  3,  2010)  and  market  intelligence  

.  

Secondly,  CERI  reviews  the  trends  and  challenges  mostly  on  the  environmental  front,  with  GHG  emissions,  water   use   and   tailings   ponds   being   the  most   visible   issues.   These   challenges   are   of   critical   importance  because   it   is   imperative   to  maintain  a  sustainable  environment,   regionally  and  globally,   for  present  and  future  generations.  It   is  also  apparent  that  adequate  pipeline  infrastructure  must  be  in  place  in  order  to  move  the  bitumen  to  markets.  Existing  and  potential  pipeline  systems  are  analyzed  in  the  report  as  well.  

Assumptions  and  Scenarios  The  current   oil   sands  update  analyzed   four  Scenarios.  The  Unconstrained  Scenario,   in  which  all  oil  sands  projects  proceeded  on  schedule,  and  as  planned,  was  viewed  as  implausible,  and  hence  was   not   evaluated   in   great   detail.   The   three   plausible   scenarios   are:   Energy   Security,   Realistic,   and  Protracted  Slowdown.  

Page 12: Canadian Energy Research Institute oilsands report -  2011

x   Canadian  Energy  Research  Institute  

May  2011  

The  Protracted  Slowdown  Scenario  represents  a  world  in  which  the  economic  recovery  is  stalled  in  2011,  driven   by   protectionist   policies,   and   aggressive   emissions   compliance   costs   that   put   an   overly   onerous  burden  on  various  hydrocarbon-­‐based   industries.  Environmental  activism  pushes  environmental  policies  

product  restrictions  across  a  wide  variety  of  industries.    

In  the  Energy  Security  Scenario,  countries  compete  and  try  to  secure  the  hydrocarbon  resources  as  the  world  recovers  from  the  recent  economic  recession.  Specifically,  the  BRIC  (Brazil,  Russia,  India  and  China)  nations  experience  rapid  economic  growth.  These  countries  expand  exports  of  products,  which  drives  up  the  demand  for  crude  oil   in  those  nations.  The  major  demand  centres  for  the   exports,  the  US  and  other  developed  countries,  also  experience  a  period  of  rapid  economic  growth,  and  rising  crude  oil  demand.    

significantly  offset  the  increase  in  demand  for  crude  oil  from  the  emerging  economies.  Faced  with  a  surge  in   demand,   the   BRIC   and   other   developed   nations   seek   to   secure   access   to   physical   supplies   of   oil,  resulting   in  a  bidding-­‐up  of   the  global  oil  price  and  a  period  of  sustained  growth  in  the  oil  sands.  While  plausible,  both  the  Protracted  Slowdown  and  the  Energy  Security  Scenario  are  not  likely  to  develop,  which  is  why  a  Realistic  Scenario  was  considered.  

The   Realistic   Scenario   assumes   that   the   developed   nations   emerged   from   the   recession   and   their  economies  continue  to  recover,  experiencing  modest  economic  growth  in  2011,  and  bringing  about  a  slow  and  steady  growth  in  demand  for  crude  oil.  The  growth  is  tempered  somewhat  by  geopolitical  concerns  in  the   Middle   East   and   economic   setbacks   in   some   European   nations.   The   economic   recovery   in   the  developed  nations  coincides  with  that  of  BRIC  nations,  as  well  as  other  Asian  countries.  In  this  Scenario,  oil   prices   begin   a   slow   and   steady   climb,   approaching   $200/bbl   of  WTI,1   by   the   end   of   the   projection  period,  2044.2  

   

                                                                                                                                 1  2All  values  contained  in  this  report  are  real  dollars,  unless  otherwise  stated.  

Page 13: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   xi  

  May  2011  

Figure  1  US  and  BRIC  Oil  Consumption  Shares  

 Source:  BP  Statistical  Review,  2010  

The   demand   growth   will   be   tempered   by   an   ongoing   push   toward   environmental   protection,   through  modest   emissions  compliance  costs.  These  emissions  costs  will  be  driven  not  by  a  global  market,  but  a  North  American  emissions  pact  that  harmonizes  compliance  costs  across  the  region.3  The  November  2010  political  shift   in  the  US  House  of  Representatives,  along  with  a  slow  recovery  from  the  recent  recession  has  postponed  the  advancement  of  federal  climate  change  legislation.    As  Canadian  emissions  compliance  costs   will   be   harmonized   with   the   US,   the   compliance   cost   estimates   used   in   this   report   have   been  adjusted,  since  the  CERI  2009  update,  to  reflect  a  delay  in  the  adoption  of  US  climate  change  policy.  

   

                                                                                                                                 3Currently  compliance  costs  are  collected,  set,  and  administered  by  the  Government  of  Alberta.  The  costs  are  royalty  deductible.  In  other  words,  the  higher  the  compliance  costs  that  are  paid  the  lower  is  the  provincial  royalty  income.  This  has  a  minimal  impact  on  the  costs  of  oil  sands  operators  and  total  provincial  income.  

14%

16%

18%

20%

22%

24%

26%

28%

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Shares  of  world  oil  consumption  by  the  US  and  BRIC

BRIC US

Page 14: Canadian Energy Research Institute oilsands report -  2011

xii   Canadian  Energy  Research  Institute  

May  2011  

Figure  2  Realistic  Emissions  Compliance  Costs  

   Source:  CERI.  

Supply  Cost  Results  Over  the  past  year,  CERI  estimates  that  the  capital  costs  for  constructing  oil  sands  projects  have  declined  by   3.6   percent,   while   operating   costs   have   increased   by   5.8  assumed  a  three  year  construction  period  for  oil  sands  projects,  with  construction  commencing  in  2011.  Over  the  construction  period  (2011  to  2014),  construction  and  operating  costs  are  expected  to  rise  by  19  percent,  and  slowly  thereafter.  

Under   the  Realistic   Scenario,   the   oil   sands   are   shown   to   be   highly   profitable,   and   an   extremely   good  investment  for  oil  sands  operators,  as  well  as  the  provincial  and  federal  governments.    

of  oil  prices,  rates  of  return  (ROR)  for  oil  sands  projects  will  range  from  6  to  19  percent.  Supply  costs,  illustrated  in  Figure  3,  reflect  a  WTI  equivalent  price  for  steam  assisted  gravity  drainage   (SAGD)   projects   of   $123/bbl,   $128/bbl   for   integrated   mining   and   upgrading   projects,   and  $123/bbl  for  stand-­‐alone  mining  projects;  SAGD  projects  receive  the  highest  ROR.4  The  plant  gate  supply  costs,  which   exclude   transportation   and   blending   costs,   are   $93/bbl,   $100/bbl,   and   $93/bbl   for   SAGD,  integrated  mining  and  upgrading,  and  stand-­‐alone  mining,  respectively.  While  capital  costs  and  the  return  on  investment5  account  for  a  substantial  portion  of  the  total  supply  cost,  the  province s  per  barrel  take  is  estimated  at  18  to  22  percent.  

   

                                                                                                                                 4The  calculated  supply  costs  are  for  greenfield  projects.  The  projects  that  are  already  on  stream  can  be  profitable  at  much  lower  costs,  in  the  range  of  $40-­‐$75/bbl.  5A  substantial  portion  of  the  fixed  capital  includes  the  return  on  the  investment.  

$0

$10

$20

$30

$40

$50

$60

$70

$80

2010 2020 2030 2040

$/TRealistic  Compliance  Cost  ProjectionExpect  costs  to  rise  in  35  years

Page 15: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   xiii  

  May  2011  

Figure  3  Realistic  Oil  Sands  Supply  Costs  

SAGD(Realistic  Oil  Price  

Projection19%  ROR)

Mining  &  Upgrading  (Realistic  Oil  Price  

Projection6%  ROR)

Mining  (Realistic  Oil  Price  

Projection14%  ROR)

Fixed  Capital  (Initial  &  Sustaining) $39 $38 $44

Other $33 $43 $29Royalties $20 $18 $20Emissions  Compliance  Costs $1 $1 $1

-­‐$10

$10

$30

$50

$70

$90

$110

$130

$/bblFixed  Capital  (Initial  &  Sustaining)

Other

Royalties

Emissions  Compliance  Costs

Supply  Cost  at  the  field $93 $100 $93

WTI  Equivalent   Supply   Cost                                                                                $123 $128 $123  

Source:  CERI.  

Projection  Results  synthetic  crude  oil  (SCO)  production  remains  unchanged  

from  past  reports.  The  projections  are  based  upon  the  summation  of  all  announced  projects,  with  a  wide  variety   of   assumptions   pertaining   to   the   projects   schedule   and   delays,   technology,   and   state   of  development.   The   method   by   which   projects   are   delayed,   or   the   rate   at   which   production   comes   on  

 

The  bitumen   capacity  projections   are   adjusted   to   account   for   the  production  profile  of   each  extraction  method,  resulting  in  a  peak  production  volume  of  5.1  million  barrels  per  day  (MMBPD)  by  2042,  under  the  Realistic  Scenario.   By  2015,  production  under   the  Realistic  Scenario   is  projected   to   reach  2.1  MMBPD,  and  by  2030  it  is  projected  to  increase  to  4.8  MMBPD.  

   

Page 16: Canadian Energy Research Institute oilsands report -  2011

xiv   Canadian  Energy  Research  Institute  

May  2011  

Figure  4  Bitumen  Production  Projections  

0

2,000

4,000

6,000

8,000

2010 2020 2030 2040

10^3  bpd

Bitumen  Production  VolumesBy  2020   bitumen  production  could  reach  2.5  MMBPD,  under  a  Realistic  Scenario  

Energy  Security Realistic Protracted  Slowdown

 Source:  CanOils,  CERI.  

Achieving  any  of  the  levels  of  production  in  the  three  scenarios  requires  a  substantial  number  of  inputs,  of  which  capital  (both  strategic  and  sustaining)  is  critical.  Illustrated  in  Figure  5  are  initial  capital  costs.  

Over  the  35-­‐year  projection  period,  the  total  initial  capital  required  is  projected  to  be  $302  billion  under  the   Energy   Security   Scenario,   $257   billion   under   the   Realistic   Scenario,   and   $213   billion   under   the  Protracted  Slowdown  Scenario.  

By  2044,  natural  gas  requirements  will  increase  by  2  to  3  times  the  current  level.  The  Realistic  projection  indicates   natural   gas   requirements   of   almost   4.5   billion   cubic   feet   per   day   (BCFPD)   by   2044.   In   such   a  scenario,  Canada  and  the  US  could  be  engaged  in  an  energy  exchange    Canadian  oil   for  the  US  natural  gas     that   further   enhances   the   trade   relationship   between   the   two   countries.   The   prospects   for  technology  switching  and  efficiency  improvements  are  substantial,  and  will  likely  put  downward  pressure  

 

   

Page 17: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   xv  

  May  2011  

Figure  5  Initial  Capital  Requirements  

 Source:  CERI.  

One  of  the  by-­‐products  of  natural  gas  consumption  is  the  production  of  greenhouse  gas  (GHG)  emissions.  Without  equipment  to  separate  the  emissions  streams,  the  GHGs  will  be  released  into  the  atmosphere.  While  technological  innovation  within  the  oil  sands  industry  (in  addition  to  carbon  capture  and  storage)  is  expected  to  help  reduce  these  emissions,  the   figure  below  illustrates   rising  GHG  emissions  under    current  design  assumptions.  

   

$0

$10

$20

$30

$40

2010 2020 2030 2040

billions

Initial,  or  Strategic,  Capital  Requirements

Energy  Security Realistic Protracted  Slowdown

Page 18: Canadian Energy Research Institute oilsands report -  2011

xvi   Canadian  Energy  Research  Institute  

May  2011  

Figure  6  Greenhouse  Gas  Emissions  

 Source:  CERI.  

GHG  emissions  are  expected   to  rise   in   tandem  with  natural  gas  requirements.  The  emissions  presented  above  reflect  point  source  emissions,  and  do  not  take  into  account  emissions  associated  with  electricity  purchases,  or   the  benefits  of   cogeneration.   In  other  words,   these  are   the  absolute  GHG  emissions   that  result  from  the  production  of  marketable  bitumen,  and  SCO,  from  the  oil  sands  industry.  

Based  upon  the  emissions  compliance  cost  projection,  the  industry  would  pay  $142  billion  in  compliance  costs  over  the  next  35  years.6  

   

                                                                                                                                 6The  estimation  of  these  compliance  costs  is  based  upon  the  per  barrel  costs.  As  such,  this  will  overestimate  the  initial  years  and  underestimate  the  later  years  of  the  projection.  Figure  7  should  be  used  as  an  illustrative  guide,  with  those  caveats  in  mind.  

0

20

40

60

80

100

120

2010 2020 2030 2040

MT/y

Greenhouse  Gas  EmissionsWithout  new  technologies  and  carbon  capture,  emissions  are  expected  to  rise  to  91  million  tonnes  by  2044

Energy  Security Realistic Protracted  Slowdown

Page 19: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   xvii  

  May  2011  

Figure  7  Industry  Compliance  Costs  

 Source:  CERI.  

Based  upon   the  assumed  oil   price,  as   stated  earlier,  bitumen   royalties   collected  by   the  province,  under  the  Realistic  Scenario,  will  exceed  $1  trillion  over  the  projection  period.7  

   

                                                                                                                                 7The  estimation  of  the  royalties  are  based  upon  the  per  barrel  costs.  As  such,  this  will  overestimate  the  initial  years  and   underestimate   the   later   years   of   the   projection.   Figure   8   should   be   used   as   an   illustrative   guide,   with   those  caveats  in  mind.  

$0

$1

$2

$3

$4

$5

$6

$0

$20

$40

$60

$80

$100

$120

$140

$160

$180

$200

2008 2018 2028 2038

billions   billions

Realistic  Compliance  Cost  ProjectionWithout  improvments  in  technology/efficiency,  industry  will  have  paid  $142  billion  by  2044

Cummulative  Annual  Compliance  Costs

Page 20: Canadian Energy Research Institute oilsands report -  2011

xviii   Canadian  Energy  Research  Institute  

May  2011  

Figure  8  Provincial  Bitumen  Royalties  

 Source:  CERI.  

Trends  and  Challenges  great   economic   potential,   they   also   present  

environmental   challenges   in   the  areas  of   greenhouse  gas   (GHG)  emissions,   air   pollution,  water,   tailings  ponds   and   land.   In   fact,   many   observers   consider   them   impossible   to   overcome   and   advocate   for   a  moratorium,  if  not  a  shutdown,  of  the  industry.  However,  the  oil  sands  experience  has  demonstrated  that  technology  has  the  potential  to  "change  the  game".  Today,  a  large  number  of  concepts  and  technologies  are   under   active   development   to   address   oil   sands   challenges.   The   portfolio   is   broad   and   diverse,  addressing  various  sectors  of  the  industry  and  allows  a  reasonable  expectation  that  the  next  35  years  will  see   vast   improvements   in   oil   sands   exploitation   in   a   way   that   increases   the   size   of   the   economic  opportunity,  creates  high  value  local  employment  and  dramatically  reduces  environmental  impact.  

Pipelines  and  Markets  The  existing  crude  oil  pipeline   infrastructure  underwent  a  much  needed  expansion   recently   in  order   to  accommodate   the   growing   volumes   of   oil   sands   production.   A   number   of   pipeline   expansions   were  completed   in  2009,   and  2  major   additional   pipelines  became  operational   at   the  end   of   2010,   including  TransCanada  Keystone  and  Enbridge  Alberta  Clipper.  Furthermore,  additional  pipeline  capacity,  to  major  traditional  markets  and  the  US  Gulf  Coast,  will  become  available  once  other  scheduled  pipeline  projects  are  built  and  begin  operating  in  the  next  few  years.  

 

$2,411

 

$2,913

 

$2,973

 

$3,160

 

$3,293

 

$4,123

 

$4,961

 

$6,125

 

$7,418

 

$8,343

 

$9,673

 

$11,96

4  

$13,89

5  

$15,50

0  

$18,02

2  

$19,12

2  

$21,72

1  

$23,51

8  

$25,26

9  

$27,25

0  

$30,37

9  

$33,41

6  

$35,98

6  

$39,39

0  

$41,24

1  

$42,99

8  

$44,10

8  

$45,17

8  

$46,43

9  

$47,57

8  

$49,74

0  

$51,86

7  

$54,34

0  

$56,41

9  

$58,56

8  

$60,81

7  

$62,93

5  

$65,33

4  

$67,47

7  

 $-­‐

 $200,000

 $400,000

 $600,000

 $800,000

 $1,000,000

 $1,200,000

 $1,400,000

 $-­‐

 $10,000

 $20,000

 $30,000

 $40,000

 $50,000

 $60,000

 $70,000

 $80,000

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

Cumulative

Annu

alRoyalties  Collected  from  the  Oilsands  Industry  ($  Millions),  2006  -­‐ 2044  

Cumulative  Royalties

In  Situ  (Solvent)  Projects

In  Situ  Projects

Mining  Projects

Total  Annual  Royalties

Page 21: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   1  

May  2011  

Chapter  1  Introduction    Background  The   oil   sands   development   exhibited   moderate   growth   in   2010   relative   to   prior   years,   reflecting   the  resumption  of  themany  oil  sands  projects  that  were  deferred  during  the  2008-­‐2009  economic  recession,  which   resulted   in   lower   oil   prices.   Since   then,   economic   conditions   have   improved.  economies  are  posting  positive  economic  growth,   credit   is  becoming  available   to  oil   sands  proponents,  mergers  and  acquisitions  are  ramping  up,  and  WTI  oil  prices  increased  to  the  US$70-­‐85/bbl  range  in  2010,  a  range  in  which  oil  sands  Greenfield  projects  currently  become  economic.    

In  response,   several  companies  are  now  actively  developing  project  phases  that  were  previously  placed  on  hold.  However,  producers  remain  cautious  about   future  oil  price  estimates,  and   are  proceeding  at  a  more  balanced  pace  in  order  to  establish  a  better  controlled  cost  environment.  This  approach  should  help  producers  avoid  a  repeat  of  the  high  cost  inflation  environment  that  resulted  from  the  peak  investment  spending   in   2007   and   2008   associated   with   the   concurrent   development   of   several   large   oil   sands  projects.  The  past  cancellations  and  deferrals  of  projects  should  keep  2010  costs  low,  relative  to  the  past  few  years.1  

The  oil  sands  industry  has  attracted  the  attention  of  environmental  activists  who  are  concerned  about  the  negative  impact  the  oil  sands  development  would  have  on  land,  water  and  air  quality.  All  parties  involved  are   currently   working   on   minimizing   these   impacts   through   environmental   policies,   technological  advancements   and   their   implementation   with   one   goal   in   mind:   sustainable   and   socially   acceptable  development  of  oil  sands  industry  that  is  an  integral  part  of  the  Canadian  economy.2  The  development,  no  matter  how  transparent,  will  be  carefully  monitored  by  other  governments  and  environmental  activists  as  this  vast  Canadian  resource  is  developed.  

This  is  the  sixth  annual  edition  of  the  Canadian  Energy  Research  Institute CERI)  oil  sands  supply  cost  and  development  projects  update  report.  Similar  to  past  editions  of  the  report,  several  scenarios  for  oil  sands  developments   will   be   explored.   In   addition,   given   the   assumptions   for   the   current   cost   structure,   an  outlook  for  future  supply  costs  will  be  provided.  

The  purpose  of  this  report  is  to:  

Provide  the  reader  with  a  better  understanding  of  the  current  status  of  Canadian  oil  sands  projects,  both   existing   and   planned.   The   status   assessment   will   cover   the   full   spectrum   of   activities   and  

                                                                                                                                 1

Sands   project.   The   project   has   been   broken   into   5   separate   categories   -­‐development  and   to  break   the  overall  expansion   into  smaller,  more  manageable  pieces   that  will   lead   to  enhanced  project   and   cost   control.   Current   expansion   and   debottlenecking   will   be   very   deliberate   and   flexible   to   ensure  projects  can  be  started  or  stopped  based  on  market  conditions.  Another  example  is  Suncor  entering  into  a  strategic  partnership  with   Total   E&P   Canada   Ltd.,   to   jointly   develop   the   Fort   Hills   and   Joslyn   oil   sands  mining   projects   and  restart  construction  of  the  Voyageur  upgrader.  This  partnership  promises  to  keep  costs  down  while  jointly  developing  the  mines  then  going  separate  and  bidding  for  same  contractors.  2CERI  Study  No.  120,   of  the  Petroleum  Industry  in  Canada, July  2009.  

Page 22: Canadian Energy Research Institute oilsands report -  2011

2   Canadian  Energy  Research  Institute  

May  2011  

technologies,   such   as   in   situ,  mining,   and   integrated   production;   and   facilities   for   upgrading   crude  bitumen  to  SCO.  

Explore   the   future   direction   of   oil   sands   developments,   including   a   projection   of   investments   and  production.  

Understand  the  natural  gas  requirements  of  the  industry,  and  the  GHG  emissions  associated  with  the    natural  gas  consumption.  

Estimate   the   supply   cost,   including   costs   associated  with   carbon   emissions,   for   greenfield   projects  consistent  with  in  situ,  mining  and  integrated  production.  

Review  the  current  industry  trends  and  challenges.   Provide  an  overview  of  the  existing  and  proposed  pipeline  infrastructure.  

Approach  and  Methodology  CERI  has  established  itself  as  a  leader  in  oil  sands  related  market  intelligence.    oil  sands  projections  and   supply   cost   analysis   are   used   by   industry,   governments,   and   other   stakeholders   as   part   of   their  market   analysis.   This   report   relies   upon   the   most   up-­‐to-­‐date   information   available   on   project  announcements   (updated   to   November   3,   2010),  team.  

The   2010   report   presents   project   vintages   and   production   capacities   of   existing   and   planned   projects.  

upgrading),   location,  and  extraction   technologies   (including  pilot  projects).   Similarly,  upgrading   facilities  are  characterized  by  technology,  and  by  type  (i.e.,  stand-­‐alone  facilities,  or  integrated  with  crude  bitumen  extraction  facilities).  

All  of  the  above  information  for  both  existing  and   future  projects  is  presented  at  the  aggregate  industry  level   (i.e.,  oil   sands   industry   as  a  whole)   throughout   this   report.  The  oil   sands  projects  are  classified   to  reflect  the  stage  of  development.    

This   report   also   presents   greenfield   supply   costs   by   type   (i.e.,   mining,   in   situ   and   upgrading),   and   by  technology  (i.e.,  SAGD  for  in  situ  operation  and  integrated  vs.  stand-­‐alone  for  upgrading  facilities).  

Organization  of  the  Report  Chapter  1  highlights  the  background  of  the  study  and  presents  the  objective,  scope  and  the  methodology.    

Chapter  2  introduces  the  oil  sands  upstream  activities,  and  the  scenarios  developed  for  this  report.    

Chapter   3   presents   the   assumptions   and  methodology   used   in   the   supply   cost   assessment.   Results   for  supply  costs  are  presented.  

Chapter   4   highlights   the   barriers   and   challenges   to   the   oil   sands   industry,   through   the   examination   of  several  production  projection  scenarios.  

Chapter  5  describes  the  current  issues  facing  the  oil  sands  industry,  including  the  environmental  concerns,  and  mergers  and  acquisitions.    

Chapter  6  discusses  existing  and  proposed  pipeline  infrastructure.  

Chapter  7  draws  key  conclusions  from  the  study.  

Page 23: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   3  

  May  2011  

Chapter  2  Oil  Sands  Overview    

Oil  Sands,  Background  Decades  of   research  and  development   from  all   levels  of  government   in  Canada,   in  addition  to   industry,  have  transformed  the  oil  sands  from  a  worthless  mixture  of  sand  and  oil  (only  good  for  paving  roads),  into  one  of  the  most  sought  after  commodities  on  the  

which  the  Alberta  Energy  Resources  Conservation  Board  (ERCB)  will  play  an  integral  role.  Eventually,  the  development   of   the   resource   will   extend   into   the   neighboring   province   of   Saskatchewan.   The  development  of  the  oil  sands  in  both  provinces,  no  matter  how  transparent,  will  be  carefully  monitored  by  other  governments  and  environmental  activists  that  are  sure  to  keep  the  industry  on  its  toes,  as  they  wage  an  ongoing  battle  with  the  industry  over  the  development  of  this  extraordinarily  valuable  Canadian  resource.  

While   the   resources   in   Saskatchewan   are   not   fully   delineated,   CERI   is   monitoring   the   ongoing  

resources   that   exist   in  Alberta   are   contained  within   three  oil   sands   areas   (Peace  River,  Athabasca,   and  Cold  Lake),  as  designated  by  the  Government  of  Alberta,  and  illustrated  in  Figure  2.1.  

Figure  2.1    

 SOURCE:    ERCB.  

Page 24: Canadian Energy Research Institute oilsands report -  2011

4   Canadian  Energy  Research  Institute  

May  2011  

Together   these   regions   cover   an   area   over   14.5   million   hectares   (ha),   with   the   remaining   established  reserves  at  169.9  billion  barrels  of  an  extremely  heavy  crude  oil,  referred  to  as  bitumen.1  Approximately  16  percent  of  169.9  billion  barrels  is  currently  under  active  development.2  

Mining  and  in  situ  production  methods,  both  of  which  will  be  discussed  later  in  the  report,  are  the  most  widely  accepted  bitumen  recovery  methods  that  are  currently  employed  in  the  oil  sands.  It  is  perceived  in  Canada,   and   internationally,   that   mining   of   the   oil   sands   represents   a   substantial   portion   of   the   total  surface  area  devoted  to  bitumen  production.  This  perception   is   likely  based  upon  the  widely  publicized  images   of   oil   sands   mine   sites   and   equipment   (illustrated   in   Figure   2.3).   More   importantly,   but   less  publicized  however,   is  the   fact  that   in  situ  production  (illustrated  in  Figure  2.2)  does  not  have  the  same  visual   impact,  given  the  smaller  footprint  on  a  per  project  basis.  The  amount  of  surface  area  devoted  to  mining   is   only   374,000  ha   (or   2.6   percent   of   the   total   surface   area),  which   pales   in   comparison   to   the  14,170,000  ha  that  could  be  recovered  using  in  situ  methods.  

Figure  2.2  Firebag,  In  Situ  

 SOURCE:  Suncor  Energy  Inc.  (Firebag).  

   

                                                                                                                                 1

includes  the  crude  bitumen,  minerals,  and  rocks  that  are  found  together  with  the  bitumen  (Source  ERCB,  2010  ST98).  2The   initial   volume-­‐in-­‐place   of   bitumen   has   been   estimated   by   the   Alberta   Energy   Resources   Conservation   Board  (ERCB)   and   is   used   to   estimate   the   initial   established   reserves   of   bitumen     bitumen   that   is   estimated   to   be  recoverable   given   current   technology   and   knowledge.   (While   the   ERCB   made   significant   changes   to   the   in-­‐place  resource   in   2009,   there   are   no   changes   to   the   estimate   of   the   initial   established   reserves   of   crude   bitumen.   The  

nitial  established  reserves  are  used  throughout  this  report  as  our  estimates  for  the  resource   size.)   Source:   Alberta   Energy   Resources   Conservation   Board.  Supply/Demand  Outlook  2010-­‐  

Page 25: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   5  

  May  2011  

Figure  2.3  Suncor  Mining  Operation  

 SOURCE:  Suncor  Energy  Inc.  

Of  the  recoverable  bitumen  remaining,  80  percent  is  estimated  to  be  recoverable  using  in  situ  methods,  which  target  deposits  that  are  too  deep  for  mining.  The  remaining  recoverable  bitumen  is  anticipated  to  be  recovered  using  mining  techniques.    

Table   2.1   provides   a   breakdown   of   the   initial   volume-­‐in-­‐place,   initial   established   reserves,   cumulative  production,  as  well  as  the  remaining  established  reserves,  to  help  further   illustrate  the  vast  potential   in  the  area.  

Table  2.1  In-­‐Place  Volumes  and  Established  Reserves  of  Crude  Bitumen  in  Alberta  

 (10^9  barrels)3  

Recovery  Method  Initial  

Volume-­‐in-­‐Place  Initial  Established  

Reserves  Cumulative  Production  

Remaining  Established  Reserves  

Total   1,802.7   176.7   6.9   169.8  Mining   130.8   38.7   4.5   34.2  In  situ   1,671.9   138.0   2.4   135.5  

 

Oil  Sands  Development  Scenarios  The   extraction   of   bitumen   from   the   oil   sands  will   be   driven   by   the   forces   of   supply   and   demand,  with  extraction   technologies  being  an   integral   component   in   ensuring   that   the  oil   sands   remain   competitive  with  other  sources  of  crude  oil.  While  there  are  indications  that  the  developed  economies  have  emerged  from   the   recession,   the   rate   at   which   they   are   recovering   remains   uncertain.   Furthermore,   there   is                                                                                                                                    3Alberta  Energy  Resources  Conservation  Board.   -­‐

 

Page 26: Canadian Energy Research Institute oilsands report -  2011

6   Canadian  Energy  Research  Institute  

May  2011  

uncertainty   as   to   how   the   speed   of   their   recovery   could   help,   or   hinder,   the   ongoing   development   of  other  nations.  While  the  US  share  of  world  oil  demand  has  been  decreasing  over  the   last  ten  years,  the  BRIC  nations  of  Brazil,  Russia,4  India  and  China  have  become  the  primary  drivers  of  incremental  non-­‐OECD  crude  oil  demand,  as  shown  in  Figure  2.4.    

Figure  2.4  US  and  BRIC  Oil  Consumption  

 Source:  BP  Statistical  Review,  2010  

 This   report   is   based  on   three  plausible   scenarios   that   take   into  account  possible  paths   for   the  economic   recovery   (and   demand   for   oil),   emissions   legislation,   and   lastly   the   impact   that   the  emerging  economies  could  have  on  energy  security.    

The  projection  period  for   this  analysis  extends   from  end  of  year  2010  to  end  of  year  2044,  and   in  each  scenario   it   has   been   assumed   that   the   Canadian   and   the  US  other.5  For  this  reason,  all  monetary  values   in  this  report  are  assumed  to  be  in  Canadian  dollars,  unless  otherwise  stated.  Lastly,  all  values  in  this  report  are  presented  as  real  dollars.  

The  first  scenario  is    Realistic  Scenario,6  which  assumes  that  the  developed  nations  emerged  from  the  recession  and  continue  to  recover,  experiencing  modest  economic  growth  in  2011,  bringing  about  a  slow  and  steady  growth  in   the  demand  for  crude  oil.  The  growth  is  tempered  somewhat  by  geopolitical  concerns  in  the  Middle  East  and  economic  setbacks  in  some  European  nations.   In  this  scenario  oil  prices  

                                                                                                                                 4Even  though  Russia  and  Brazil  are  energy  exporters,  their  domestic  energy  consumption  has  been  increasing,  just  like  China  and  India.  5While  it  is  highly  probable  that  the  Canadian  dollar  will  trade  above  par  with  the  U.S.  dollar,  it  is  assumed  that  the  Bank  of  Canada  would  intervene,  to  put  downward  pressure  on  the  relative  value  of  the  Canadian  dollar.  More  will  be  discussed  in  the  next  Chapter,  as  it  relates  to  this  assumption.  6  

14%

16%

18%

20%

22%

24%

26%

28%

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Shares  of  world  oil  consumption  by  the  US  and  BRIC

BRIC US

Page 27: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   7  

  May  2011  

begin  a  slow  and  steady  climb  (see  Figure  2.5),  thus  sending  a  signal  to  oil  sands  proponents  to  develop  their   projects   to  meet   the  demand   for   crude  oil,  which   is   assumed   to  be   returning   to   its   pre-­‐recession  growth,  and  a  period  of  ongoing  growth  for  the  foreseeable  future  ensues.    

Figure  2.5  Realistic  Oil  Prices  

 Source:  EIA,  CERI  

The   growth   will   be   tempered,   albeit   modestly,   by   an   ongoing   push   toward   environmental   protection,  through  modest  emissions  compliance  costs.  These  costs  are  designed  to  stimulate  the  development,  and  use,  of  new  oil  sands  technologies,  and  are    

The  emissions  costs  will  be  driven  not  by  a  global  market,  but  by  a  North  American  emissions  pact,  that  harmonizes  compliance  costs,  and  seeks  to  reduce  emissions,  while  not  being  overly  onerous  to  the  public  and   industry     which   will   pay   a   higher   price   for   all   goods   and   services.   Furthermore,   the   emissions  compliance   costs   could   potentially   slow   down   the   economic   recovery,   and   therefore   are   gradually  implemented  over   the  next   35  years   (see  Figure  2.6).  While   this  might  not   satisfy   international   climate  change  activists,  the  modest  emissions  compliance  costs  act  as  a  stimulant  for  technology  development,  as  oil  sands  companies  seek  to  differentiate  themselves  from  the  barrel.7  

   

                                                                                                                                 7T

per  tonne  of  carbon  dioxide  equivalent  emissions.  A  2008  amendment  to  the  Act  outlines  the  potential   investment  areas   for   the   tax,  or  compliance  cost,   revenues.   Information  on   the  Act  and  all  amendments   to   it   can  be   found  by  

http://www.environment.alberta.ca/.    

$40

$80

$120

$160

$200

2010 2020 2030 2040

$/bblWTI  Oil  Price  ProjectionExpect  prices  to  triple  over  the  next  35  years

Page 28: Canadian Energy Research Institute oilsands report -  2011

8   Canadian  Energy  Research  Institute  

May  2011  

Figure  2.6  Realistic  Emissions  Compliance  Costs  

   The  next  two  scenarios  provide  alternative  views  of  how  the  world  could  develop  over  the  next  35  years.  The  Protracted  Slowdown  Scenario  represents  a  world  in  which  the  economic  recovery  is  stalled  in  2011,  driven   by   protectionist   policies   and   aggressive   emissions   compliance   costs   that   put   an   overly   onerous  burden   on   various   hydrocarbon-­‐based   industries.   Environmental   policy   trumps   economic   growth   (and  

variety  of   industries.  These  policies  do  not   initially  drive  up  oil  prices,  as  seen   in  Figure  2.7,  but   instead  raise  the  cost  of  living  in  developed  economies,  and  negatively  impact  imports  from  the  BRIC  nations.  This  Scenario  results  in  a  minimal  economic  growth,  until  2021,  as  trade  is  restricted.    

Figure  2.7  Protracted  Slowdown  Oil  Prices  

 

$0

$10

$20

$30

$40

$50

$60

$70

$80

2010 2020 2030 2040

$/TRealistic  Compliance  Cost  ProjectionExpect  costs  to  rise  in  35  years

40

80

120

160

200

2010 2020 2030 2040

$/bblWTI  Oil  Price  ProjectionStagnant  oil  prices  until  2021  when  economic  growth  resumes

Page 29: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   9  

  May  2011  

With   high   compliance   costs,   as   illustrated   in   Figure   2.8,   and   limited   economic   growth,   the   oil   sands  development   becomes   stagnant   over   the   next   decade.   Eventually,   protectionist   policies   are   relaxed,  which   helps   spur   a   period   of   economic   growth,   and   in   turn,   brings   forth   the   resumption   in   oil   sands  developments.   The  high  compliance  costs   remain,  which   drive   the  overall   costs   for  oil   sands  producers  and  hence  have  a  negative  impact  on  oil  sands  development  over  the  projection  period.  

Figure  2.8  Protracted  Slowdown  Emissions  Compliance  Costs  

   The   last   scenario   is   driven   by   energy   security   concerns,   where   security   for   energy   undermines  environmental  policies.  Under  the  Energy  Security  Scenario ,  both  developed  and  emerging,   compete   for   hydrocarbon   resources.   The   BRIC   nations   expand   exports   of   products,   which  drives  up   their   demand   for   energy,   notably   crude  oil.   The  major  demand   centres   for   the    exports,  the  US  and  other  developed  countries,  also  experience  a  period  of  rapid  economic  growth,  and  rising  crude  oil  demand.    

those  policies  do  not  offset  the  increase  in  demand  for  crude  oil  from  the  emerging  economies.  Faced  with  rising  oil  prices,  and  a  surge  in  demand,  the  BRIC  and  other  developed  nations  seek  to  secure  access  to  physical  supplies  of  oil.  For   instance,   the   US   of   crude   oil,   aggressively   seeks   to   secure   reliable  sources  of  oil,  and  provides  expedited  approvals  for  pipeline  expansions  from  Canada.  While  US  demand  for   refined  products  does  not   increase,   refineries   are   slowly   being   converted   to   process   heavy  oil,   and  those  refineries  that  previously  accepted  heavy  oil,  i.e.,  Venezuelan  heavy  oil,  turn  to  Canadian  oil  sands.  Venezuela  is  not  curtailed,  but  instead  displaced  from  the  US  Gulf  of  Mexico  market.  It  is  assumed   that   BRIC   nations,   notably   China,   absorb   the   displaced   oil.   Similarly,   other   heavy   oils   are  displaced  to  other  parts  of  the  world.  

   

$0$20$40$60$80$100$120$140$160$180$200

2010 2020 2030 2040

$/T

Protracted  Slowdown  Compliance  Cost  ProjectionCompliance  costs  will  rise  rapidly  until  2044

Page 30: Canadian Energy Research Institute oilsands report -  2011

10   Canadian  Energy  Research  Institute  

May  2011  

Figure  2.9  Energy  Security  Oil  Prices  

   

extraction   technologies,   are   not   the  primary   concerns   in   this   Scenario.   Environmental   opposition   to   oil   sands   development   continues,   but  environmental  concerns  are  offset  by  concerns  over  energy  security.  This  is  not  to  say  that  environmental  policies  take  a  back  seat.  Moderate  emissions  compliance  costs  (see  Figure  2.10)  are  introduced  in  North  America,   and   new   technologies   are   developed   to   reduce   the   environmental   footprint   of   oil   sands  operations.  The  application  of  new  technologies   is  driven  by  economics,  and  no  subsidies  are   required.  Carbon  capture  equipment  is  installed  on  some  facilities,  for  the  primary  purpose  of  supporting  enhanced  oil  recovery  rather  than  to  reduce  emissions.  

Figure  2.10  Energy  Security  Emissions  Compliance  Costs  

   

$40

$80

$120

$160

$200

$240

$280

2010 2020 2030 2040

$/bblWTI  Oil  Price  ProjectionRapid  rebound  from  recession  results  in  oil  prices  reaching  $200  by  2035

$0

$10

$20

$30

$40

$50

$60

2010 2020 2030 2040

$/T

Energy  Security  Compliance  Cost  ProjectionCompliance  costs  slowly  rise  over  the  next  35  years

Page 31: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   11  

  May  2011  

Each  of  the  three  scenarios  is  important  in  understanding  some  of  the  drivers  of  oil  sands  developments.  What  will  ultimately  drive  the  development  of  the  oil  sands  are   the   long-­‐run  global  oil  prices  (driven  by  supply  and  demand),  and  development  and  production  costs  (including  emissions  compliance  costs).  The  next  Chapter  of  this  report  will  explore  the  oil  sands  supply  costs  under  the  conditions  described  in  the  Realistic  Scenario.  This  will  set  the  stage  for  an  examination  of  the  paths  for  oil  sands  development  under  each  of  the  three  scenarios.  

   

Page 32: Canadian Energy Research Institute oilsands report -  2011

12   Canadian  Energy  Research  Institute  

May  2011  

 

Page 33: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   13  

  May  2011  

Chapter  3  Oil  Sands  Overview    Supply  Costs    

method   utilizes   various   technologies   to   extract   valuable   bitumen   from   the   oil   sands.   The   focus   of   this  report  is  on  commercial  extraction  technologies,  which  are  defined  as  technologies  being  used  in  two  or  more   oil   sands   projects,   and   by  more   than   one   oil   sands   operator.   These   technologies   are   mining   and  extraction,1  steam  assisted  gravity  drainage  (SAGD),  and  cyclic  steam  stimulation  (CSS).2  

This  Chapter  is  organized  as  follows:  a  brief  discussion  of    supply  cost  methodology  will  be  followed  by   the   assumptions   used   to   support   the   CERI   model.   Once   the   assumptions   have   been   provided,   the  supply  costs  are  presented   in  a  manner  that   is  comparable  to  previous  CERI   results,   followed  by  supply  costs   that   reflect   the   Realistic   Scenario.   These   results   will   be   discussed   in   detail,   along   with   their  implication  on  oil  sands  development.  

Methodology  and  Assumptions  that  used  by  industry,  government,  and  

non-­‐governmental  organizations.  The  supply  cost  represents  the  constant  dollar  price  needed  to  recover  all  capital  expenditures,  operating  costs,  royalties,  taxes,  and  earn  a  realistic  return  on  investment.    

In  past  reports,    (ROR)  on  an  investment  (10  percent,  real),  thereby,  allowing  the  price  of  oil  to  vary  by  extraction  method.  This  approach  allowed  CERI  to  estimate  the  price  of  oil  required  to  bring  forth  new  oil  sands  projects,  by  extraction  method.  When  the  Government  of  Alberta  moved   away   from   a   royalty   system   that  was   fixed   (by   pre-­‐and   post-­‐payout   periods),   to   a   system   that  takes  into  account  oil  prices,   The  new  supply  cost  methodology  takes  into  account  oil  prices,  and  solves  for  the  constant  real  ROR  that  is  needed  to  recover  all  capital  expenditures,  operating  costs,  royalties,  and  taxes,  given  an  oil  price  projection.  A  forecast  of  

Outlook  2010  (EIA  AEO  2010)  and  extended,  at  a  rate  of  3  percent  per  year,  to  cover  the  projection  period  (see  Figure  3.2).  As  was  the  case  in  the  previous  model,  the  new  model  provides  a  constant  dollar  price  that  reflects  the  RORs.  

The   supply  costs   calculated   in   this   report  are  presented  as   supply  costs  at   the   field,   in  addition   to  WTI  equivalent  supply  costs.  The  WTI  equivalent  supply  costs  take  into  account  transportation  costs  for  either  SCO  or  blended  bitumen,  in  addition  to  an  assumed  light-­‐heavy  differential.  

                                                                                                                                 1Within  mining  and  extraction  various  technologies  are  used  to  support  the  extraction  process  and  transportation  of  oil  sands.  While  each  technology  has  some  advantages  and  disadvantages,  they  have  all  been  categorized  as  mining  and  extraction  for  this  report  and  are  treated  as  one  technology  type.  2The  reader  is  assumed  to  have  some  familiarity  with  each  extraction  method.  Detailed  descriptions  of  the  extraction  technologies  are  available  from  CERI  as  part  of  previous  public  reports.    

Page 34: Canadian Energy Research Institute oilsands report -  2011

14   Canadian  Energy  Research  Institute  

May  2011  

The  assumptions  that  underpin  each  production  method  are  presented   in  Table  3.1.  The  project  design  parameters   and   energy   requirements   remain   the   same   as   in   the   2009   report,   however,   capital   and  operating  costs  have  been  adjusted  to  reflect  for  deflation  in  capital  and  inflation  in  operating  costs  from  2009  to  2010.  

Table  3.1  Design  Assumptions  by  Extraction  Method  

Measurement  Units SAGDMining  and  Extraction

Integrated  Miningand  Extractionand  Upgrading

Stand  Alone  Upgrading

Project  Design  Parameters

Stream  day  capacity bbl  of  bitumen  per  day 30,000 100,000 115,000

Stream  day  capacity bbl  of  SCO  per  day 100,000

Production  Life years 30 30 30 30Average  Capacity  Factor  (over  production  life) percent 77.00% 92.00% 92.00% 92.00%

Capital  Expenditures  (2010  Constant  Dollars)Initial Millions  of  dollars 1,091.4 7,988.0 11,238.9 5,131.9

Initial Dollars  per  bbl  of  capacity 36,381.0 79,879.8 97,729.9 51,319.1Sustaining  (Annual  Average) Millions  of  dollars 50.9 269.6 379.3 169.9

Operating  Working  Capital Days  payment 45 45 45 45

Operating  Costs

Fixed  (Annual  Average) Millions  of  dollars 75.0 177.4 362.7 198.7

Variable Dollars  per  bbl  of  capacity 7.2 8.9 14.0 5.1

Energy  RequirementsNatural  Gas

Royalty  Applicable GJ  per  day 32,100 54,000 62,100

Non-­‐Royalty  Applicable GJ  per  day 20,871 81,436

Electricity  Purchased

Royalty  Applicable MWh/d 300 0 1,128

Non-­‐Royalty  Applicable MWh/d 448

Electricity  Sold MWh/d 0 728 0 0

Other  Project  AssumptionsAbandonment  and  Reclamation percent  of  total  capital 2% 2% 2% 2%

 Notes:  -­‐ Capital   costs   for  SAGD  operations  are  an  average  of  AOSC's  Mackay  project,  Devon  Energy   Jackfish   Phase  3  and  Meg  Energy  Christina  Lake  Phase  2B.  Other  capital  and  operating    oil  sands  study,  and  have  been  adjusted  for  deflation  in  capital  and  inflation  in  operating  costs  from  2009  to  2010.  

-­‐ SCO  =  Synthetic  crude  oil    

 It  has  been  assumed  that  on-­‐site  cogeneration  is  in  place  for  mining  and  upgrading  projects.  Any  excess   electricity   is   sold   into   the   Alberta   system.   In   situ   projects   are   assumed   to   purchase  electricity   from   the   Alberta   grid.   Within   the   next   decade,   it   is   anticipated   that   most   in   situ  projelectricity  load.  In  other  words,  most  new  in  situ  projects,  within  the  next  decade,  are  not  likely  to  produce  excess  amounts  of  electricity.  

Page 35: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   15  

  May  2011  

As  illustrated  in  Figure  3.1,  electricity  prices  are  assumed  to  increase  over  the  next  three  decades,  at  an  average  annual  inflation  rate  of  2.5  percent,  as  higher  fuel  prices  and  emissions  compliance  costs  results  in  a  different  generation  mix  within  the  province  of  Alberta.  

Figure  3.1  Electricity  Price  Projection  

 Source:  Clean  Air  Strategic  Alliance  (CASA),  CERI  

While  oil  sands  production  methods  are  continually  improving,  natural  gas  is  still  the  primary  fuel  source  for  the  oil  sands  industry.  A  forecast  of  natural  gas  prices  was  obtained  from  the  U AEO  2011  Early  Research  Overview,   and  extended,   at   a   rate  of   3  percent  per   year,   to   cover   the  projection  period.   The  natural  gas  prices  as  related  to  the    oil  price  projection  are  presented  in  Figure  3.2.  

Figure  3.2  Natural  Gas  Price  Projections  

 Source:  EIA,  CERI.  

$80

$100

$120

$140

$160

$180

$200

$220

$240

2010 2020 2030 2040

$/MWhElectricity  Price  ProjectionExpect  prices  to  more  than  double  in  35  years

$40

$80

$120

$160

$200

$3

$7

$11

$15

$19

$23

2010 2020 2030 2040

$/bbl$/GJ

Natural  Gas  &  WTI  Oil  Price  Projections

Page 36: Canadian Energy Research Institute oilsands report -  2011

16   Canadian  Energy  Research  Institute  

May  2011  

Light-­‐Heavy  Differential  

of  the   light-­‐heavy  differential.  This  differential   reflects   the   price  spread  between  a  barrel  of   light  oil,  as  measured  by  the  benchmark  WTI,  and  a  barrel  of  heavy  oil.  One  of  the  most  widely  accepted  measures  of  the  heavy  oil  price  is  the  Western  Canadian  Select  (WCS)  price.  

Launched   in   2004   by   EnCana   Corporation   (Cenovus   Energy),   Canadian   Natural   Resources   Limited,  Talisman,  and  Petro-­‐Canada  (Suncor),  the  WCS  consists  of  conventional  Western  Canadian  heavy  oil,  and  bitumen  that  has  been  blended  with  sweet  SCO  and  diluents.  This  heavy  oil  benchmark  crude  is  used  as  a  tool   for  hedging   risks   against  North  American  heavy   crude  oil   grades,   and   its  benefits   include:   reduced  infrastructure   requirements,   consistency  of   crude  oil  quality,   reduced  demand   for   conventional  diluent,  and  greater  market   liquidity.3  The  following  table  compares  the  characteristics  of  the  WCS  blend  to  two  other  crude  oils.4  

Table  3.2  Crude  Oil  Characteristics  

    WCS  Target   Maya   Mars  

Gravity  (API0)   19-­‐22   21.8   30.4  

Carbon  Residue  (Wt  %)   7.0-­‐9.0   13   5.5  

Sulphur  (Wt  %)   2.8-­‐3.2   3.5   1.9  

TAN  (mo  KOH/g)   0.7-­‐1.0   0.3   0.68    Since  the  WCS  represents  a  heavy  sour  barrel  of  oil,  it  is  more  difficult  to  refine  than  light  sweet  oil,  and  a  different  product  slate  results  from  the  heavier  barrel.  Because  of  this,  the  WCS  prices  should  be  lower  than  the  WTI  price,  producing  a  positive  light-­‐heavy  differential  (WTI  minus  WCS).  The  average  daily  light-­‐heavy  differential,   for  the  period  January  2,  2008  to  January  18,  2011  was  US$14.82.  Movements   in  this  differential   tend   to  correlate  positively,   though  not  perfectly,  with  changes   in   the  WTI  price.  Figure  3.3  displays  changes  in  the  light-­‐heavy  differential  over  this  period.  

   

                                                                                                                                 3Western   Canadian   Select   (WCS)   fact   sheet,   Cenovus   Energy,   http://www.cenovus.com/operations/doing-­‐business-­‐with-­‐us/marketing/western-­‐canadian-­‐select-­‐fact-­‐sheet.html.Accessed  on  January  10,  2011.  4

Corporation   presentation   to   the   Canadian   Heavy   Oil   Association,   February   3,   2005,   http://www.choa.ab.ca/  documents/Feb0305.pdf.  Accessed  on  January  11,  2011.  

Page 37: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   17  

  May  2011  

Figure  3.3  Light-­‐Heavy  Differential  

 Source:    Nickles,  CERI  

Based  on  the  historical  data,  the  light-­‐heavy  differential  is  assumed  to  be  constant  at  US$15.00/bbl.  This  assumption   reflects   a   scenario   in   which   bitumen   and   SCO   continue   to   penetrate   the   market  proportionately,   and   refineries   adjust   accordingly.   Per   barrel   transportation   costs   from   the   field   to  Hardisty,   and   Edmonton   to   Cushing,   Oklahoma,   are   assumed   to   rise   at   an   annual   inflation   rate   of   2.5  percent.   In   2010,   transportation   costs   from   the   field   to   Hardisty   were   $1.00/bbl,   and   $0.80/bbl   to  Oklahoma.  

Within  the  supply  cost  model,  federal  and  provincial  corporate  income  taxes  have  been  assumed  constant  at   19  percent   and   10  percent,   respectively.   The  provincial   royalty   rate,  which  applies   to  both  pre-­‐   and  post-­‐payout  periods,  is  linked  to  the  WTI  (Canadian  dollars),  and  is  maximized  when  the  oil  price  reaches  $120/bbl.  During  the  pre-­‐payout  period,  oil  sands  projects  are   levied  a  royalty,  based  on  gross  revenue,  while  post-­‐payout  projects   are   levied  a   royalty   that   is  allowable  ROR  before  payout  of  5.5  percent.  

The  royalty  rates  that  are  applied  under  the  Realistic  Scenario  are  illustrated  in  Figure  3.4.  

   

$0

$5

$10

$15

$20

$25

$30

$35

$40

$45

$50

$55

Page 38: Canadian Energy Research Institute oilsands report -  2011

18   Canadian  Energy  Research  Institute  

May  2011  

Figure  3.4  Bitumen  Royalty  Rates  

 Source:  Government  of  Alberta  

The  construction  and  operation  periods  for  an  oil  sands  project  have  been  slightly  adjusted  from  previous  studies,   in  order   to   reflect   somewhat   longer  construction  periods.  Oil   sands  operations  are  assumed   to  commence   construction  on   January  1,   2011,   and  begin  operating  on   January  1,   2014.   The  projects  will  continue  to  operate  until  end  of  year  2044.  

Estimating  Inflation  Nelson-­‐Farrar  Inflation  Refinery-­‐Construction  Cost  Index  (1946=100)  and  the  WTI  

A  critical  component   in  determining  future  oil  sands  supply  costs   is  the  cost  of  construction.  Within  the  design  assumptions  are  the  capital  and  operating  costs  for  each  oil  sands  extraction  method.  These  costs  

 

Methodology  

Estimating   the   inflation   in   oil   sands   construction   costs   can   be   a   difficult   endeavour   due   to   the   lack   of  available   historical   cost   data.   In   order   to   approximate   construction   cost   inflation   in   the   oil   sands,   CERI  studied  the  changes  in  the  Nelson-­‐Farrar  Inflation  Refinery-­‐Construction  Cost  Index.  There  are  two  main  reasons   for  using  the  Construction  Cost   Index   in   analysis.  First,   such  a  cost   index   is  not  currently  produced   by   any   organization   for   the   oil   sands.   Second,   many   of   the   costs   associated   with   the  construction  of  refineries  are  also  applicable  to  the  construction  of  oil  sands  projects.  Labour  costs  (skilled  and  common  labour)  make  up  60  percent  of  the  Construction  Cost  Index,  while  materials  and  equipment  (iron  and  steel,  building  materials,  and  miscellaneous  equipment)  account  for  the  remaining  40  percent  of  the  Construction  Cost  Index.    

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

2010 2020 2030 2040

Royalty  Rate

Provincial  Bitumen  Royalty  RatesBy  2024  projects  pay  maximum  rates  on  Gross  and  Net  Revenues

Net  Revenue

Gross  Revenue

Page 39: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   19  

  May  2011  

The  Nelson-­‐Farrar  Construction  Cost  Index  was  first  introduced    as  a  methodto   estimate   future   oil   sands   construction   cost   inflation.   This   section  will   outline   the   process   of  estimating  the  inflation.    

CERI  hypothesized  that  a  direct,  and  positive  relationship  exists  between  the  price  of  oil  and  construction  costs.  Qualitatively,  this   is  plausible  because  the  strength  of  oil  prices   is  dependent  on  robust  economic  activity,   and   economic   growth   has   a   tendency   to   lead   to   capital   cost   inflation.   To   test   this   theory  quantitatively,  a  simple  univariate  statistical  model  was  created  using  historical  WTI  spot  prices  and  the  Nelson-­‐Farrar  Inflation  Refinery-­‐Construction  Cost  Index.    

If  such  a  relationship  is  shown  empirically,  then  a  forecast  of  the  value  of  the  Construction  Cost  Index,  and  thus   oil   sands   construction   costs,   can   be   produced,   using   an   oil   price   projection.   The   change   in   the  construction  cost  index  over  time  can  be  interpreted  as  the  inflation  in  oil  sands  construction  costs.      

Data  

Monthly   Cushing,   Oklahoma   WTI   spot   price   data   (US$/bbl)   and   Nelson-­‐Farrar   Inflation   Refinery-­‐Construction  Cost   Index  data  were  obtained  from  the  EIA,  and  the  Oil  and  Gas  Journal,  respectively,  for  the  period  March  1996  to  July  2010.    

Annual  projections  of  the  WTI  price  were  obtained  from  the  EIA,  for  the  period  2010  to  2035.  Between  2035  and  2044,  it  is  assumed  that  the  WTI  price  increases  at  an  annual  rate  of  3  percent.  Because  the  data  is   annual,  we   assume   that   it   is   an   average   value   for   the   year,   and   set   the  monthly   value   equal   to   the  annual  WTI  price  over  the  projection  period.    

Results  

The   analysis   revealed   a   strong,   positive,   and   statistically   significant   relationship   between   the  WTI   spot  80  percent  of  observed  changes  in  the  

Construction  Cost  Index  can  be  explained  by  changes  in  the  price  of  oil.  A  US$1/bbl  increase  (decrease)  in  the  WTI  spot  price  is  estimated  to  increase  (decrease)  the  Construction  Cost  Index  by  10.  Figure  3.5  shows  a  scatter  plot  of  historical  WTI  prices,  and  the  Nelson-­‐Farrar  Refinery  Construction  Cost  Index.  

   

Page 40: Canadian Energy Research Institute oilsands report -  2011

20   Canadian  Energy  Research  Institute  

May  2011  

Figure  3.5  Effect  of  the  Oil  Price  on  Refinery  Construction  Costs  

 Source:  CERI,  US  EIA,  Oil  and  Gas  Journal  

The   Nelson-­‐Farrar   Refinery   Construction   Cost   Index   was   projected   to   the   end   of   the   outlook   period  (2044),  assuming  that  no  future  structural  breaks  occur   in  the  relationship  between  the  price  of  oil  and  construction   costs.   The   model   indicates   that   year-­‐over-­‐year   (October   2009-­‐October   2010)   refinery  construction   costs   have   experienced   a   deflation   of   3.6   percent.   Between   the   end   of   2010   and   2044,  construction  costs  are  estimated  to  increase  by  51  percent.  The  average  annual  construction  cost  inflation  rate,  forecasted  between  October  2011  and  October  2044,  is  1.1  percent.  Figure  3.6  displays  projections  of  the  WTI  price,  and  the  annual  inflation  in  refinery  construction  costs.  

Figure  3.6  Historic  and  Projected  WTI  Prices  and  Construction  Cost  Inflation  Rates,  2007-­‐2044  

 Source:  CERI,  US  EIA,  Oil  and  Gas  Journal  

0

500

1,000

1,500

2,000

2,500

3,000

0 20 40 60 80 100 120 140 160

Construction  Cost  Index

WTI  (US$/barrel)

-­‐6

-­‐4

-­‐2

0

2

4

6

8

10

020406080100120140160180200

WTI  (US$/barrel) Construction  Cost  Inflation  (%)

WTI  Inflation

Page 41: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   21  

  May  2011  

Canadian-­‐US  Exchange  Rate(C$/US$)  and  the  WTI  

The  purpose  of  this  section  is  not  to  provide  a  detailed  forecast  of  Canadian-­‐US  exchange  rates  over  the  long  projection  period   covered   in   this   study,  but   rather   to   simply   illustrate   the  effect   that  one  variable  could  have  on  the  exchange  rate,  ignoring  all  other  factors,  and  left  unconstrained  by  government  policy.  It   is   true   that   many   factors   can   have   an   impact   on   the   exchange   rate,   including   political   changes,  productivity,   and   debt.   However,   there   is   one   factor   that   has   had   an   undeniable   influence   on   the  Canadian-­‐US  exchange  rate,  and  has  become  more  important  over  time.  This  factor  is  the  price  of  crude  oil.  

Methodology  

The  statistical  relationship  between  crude  oil  prices  and  the  Canadian-­‐US  exchange  rate  is  estimated  with  an  ordinary  least  squares  approach.  A  simple  exchange  rate  forecast  is  then  produced  using  a  forecast  of  crude  oil  prices.  In  this  exercise,  it  is  assumed  that  the  exchange  rate  is  left  unconstrained  by  central  bank  interventions.    

Data  

The   statistical   analysis   required   data   on   historic   and   projected   crude   oil   prices,   and   historic   exchange  rates.  Monthly  Cushing,  Oklahoma  WTI  spot  price  data  (US$/bbl)  was  obtained  from  the  EIA  for  the  period  March  1996  to  July  2010.  Historical  exchange  rate  data  (C$/US$)  was  obtained  for  the  same  period  from  

extended,  at  a  rate  of  3  percent  per  year,  to  cover  the  projection  period.    

Results  

There  exists  a  negative  and  statistically  significant   relationship  between  the  Canadian-­‐US  exchange  rate  and   the   price   of   crude   oil,   as   illustrated   in   Figure   3.7factors,   78   percent   of   the   variations   in   the   exchange   rate   can   be   explained   by   changes   in   the   price   of  crude  oil.  

   

Page 42: Canadian Energy Research Institute oilsands report -  2011

22   Canadian  Energy  Research  Institute  

May  2011  

Figure  3.7  Effect  of  the  Oil  Price  on  the  Canadian-­‐US  Exchange  Rate  

 Source:  CERI,  US  EIA,  Statistics  Canada  

For  each  $1/bbl   increase   in   the  WTI  price,   the  value  of   the  US  dollar,   relative  to  the  Canadian  dollar,   is  estimated  to  decrease  by  0.0061.  That   is,   for  every  US$1/bbl   increase   in  the  price  of  oil,  each  US$1  can  purchase  0.0061  fewer  Canadian  dollars.  Figure  3.7  shows  that  over  time,  and  left  unconstrained  by  fiscal  and  monetary  policies,  the  exchange  rate  declines  to  C$0.99/US$1  (US$1.01/C$1)   in  2015,  C$0.81/US$1  (US$1.23/C$1)  in  2030,  and  C$0.50/US$1  (US$2.00/C$1)  by  2044.  

Figure  3.8  Historic  and  Projected  WTI  Prices  and  the  Canadian-­‐US  Exchange  Rate,  2007-­‐2044  

 Source:  CERI,  US  EIA,  Statistics  Canada  

As   the  Canadian-­‐US   exchange   rate   ($C/$US)  decreases,   Canadian  goods  and   services   become   relatively  more   expensive   to   purchase  with  US   dollars,   and   Canadian   exports   to   the  US   decline   correspondingly.  

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 20 40 60 80 100 120 140 160

C$/US$

WTI  

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

020406080100120140160180200

Jan-­‐07

Mar-­‐11

May-­‐15

Jul-­‐1

9

Sep-­‐23

Nov-­‐27

Jan-­‐32

Mar-­‐36

May-­‐40

Jul-­‐4

4

WTI  (US$/barrel) C$/US$

WTI  

Exchange  Rate

Page 43: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   23  

  May  2011  

Between  2004  and  2009,  the  value  of  Canadian  exports  to  the  US  declined  by  approximately  23  percent.  Over  the  same  period  of  time,  the  Canadian-­‐US  exchange  rate  declined  by  12  percent.  In  2009,  Canadian  

5  

The  simple  univariate  model  utilized  in  this  exercise  ignores  important  factors  that  could  have  an  impact  on   the   Canadian-­‐US   exchange   rate,   and   therefore   suffers   from   under-­‐specification   bias.   To   better  determine   the   effect   of   crude   oil   prices   on   the   exchange   rate,   other   relevant   variables   should   also   be  considered.  One  such  variable,  as  suggested  by  recent  Bank  of  Canada  research,   is  the  US  debt  to  gross  domestic  produc .6  

Exchange  rate  parity  will  be  assumed  throughout   the  projection  period,  as   fiscal  and  monetary  policies  would   likely  be   implemented,  over   the   long-­‐term,   to  prevent  excessive  appreciation  of  the  Canadian  dollar  against  the  US  dollar.    

 Nelson-­‐Farrar  Refinery-­‐Operating  Cost  Index  (1956=100)  and  the  WTI  

Methodology  

The  operating  costs  of  an  oil  sands  project  contribute  significantly  to  the  total  supply  cost.  As  with  capital  costs,   however,   no   index   currently   exists   to   capture   changes   in   oil   sands   operating   costs   over   time.   In  order  to  estimate  the  inflation  rate  of  oil  sands  operating  costs,  a  feasible  alternative  measure  must  be  obtained.  While  the  operating  costs  of  an  oil  refinery  do  not  mirror  those  of  an  oil  sands  upgrader  exactly,  the   two   facilities   are   similar   in   that   each   consists   of   very   energy   intensive   processing   units.7   For   this  reason,  the  Nelson-­‐Farrar  Refinery  Operating  Cost  Index  is  used  in  the  examination  of  oil  price  impacts  on  oil   sands  operating  costs.  The  Operating  Cost   Index  accounts   for   the   following   refinery  operating  costs:  fuel,  power,  labour,  investment,  maintenance,  and  chemicals.    

With  a  linear  estimation  approach,  CERI  is  able  to  test  the  impact  of  changes  in  the  price  of  oil  on  refinery  operating   costs.  Given  a   statistical   relationship  between   refinery  operating   costs   and   the  price  of  oil,   a  forecast   of   the   value  of   the  Nelson-­‐Farrar  Refinery  Operating  Cost   Index   can  be  produced,  using  an  oil  price  projection.  Year-­‐over-­‐year  changes  in  the  Operating  Cost  Index  could  then  be  used  as  a  rough  proxy  for  the  rate  of  inflation  in  oil  sands  operating  costs.  

Data  

Monthly   Cushing,  Oklahoma  WTI   spot   price   data   (US$/bbl),   and  Nelson-­‐Farrar   Refinery  Operating   Cost  Index  data  were  obtained  from  the  EIA,  and  the  Oil  and  Gas  Journal,  respectively,  for  the  period  March  1996  to  July  2010.    Projections  of  the  WTI  price  from  the  US  EIA,  and  CERI  are  used  to  estimate  exchange  rates  to  2044.                                                                                                                                      5Imports,   exports   and   trade   balance   of   goods   on   a   balance-­‐of-­‐payments   basis,   by   country   or   country   grouping,  Statistics  Canada,  http://www40.statcan.gc.ca/l01/cst01/gblec02a-­‐eng.htm,  Accessed  on  December  31,  2010.  6Cayen,  Jean-­‐

February  2010.  7While   this   relationship   is   weaker   for   an   oil   sands   operation,   it   is   still   a   relevant   comparison   until   an   alternative  method  is  developed.  

Page 44: Canadian Energy Research Institute oilsands report -  2011

24   Canadian  Energy  Research  Institute  

May  2011  

Results  

WTI   spot   prices   have   a   positive   and   statistically   significant   effect   on   the   value   of   the   Nelson-­‐Farrar  Refinery  Operating  Cost   Index.  Eighty-­‐two  percent  of  observed  changes   in  the  Operating  Cost   Index  can  be   explained   by   changes   in   the   price   of   oil.   A   US$1/bbl   increase   (decrease)   in   the   WTI   spot   price   is  estimated  to  increase  (decrease)  the  Operating  Cost  Index  value  by  3.3.  Figure  3.9  shows  a  scatter  plot  of  historical  WTI  prices,  and  the  Nelson-­‐Farrar  Refinery  Operating  Cost  Index.  

Figure  3.9  Effect  of  the  Oil  Price  on  Refinery  Operating  Costs  

 Source:  CERI,  US  EIA,  Oil  and  Gas  Journal  

The   forecast  of   the  Nelson-­‐Farrar  Refinery  Operating  Cost   Index  estimates   that  refinery  operating  costs  have  increased  by  5.8  percent,  year-­‐over-­‐year  (October  2009-­‐October  2010).    

Between  December  2010  and  December  2044,  operating  costs  are  estimated  to  increase  by  58  percent.  The  annual  average  operating  cost  inflation  rate  forecasted  between  October  2011  and  October  2044  is  1.2  percent.  Figure  3.10  displays  a  projection  of  the  WTI  price,  and  the  annual  rate  of  inflation  in  refinery  operating  costs.  

   

0

100

200

300

400

500

600

700

800

900

0 20 40 60 80 100 120 140 160

Operating  Cost  Index

WTI  (US$/barrel)

Page 45: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   25  

  May  2011  

Figure  3.10  Historic  and  Projected  WTI  Prices  and  Operating  Cost  Inflation  Rates,  2007-­‐2044  

 Source:  CERI,  US  EIA,  Oil  and  Gas  Journal  

Supply  Cost  Results  To  better  understand  th ,  a  price  projection  was  required  in  order  to  accurately  account  for  the  new  royalty  system.  The  Realistic  Scenario  is  essential,  as  it  allows  CERI  to  compare  each  extraction  method  against  the  other  with  the  same  oil  and  natural  gas  price  assumptions.  

The   oil   price   is   again   illustrated   in   Figure   3.11   to   provide   context   to   these   results.   Under   the   price  projection,   the   oil   sands   are   shown   to   be   highly   profitable,   and   an   extremely   good   investment   for   oil  sands  operators,  as  well  as  the  provincial  and  federal  governments.  

Figure  3.11  Natural  Gas  and  Oil  Price  Projection  

 Source:  EIA,  CERI.  

-­‐15

-­‐10

-­‐5

0

5

10

15

020406080100120140160180200

WTI  (US$/barrel)Operating  Cost  Inflation  (%)

WTI  

Inflation

$40

$80

$120

$160

$200

$3

$7

$11

$15

$19

$23

2010 2020 2030 2040

$/bbl$/GJ

Natural  Gas  &  WTI  Oil  Price  Projections

Page 46: Canadian Energy Research Institute oilsands report -  2011

26   Canadian  Energy  Research  Institute  

May  2011  

Figure  3.12  Realistic  Oil  Sands  Supply  Costs  

SAGD(Realistic  Oil  Price  Projection

19%  ROR)

Mining  &  Upgrading  (Realistic  Oil  Price  Projection

6%  ROR)

Mining  (Realistic  Oil  Price  Projection

14%  ROR)

Electricity  Sales 0.0 0.0 0.7Emissions  Compliance  Costs 1.4 1.2 0.8Income  Taxes 8.3 5.1 8.6Royalties 19.6 18.0 20.1Abandonment  Costs 0.0 0.2 0.0Electricity 1.0 0.8 0.0Other  Operating  Costs  (Fixed  &  Variable) 16.2 31.5 15.9Fuel  (Natural  Gas) 5.5 4.6 2.8Operating  Working  Capital 1.5 0.6 1.3Fixed  Capital  (Initial  &  Sustaining) 39.3 38.1 43.9

$0

$20

$40

$60

$80

$100

$120

$/bbl

 In  situ  projects  reach  payout  in  4  years,  mining  projects  in  5  years,  and  integrated  projects  in  5  years.  The  result  is  a  substantial  increase  in  oil  sands  royalties  collected  by  the  province,  and  in  some  cases,  RORs  for  oil  sands  operators.  

Figure   3.12   illustrates   the   supply   costs   for   SAGD,   mining   and   integrated  mining.   The   plant   gate   supply  costs,  which   exclude   transportation   and   blending   costs,   are   $93/bbl,   $100/bbl,   and   $93/bbl   for   SAGD,  integrated  mining  and  upgrading,  and  stand-­‐alone  mining,   respectively.  The  WTI  equivalent   supply  cost  for  SAGD  projects   is  $123/bbl,  $128/bbl   for   integrated  mining  and  upgrading  projects,  and  $123/bbl  for  stand-­‐alone  mining  projects.  While  capital  costs  and  the  return  on   investment  account   for  a  substantial  portion  of  the  total  supply  cost,  the  province  stands  to  gain  $18  to  $20  in  royalty  revenues  for  each  barrel  of  oil  produced  on  average,  over  the  life  of  an  oil  sands  project.  On  a  percentage  basis,  this  ranges  from  18  to  22  percent  (see  Figure  3.13).  

   

Page 47: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   27  

  May  2011  

Figure  3.13  Realistic  Oil  Sands  Supply  Costs  (Contribution)  

SAGD(Realistic  Oil  Price  Projection

19%  rate  of  return)

Mining  &  Upgrading  (Realistic  Oil  Price  Projection

6%  rate  of  return)

Mining  (Realistic  Oil  Price  Projection

14%  rate  of  return)

Electricity  Sales 0.0% 0.0% 0.8%Emissions  Compliance  Costs 1% 1% 1%Income  Taxes 9% 5% 9%Royalties 21% 18% 22%Abandonment  Costs 0% 0% 0%Electricity 1% 1% 0%Other  Operating  Costs  (Fixed  &  Variable) 18% 31% 17%Fuel  (Natural  Gas) 6% 5% 3%Operating  Working  Capital 2% 1% 1%Fixed  Capital  (Initial  &  Sustaining) 42% 38% 47%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

   Over  the  life  of  the  oil  sands  project,  in  situ  operations  would  appear  to  provide  the  highest  RORs,  at   19  percent.  Stand-­‐alone  mining  projects  have  a  respectable  ROR  of  14  percent,  while  integrated  operations  would  appear  to  have  the   lowest  ROR,   at  6  percent.   In  addition,   the  high  ROR  will  be  pushed  down,  as  vendors   raise   prices   (to   capture   the   economic   rent),   and   refineries   may   become   more   aggressive   in  contract  negotiations.  

Under    Realistic  Scenario,  a  harmonized  emissions  compliance  cost  projection  has  been   included.  Beyond  harmonizing  emissions  costs  with  the  USthat  the  compliance  costs  are  harmonized  with  not  intended  to  indicate  that  a  technology  fund  would  exist  under  the  harmonized  plan,  it  does  assume  that  compliance  costs  are  royalty  deductible,  as  is  currently  the  case.  

When  compliance  costs  are   royalty  deductible,   collected  by   the  province,  and  spent  entirely  within   the  province,  a  transfer  of  wealth  outside  of  Alberta  does  not  take  place.  Under  a  harmonized  system  the  $1  to  $1.5/bbl  in  emissions  compliance  costs  would  be  collected  by  the  federal  government,  and  represents  a   wealth   transfer   from   Alberta   to   Ottawa.   As   will   be   discussed   in   the   next   Chapter,   this   lost   royalty  revenue  could  amount  to  billions  of  dollars  a  year.  

   

Page 48: Canadian Energy Research Institute oilsands report -  2011

28   Canadian  Energy  Research  Institute  

May  2011  

 

Page 49: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Project  (2010-­‐2044)   29  

  May  2011  

Chapter  4  Oil  Sands  Projections    Based   upon   Realistic   Scenarioprofitable  long-­‐term  investment  that  is  worth  nurturing.  This  does  not  imply  that  every  oil  sands  project  will  move  from  concept  to  reality.  Nor  does  it   imply  that  every  oil  sands  project  should  go  forward.  The  estimates   are   based   upon   a   high   quality   oil   sands   project   (either   mining   or   in   situ).   Inevitably,   some  projects  will  experience  delays  from  financing,  and  possibly  regulatory  hurdles.  

develop   the   projections   will   be   followed   by   the   assumptions   used   to   delay,   and/or   cancel   oil   sands  l   sands   projections   for   bitumen,   SCO,   natural   gas   requirements,   GHG   emissions,  

strategic  and  sustaining  capital,  and  provincial  royalty  revenues  will  then  be  provided.  

Methodology  bitumen  and  SCO  production  volumes   remains  unchanged   from  past  

reports.   Projections   are   based   on   the   summation   of   all   announced   projects,   with   a   wide   variety   of  assumptions  pertaining   to   the  project   schedule   and  delays,   technology,   and   state  of  development.   The  method  by  which  projects  are  delayed,  or  the  rate  at  which  production  comes  on  stream,  is  based  upon  

 

unconstrained  projections  in  past  CERI  will   only   be   shown   to   provide   context   to   the   constraints,   and   represents   a  production,  as  currently  defined  by  the  collective  announcements  from  the  oil  sands  industry.  

The   three   scenarios   that   were   presented   in   the   previous   Chapters   are   used   to   guide     oil   sands  development   projections.   To   summarize,   the   scenarios   are   the   Realistic,   Protracted   Slowdown,   and  Energy   Security;   the   Unconstrained   Scenario   is   not   considered   as   a   full   scenario   in   this   report.   Each  scenario   contains   an   oil   price   and   emissions   compliance   cost   projection   that   underpins   the   potential  expansion  path  for  oil  sands  development.  

The   impact   that   these   scenarios   could   have   on   oil   sands   developments   was   translated   into   two  constraints:  project   startup  delays,   and   capacity   curtailments.   These   constraints  were   a   function  of   the  scenarios  and  their   impact  on  a  project s  ability   to  move   through  the   regulatory  and   internal   corporate  approval  processes.  

Projects   further   along   the   regulatory  process   are   given   shorter  delays,   and  have  higher  probabilities  of  proceeding  to  their  announced  production  capacity.  Projects  that  have  been  announced,  but  have  not  yet  entered  the  regulatory  process  with  a  disclosure  document  receive  lower  probabilities  of  proceeding  and  longer  delays.  Projects  that  are  suspended  are  assumed  to  be  already  approved  but  not  yet  constructed.  

Page 50: Canadian Energy Research Institute oilsands report -  2011

30   Canadian  Energy  Research  Institute  

May  2011  

al  projects,  the  probabilities  are  used  to  proxy  project  cancellations  at  the  aggregate  extraction  method  level.  

Delays  and  probabilities,  as  measured  by  a  probability  fraction,  for  each  phase  of  the  regulatory  approval  process,   are   based   upon   reasonable   estimates   of   the   length   of   time   each   phase   could   take,   and   are  illustrated  in  Table  4.1.  

Table  4.1  Constraints  by  Scenario  and  Extraction  Method  

Probability Delay Probability Delay Probability DelayFraction Years Fraction Years Fraction Years

Onstream 1.00 0 1.00 0 1.00 0Under  Construction 1.00 1 1.00 1 1.00 1Suspended 1.00 2 1.00 2 1.00 2Approved 1.00 3 1.00 3 1.00 3Awaiting  Approval 1.00 5 1.00 5 1.00 5Announced 1.00 9 1.00 9 1.00 9Cancelled 1.00 0 1.00 0 1.00 0

Probability Delay Probability Delay Probability DelayFraction Years Fraction Years Fraction Years

Onstream 1.00 0 1.00 0 1.00 0Under  Construction 1.00 1 1.00 1 1.00 1Suspended 0.90 3 0.90 3 0.90 3Approved 0.90 4 0.90 4 0.90 4Awaiting  Approval 0.85 8 0.85 8 0.85 8Announced 0.70 12 0.65 14 0.70 12Cancelled 1.00 0 1.00 0 1.00 0

Probability Delay Probability Delay Probability DelayFraction Years Fraction Years Fraction Years

Onstream 1.00 0 1.00 0 1.00 0Under  Construction 1.00 6 1.00 6 1.00 4Suspended 0.85 7 0.85 8 0.85 5Approved 0.85 8 0.85 10 0.85 6Awaiting  Approval 0.75 12 0.60 14 0.75 8Announced 0.40 24 0.25 30 0.50 24Cancelled 1.00 0 1.00 0 1.00 0

Mining Upgrading

Energy  Security  Scenario

Realistic  Scenario

Protracted  Slowdown  Scenario

In  Situ Mining Upgrading

In  Situ Mining Upgrading

In  Situ

 

   

Page 51: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Project  (2010-­‐2044)   31  

  May  2011  

Oil  Sands  Projections    Results  and  Analysis  Based  upon  current  announcements  from  oil  sands  proponents,  capacity  could  peak  at  6.8  MMBPD  by  the  end  of  2027  without  delays  or   curtailments;   for   comparison,   2009  oil   sands  update  under   the  Unconstrained  Scenario,   the  peak  was  achieved   in  2034  with  7.2  MMBPD.  While   this   represents  a  bold  target   for   the   oil   sands   industry,   the   path   towards   the   peak   is   not   possible,   given   the   wide   array   of  constraints   faced   by   industry   (e.g.,   labour,   capital,   and   oil   demand).   The   three   scenarios   developed   by  CERI  provide  three  plausible  paths  of  oil  sands  and  SCO  development.  

Illustrated   in   Figure   4.1   are   the   three   scenarios,   in   addition   to   the   Unconstrained   Scenario.   In   each  scenario,   oil   sands   capacity   exceeds   4MMBPD   by   2044.   However,   the   paths   of   development   differ   for  each  scenario.  

Figure  4.1  Bitumen  Capacity  Projections  

 Source:  CERI,  CanOils  

Under  the  Protracted  Slowdown  Scenario,   the  oil  sands  experience  almost  no  capacity  growth  over  the  next  decade,  a  direct  result  of  low  oil  prices,  and  high  emissions  compliance  costs,  which  lock  the  oil  sands  out  of  the  market.  The  slight  drop  in  production  in  2017  is  a  result  of  the  earliest  mining  projects  in  the  oil  sands  reaching  the  end  of  the  assumed  production  life.  This  dip  is  noticeable  in  each  projection  at  various  times  as  projects  are  retired.  By  2020,  the  industry  begins  to  anticipate  higher  oil  prices,  as  trade  barriers  are  reduced,  and  emissions  compliance  costs  become  more  manageable.  While  the  oil  sands  recover  from  the   stagnation,   capacity   expansions   do   not   Realistic   Scenario   before   the   end   of   the  projection  period.  

0

2,000

4,000

6,000

8,000

2010 2020 2030 2040

10^3  bpd

Bitumen  CapacityBeyond  2021,  each  projection  experiences    substantial  capacity  growth

Total  Bitumen  (Unconstrained  Capacity  Scenario)

Total  Bitumen  (Capacity,  Energy  Security  Scenario)

Total  Bitumen  (Capacity,  Realistic  Scenario)

Total  Bitumen  (Capacity,  Protracted  Slowdown  Scenario)

Page 52: Canadian Energy Research Institute oilsands report -  2011

32   Canadian  Energy  Research  Institute  

May  2011  

In  a  world  where  energy  security  trumps  all  other  concerns,  driven  by  a  robust  economic  growth  in  2011,  the   oil   sands   return   to   a   period   of   rapid   and   aggressive   development.   The   Energy   Security   Scenario  implicitly  assumes  that  the  rise   in  oil  prices  more  than  offset  the   inflation  that  would  be  experienced  in  Alberta,  as  oil  sands  developments  grow  at  unprecedented  rates.  By  2020,  bitumen  capacity  would  reach  3.9  MMBPD,  but  not    as  bitumen  capacity  reaches  6.2  MMBPD  by  2044.    

While  some  may  be  skeptical  about  this  Scenario  coming  to  fruition,  it   is  plausible  that,  by  2044,  the  oil  sands  could  be  the  exclusive  supplier  of  crude  oil  to  the  US,  and  become  an  important  supplier  of  crude  oil  to  other  nations  as  well.  This  scenario  does  face  immense  hurdles,  the  least  of  which  is  finding  the  labour  and   capital   to   commission   new   oil   sands   projects   at   such   a   rate,   in   addition   to   the   requirements   for  pipelines  and  refineries.  

Realistic  Scenario,  where  oil   sands  development  is  slow  to  rebound.  It  is  not  until  2016  that  the  oil  sands  industry  experiences  its  first  spike  in  bitumen  capacity.  Following  this  spike  is  a  period  of  relatively  steady  capacity  growth  from  2018  to  2034,  eventually   slowing   down   by   2044.   In   2016,   capacity   reaches   2.7  MMBPD,   and   by   the   end   of   2030   the  capacity  increases  to  5.3  MMBPD.  

This  scenario   is   in   line  with  expectations  for  pipeline  capacity  additions,  and  it   is  quite  possible  that  the  labour  and  capital  markets   in  Alberta  will  be  capable  of  handling  this  expansion  without  causing  undue  stress  on  the  local  economy.  The  pace  of  pipeline  expansion  will  depend  on  decisions  with  respect  to  the  markets   to  be  served  and   the  necessary   regulatory  approvals.   The  period  of   sustained  growth   (2018   to  2034)  will   introduce  challenges  to  the  Alberta  economy,  similar  to  those  faced  during  the  2004  to  2008  period.  

Figure   4.2   illustrates   the   possible   paths   for   production   under   the   three   scenarios.   Despite   the   recent  slowdown,   the   prevailing   view   in   the   industry   appears   to   be   that,   while   a   recessionary   economic  environment   dictates   caution   on   investment   decisions,   the   future   continues   to   look   bright.   All   three  scenarios  show  a  significant  growth  in  oil  sands  production  for  the  35-­‐year  projection  period.  

 The  bitumen  capacity  projections  are  adjusted  to  account  for  the  production  profile,  resulting  in  a  peak  production   volume   by  2042  of   5.8  MMBPD  under   the  Energy   Security   Scenario,   or   5.1  MMBPD  by  2042  under  the  Realistic  Scenario.  Under  the  Protracted  Slowdown  Scenario,  peak  production   of   4.2   MMBPD   is   reached   by   2044.   Production   under   the   Realistic   Scenario   is  projected  to  reach  2.1  MMBPD  by  2015,  and  4.8  MMBPD  by  2030.  

   

Page 53: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Project  (2010-­‐2044)   33  

  May  2011  

Figure  4.2  Bitumen  Production  Projections  

 Source:  CERI,  CanOils  

Achieving  any  of  the  levels  of  production  outlined  in  the  three  scenarios  requires  a  substantial  number  of  inputs,  of  which  capital  (both  strategic  and  sustaining),  and  natural  gas  are  critical.  Without  the  required  capital,  an  oil  sands  project  cannot  be  constructed.  The  project,  with  current  technologies,  cannot  operate  without  an  abundant  and  affordable  supply  of  natural  gas.  And  lastly,  once  the  facility  is  operating  there  is  an  ongoing  need  for  sustaining  capital  to  ensure  that  production  volumes  stay  at  their  design  capacities.  

Relying  on  the  previously   stated  design  assumptions,  and  the  associated  capital   required  to  construct  a  facility  and  sustain  operations,  CERI  has  estimated  the  total  and  annual  financial  commitments  required  for  the  oil  sands.  Initial  capital  costs,  under  the  three  scenarios,  are  illustrated  in  Figure  4.3.  

   

0

2,000

4,000

6,000

8,000

2010 2020 2030 2040

10^3  bpd

Bitumen  Production  VolumesBy  2020  bitumen  production  could  reach  2.5  MMBPD,  under  a  Realistic  Scenario  

Energy  Security Realistic Protracted  Slowdown

Page 54: Canadian Energy Research Institute oilsands report -  2011

34   Canadian  Energy  Research  Institute  

May  2011  

Figure  4.3  Initial  Capital  Requirements  

     Over  the  35-­‐year  projection  period,  the  total  initial  capital  required  is  projected  to  be  $302  billion  under   the  Energy  Security  Scenario,  $257  billion  under   the  Realistic  Scenario,  and  $213  billion  under  the  Protracted  Slowdown  Scenario.  

required  capital   investment  is  20.1  percent   lower  under  the  Energy  Security  Scenario,  16.8  percent  lower  under  the  Realistic  Scenario  and  13.4  percent  lower  under  the   Protracted   Slowdown   Scenario.   With   the   exception   of   the   Protracted   Slowdown   Scenario,   new  investment  dollars  start  declining  by  2030,  and  approach  zero  by  the  end  of   the  projection  period.  This  does  not  reflect  a  slowdown  in  the  oil  sands,  merely  a  lack  of  new  capacity  coming  on  stream,  and  relates  back   to   assumptions   for  project   start  dates,  and  announcements   from  the  oil   sands  proponents.  With   careful   planning,   the  Realistic   Scenario   could   be   a   viable   target.   By   2015,   $13.5   billion   in   capital  investments  will  be  required,  and  by  2030  the  required  investment  reaches  $3.4  billion,  or  a  total  of  $241  billion  between  2010  and  2030.  Ongoing  investment,  in  the  form  of  sustaining  capital  will  take  place  on  an  annual  basis.    

In  each  of  the  three  scenarios,  the  annual  sustaining  capital  required  for  the  oil  sands  (excluding  royalty  revenues,   taxes,   and   fixed   and   variable   operating   costs)   exceeds   $2   billion   by   2044.   The   Realistic  projection  shows  an  annual  investment,  by  2040,  of  $2.9  billion,  and  is  estimated  to  average  $2.3  billion  over  the  projection  period.  Figure  4.4  presents  the  sustaining  capital  costs  under  the  three  scenarios.  

   

$0

$10

$20

$30

$40

2010 2020 2030 2040

billions

Initial,  or  Strategic,  Capital  Requirements

Energy  Security Realistic Protracted  Slowdown

Page 55: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Project  (2010-­‐2044)   35  

  May  2011  

Figure  4.4  Sustaining  Capital  Requirements  

   The  amount  of  natural   gas   required   to   sustain   the  oil   sands   industry   is   substantial,   and   is   illustrated   in  Figure  4.5.  

Figure  4.5  Natural  Gas  Requirements  

 

$0

$1

$2

$3

$4

2010 2020 2030 2040

billions

Sustaining  Capital  RequirementsUnder  the  Realistic  Scenario,  sustaining  capital  averages  $2.1  billion  per  year  (vs.  2.4  in  2009)

Energy  Security Realistic Protracted  Slowdown

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

5,500

2010 2020 2030 2040

mmcf/d

Natural  Gas  RequirementsExpect  natural  gas  requirements  to  surge,  unltil  alternatives  are  brought  to  market  

Energy  Security Realistic Protracted  Slowdown

Page 56: Canadian Energy Research Institute oilsands report -  2011

36   Canadian  Energy  Research  Institute  

May  2011  

By  2044,  natural  gas  requirements  will  increase  by  2  to  3  times  the  current  levels.  The  Realistic  Scenario  indicates  natural  gas  requirements  of  almost  4.5  BCFPD  by  2044.  Considering  how  aggressively  shale  gas  production  in  the  US  has  come  on  stream,  and  the  potential  for  shale  production  in  Canada,  meeting  the  

 In  such  a  scenario,  Canada  and  the  US  could  be  engaged  in  an  energy  exchange    Canadian  oil  for  US  natural  gas    that  further  enhances  the  trade  relationship  between  the  two  countries.The  prospects  for  technology  switching  and  efficiency  

requirements.  

One   of   the   by-­‐products   of   natural   gas   consumption   is   the   production   of   GHG   emissions.     Without  

released  into  the  atmosphere.    While  technological  innovation  within  the  oil  sands  industry  (in  addition  to  carbon  capture  and  storage)  is  expected  to  help  reduce  these  emissions,  Figure  4.6  below  illustrates  the  

 

Figure  4.6  Greenhouse  Gas  Emissions  

   GHG  emissions  are  expected   to  rise   in   tandem  with  natural  gas  requirements.  The  emissions  presented  above  reflect  point  source  emissions,  and  do  not  take  into  account  emissions  associated  with  electricity  purchases,  or   the  benefits  of   cogeneration.   In  other  words,   these  are   the  absolute  GHG  emissions   that  result  from  the  production  of  marketable  bitumen,  and  SCO,  from  the  oil  sands  industry.  

Large  industrial  emitters  within  Alberta  that  exceed  their  emissions  reduction  target,  have  the  option  to  purchase  Alberta-­‐based  carbon  offset  credits,  or  contribute  $15  per   tonne  of   carbon  dioxide  equivalent  

0

20

40

60

80

100

120

2010 2020 2030 2040

MT/y

Greenhouse  Gas  EmissionsWithout  new  technologies  and  carbon  capture,  emissions  are  expected  to  rise  to  91  million  tonnes  by  2044

Energy  Security Realistic Protracted  Slowdown

Page 57: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Project  (2010-­‐2044)   37  

  May  2011  

(CO2e)  exceeding  the  target  into  the  Climate  Change  and  Emissions  Management  Fund.  Within  the  supply  cost  model,  it  is  assumed  that  the  oil  sands  projects  pay  the  $15  compliance  cost  in  full.  

Using   the   previously   presented   emissions   compliance   cost   projection   from   the   Realistic   Scenario,   a  projection  of  annual  and  total  compliance  costs  paid  to  the  Alberta  Government  can  be  calculated.  The  revenues   collected   from   this   compliance   cost   are   distributed   by   the   Climate   Change   and   Emissions  Management  Corporation,  an  organization  that  is  independent  of  the  Government  of  Alberta,  to  projects  or  initiatives  that  support  GHG  reducing  technologies.  

As   illustrated   in   Figure   4.7,   the   compliance   costs   increase   over   the   projection   period.   By   2044,   it   is  estimated  that  the  industry  will  pay  $5.2  billion  per  year  in  compliance  costs,  a  rather  hefty  incentive  to  innovate.  Over   the  projection  period   the   industry   is  projected   to  pay  almost  $145  billion   in   compliance  costs.  

The  estimation  of  these  compliance  costs  is  based  upon  the  per  barrel  cost.  As  such,  this  will  overestimate  costs   in   the   initial  years,  and  underestimate  costs   in   the   later  years  of   the  projection.  The   figure  below  should  be  used  as  an  illustrative  guide,  with  those  caveats  in  mind.  

Figure  4.7  Industry  Compliance  Costs  

     

$0

$1

$2

$3

$4

$5

$6

$0

$20

$40

$60

$80

$100

$120

$140

$160

$180

$200

2008 2018 2028 2038

billions   billions

Realistic  Compliance  Cost  ProjectionWithout  improvments  in  technology/efficiency,  industry  will  have  paid  $142  billion  by  2044

Cummulative  Annual  Compliance  Costs

Page 58: Canadian Energy Research Institute oilsands report -  2011

38   Canadian  Energy  Research  Institute  

May  2011  

The  previous  Chapter  concluded  with  a  brief  discussion  about  the  possibility  of  a  compliance  cost  program  functioning   as   a   wealth   transfer   mechanism,   moving   funds   from   the   Government   of   Alberta   to   the  Government   of   Canada.   Under   the   current   system,   royalties   are   calculated   after   accounting   for   the  compliance  costs  on  a  per  project  basis,   resulting   in   a   lower   royalty  paid   to   the  provincial  government.  However,  since  the  lower  royalty  is  partially  offset  by  collecting  the  compliance  costs,  this  may  not  be  that  serious  of  an  issue;  the  provincial  government  has  decided  how  to  use  those  revenues  as  part  of  a  clean  technology  fund.  

If   the   compliance   costs   were   levied   by   the   federal   government,   and   the   province   continues   to   allow  compliance   costs   to   be   deductable   from   royalties,   then   the   145   billion   dollars   collected   could   be  transferred  from  the  province  of  Alberta  to  the  federal  government.  On  the  other  hand,  if  the  compliance  costs  are  not  deductable,  but  calculated  on  after  tax  income  (or  after  provincial  taxes),  the  wealth  transfer  would  be  mitigated,   but   liance   cost  program  in  favour  of  a  federal  program.  

Based  upon  the  assumed  oil  price,  as  stated  earlier,  the  cumulative  amount  of  bitumen  royalties  collected  by  the  province  is  estimated  to  reach  over  one  trillion  over  the  projection  period.  By  2044,  the  royalties  collected  annually  could  reach  $67.5  billion,  as  illustrated  in  Figure  4.8.  

Figure  4.8  Provincial  Bitumen  Royalties  

 

Illustrated   in  Figure  4.9  are  the  production  projections  under  the  Realistic  Scenario,  by  extraction  type,  used  to  estimate  royalty  revenues,  emissions,  and  natural  gas  requirements.  Mined  bitumen  maintains  a  majority   status   of   oil   sands   volumes   until   2025,   when   in   situ   production   volumes   overtake   mined  bitumen.  By  the  end  of  the  projection  period,  in  situ  bitumen  accounts  for  57  percent  of  total  production  volumes,  or  just  fewer  than  3  MMBPD,  as  compared  to  mined  bitumen  which  produces  2.2  MMBPD.  

$2,411

 

$2,913

 

$2,973

 

$3,160

 

$3,293

 

$4,123

 

$4,961

 

$6,125

 

$7,418

 

$8,343

 

$9,673

 

$11,96

4  

$13,89

5  

$15,50

0  

$18,02

2  

$19,12

2  

$21,72

1  

$23,51

8  

$25,26

9  

$27,25

0  

$30,37

9  

$33,41

6  

$35,98

6  

$39,39

0  

$41,24

1  

$42,99

8  

$44,10

8  

$45,17

8  

$46,43

9  

$47,57

8  

$49,74

0  

$51,86

7  

$54,34

0  

$56,41

9  

$58,56

8  

$60,81

7  

$62,93

5  

$65,33

4  

$67,47

7  

 $-­‐

 $200,000

 $400,000

 $600,000

 $800,000

 $1,000,000

 $1,200,000

 $1,400,000

 $-­‐

 $10,000

 $20,000

 $30,000

 $40,000

 $50,000

 $60,000

 $70,000

 $80,000

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

Cumulative

Annu

al

Royalties  Collected  from  the  Oilsands  Industry  ($  Millions),  2006  -­‐ 2044  

Cumulative  Royalties

In  Situ  (Solvent)  Projects

In  Situ  Projects

Mining  Projects

Total  Annual  Royalties

Page 59: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Project  (2010-­‐2044)   39  

  May  2011  

Figure  4.9  Realistic  Bitumen  Production  Projections  

 Source:  CERI,  CanOils  

Given  the  production  projection  under  the  Realistic  Scenario,   the  distribution  of  projects  across  various  development  stages  is  shown  in  Figure  4.10.  The  Figure  illustrates  that  a  large  proportion  of  total  projects  are  made  up  of  projects  that  are  currently  on  stream,  approved  and  awaiting  approval.  As  the  proportion  of   on   stream   projects   starts   to   decline   from   86   percent   in   2015   to   24   percent   by   2044,   the   total  proportion  of  approved  and  awaiting  approval  projects  increases   from  3  percent  in  2015  to  just  over  50  percent  by  the  end  of  the  projection  period.  

 

   

0

500

1,000

1,500

2,000

2,500

3,000

3,500

2010 2020 2030 2040

10^3  bpd

Realistic  Production  VolumesIn  situ  volumes  grow  to  57%    of  total  bitumen    by  2044  

Total  In  Situ  Bitumen  Volumes Total  Mined  Bitumen  Volumes

Page 60: Canadian Energy Research Institute oilsands report -  2011

40   Canadian  Energy  Research  Institute  

May  2011  

Figure  4.10  Project  Distribution  

 

Currently,  all  mined  bitumen  and  a  portion  of  in  situ  production  is  upgraded  to  SCO.    In  2009,  12  percent  of   in   situ   production  was   upgraded   to   SCO.     Given   the   suspension   of   five   upgrader   projects  with   total  capacity  of  710,000  barrels  per  day   (BPD),   it   is  uncertain  what  amount  of  bitumen  will  be  upgraded   to  SCO.   This   supports     supply   cost   analysis,  which   indicates   strong   support   for   bitumen  production;  while  upgrading  did  not  appear  to  generate  a  substantial  ROR.  

Initial  (or  strategic),  and  sustaining  capital  requirements  are  broken  down  by  extraction  method  under  the  Realistic  Scenario,   and  are   illustrated   in   Figures  4.11  and  4.12,   respectively.   Integrated  projects   include  integrated   in   situ   operations,   which   make   up,   on   average,   11   percent   of   total   integrated   projects.  Compared   to   figures   from   the   2009   update,   the   capital   investment   for   stand-­‐alone   upgrading   has  decreased  by  40  percent,  and  has  increased  by  38  percent  for  in  situ  projects,  on  average.  

Total  cost  requirements  for  the  oil  sands   industry  are  presented  in  Figure  4.13.  These   include  the  initial  and  sustaining  capital  and  operating  costs  for  all  types  of  projects.  Under  the  Realistic  Scenario,  the  total  costs  will  peak  in  2023  at  $53.4  billion.  

   

0

1,000

2,000

3,000

4,000

5,000

6,000

Onstream Under  Construction Approved Suspended Awaiting  Approval Announced

'000 b/d

Page 61: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Project  (2010-­‐2044)   41  

  May  2011  

Figure  4.11  Realistic  Scenario    Initial  Capital  Requirements  

   

Figure  4.12  Realistic  Scenario    Sustaining  Capital  Requirements  

       

$0

$5

$10

$15

$20

$25

2010 2020 2030 2040

billions

Initial,  or  Strategic,  Capital  RequirementsIn  situ  expansions  take  place  throughout  the  projection  period

In  Situ MiningIntegrated  Projects Stand  Alone  Upgrading

$0

$1

$2

$3

$4

2010 2020 2030 2040

billions

Sustaining  Capital  RequirementsIn  situ  expansions  take  place  throughout  the  projection  period

In  Situ Mining

Integrated  Projects Stand  Alone  Upgrading

Page 62: Canadian Energy Research Institute oilsands report -  2011

42   Canadian  Energy  Research  Institute  

May  2011  

Figure  4.13  Realistic  Scenario    Total  Cost  Requirements  

 Source:  CAPP,  CERI    

0

10

20

30

40

50

60

2007 2012 2017 2022 2027 2032 2037 2042

billions

Initial  and  Sustaining  Capital  and  Operating  Requirements

Initial Operating

Sustaining Historical  Capital

Historical  Operating

Page 63: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   43  

  May  2011  

Chapter  5  Trends  and  Challenges  in  the  Oil  Sands  Development    North  America  has  returned  to  positive  economic  growth,  and  oil  sands  developers  are  returning  to  pre-­‐recession  activity   levels.  As   the  activity   slowly   ramps  up,   current   trends  and  challenges   in   the  oil   sands  development  need  to  be  considered  by  governments  and  industry.    The  scope  of  this  chapter  is  to  review  four   such   trends   and   challenges   in   the   oil   sands   industry.   They   are:   uncertainty   surrounding   future  environmental   policies;   the   management   of   tailings   ponds   associated   with   mining   operations;   the  technological  advancements   that  are  currently  being  developed  and/or  tested   in  pilot  projects;  and  the  revival  of  mergers  and  acquisitions.  These  topics  are  addressed  here  solely  to  provide  context,  hence  this  work  does  not  represent  an  analysis  of  economic,  social,  environmental  or  public  health  impacts.  

Environmental  Issues  

reput

and  are   insignificant  when  compared  in  a  global  context.  GHG  emissions  from  the  oil  sands  only  exceed  that  of  other  crude  oils,  refined  in  the  US,  by  6  percent,  on  average.1    Additionally,  on  a  per-­‐barrel  of  oil  basis,   GHG   emissions   from   the   oil   sands   have   declined   by   an   average   of   39   percent   since   1990.2  Advancements   in   technology   will   continue   to   improve   the   energy   efficiency,   and   thus   reduce   GHG  

 

policies.  The  Government  of  Canada  has  stated  that  federal  climate  change  policy  will   follow  that  of  the  US.   In  2010,  Canada  harmonized   its  GHG  emissions  reduction  target  with  the  US,  committing  to  reduce  GHG  emissions  by  17  percent  below  2005  levels  by  2020.3  

Future   climate   change   legislation  will   increase   the   cost   of   production   for   oil   sands   operators.   The   cost  associated  with  any  potential  climate  change  policy,  however,   is  an  unknown  element  given  the  current  uncertainty   in   federal   policy   development,   and   this   presents   a   risk   to   oil   sands   investments.   Although  Alberta   has   GHG   emission   regulations   in   place,   industry   could   face   a   host   of   new   regulations   if   the  

circumstance,  Alberta  may  have  no  choice  but  to  adopt  the  federal  standards.    

                                                                                                                                 1  2 http://environment.alberta.ca/  documents/Oilsands_provincial_action_December17_2010.pdf.  Accessed  on  December  31,  2010.  3News  Release,  Canada  Lists  Emissions  Target  under  the  Copenhagen  Accord,  Environment  Canada,  February  1,  2010,  http://www.ec.gc.ca/default.asp?lang=En&n=714D9AAE-­‐1&news=EAF552A3-­‐D287-­‐4AC0-­‐ACB8-­‐A6FEA697ACD6.  Accessed  on  December  31,  2010.  

Page 64: Canadian Energy Research Institute oilsands report -  2011

44   Canadian  Energy  Research  Institute  

May  2011  

To  provide  a  better  idea  of  the  direction  that  federal  climate  change  policy  may  follow,  this  section  of  the  report  will  discuss  climate  change  developments  from  recent  international  negotiations,  as  well  as  the  US.  

United  Framework  Convention  on  Climate  Change  The   goal   of   the   16th   annual   United   Nations   (UN)   Climate   Change   Conference   in   Cancun,   Mexico  (November   26,   2010   to   December   10,   2010)   was   to   tackle   some   of   the   outstanding   issues   from   the  Copenhagen   Conference,   and   to   set   the   groundwork   for   what   may   lead   to   a   post-­‐2012   agreement.  Although  the  decision  of  whether  or  not  to  extend  the  Kyoto  Accord  beyond  the  first  commitment  period  (2008-­‐2012),   a   contentious   issue   for  many   nations,   including  Australia,   Canada,   Japan,   and  Russia,  was  deferred  to  the  2011  UN  Conference  in  Durban,  South  Africa,  successful  multilateral  negotiations  between  developed  and  developing  nations  led  to  the  advancement  of  key  aspects  of  the  Copenhagen  Accord,  and  the  inclusion  of  the  pillars  of  the  Copenhagen  Accord  in  the  official  UN  process.    

The  Cancun  Agreements  encompass  a  balanced  package  of  decisions  from  the  Ad  Hoc  Working  Group  on  Long-­‐Term   Cooperative   Action   under   the   Convention,4   and   the   Ad   Hoc   Working   Group   on   Further  Commitments   for  Annex   I   Parties  under   the   Kyoto  Protocol.5  Achievements  of   the  Cancun  Agreements  include:   the   incorporation  of   emission   reduction  pledges   from   the  Copenhagen  Accord   into   the  United  Nations   Framework  Convention  on  Climate   Change   (UNFCCC)  process;  progress   in   the  area  of   reducing  emissions   from   deforestation   and   forest   degradation,   conservation   of   forest   carbon   stocks   (REDD+);  establishing  a  process  to  design  a  Green  Climate  Fund,  through  which  long-­‐term  funding  of  US$100  billion  per  year  may  be  distributed;  the  establishment  of  a  technology  mechanism  to  facilitate  cooperation  in  the  development   and   deployment   of   new   adaptation   and  mitigation   technologies   to   developing   countries;  the  expansion  of  the  Clean  Development  Mechanism  (CDM)  to  include  carbon  capture  and  storage  (CCS)  projects;  and  improved  transparency  measures  that  call  for  the  monitoring,  reporting,  and  verification  of  emission  reductions  in  countries  that  receive  financial  support  for  emissions  mitigation  efforts.  

ed   in  Copenhagen,   was   reiterated   at   the   Cancun   conference.6   The   concept   of   recognizing   national  circumstances  is  as  significant  for  developing  nations  as  it  is  for  developed  energy  exporting  nations,  and  will  no  doubt  be  included   in  the  next  round  of  negotiations,  which  are  scheduled  to  take  place  between  November  28,  2011  and  December  9,  2011.    

By   focusing  on  areas   that  developed  and  developing  nations  were  willing   to   compromise,   international  climate  change  negotiators  were  able  to  make  meaningful  progress  at  the  UN  Conference  in  Cancun.  With  

                                                                                                                                 4Outcome  of   the  work  of   the  Ad  Hoc  Working  Group  on   long-­‐term  Cooperative  Action  under   the  Convention,   The  Conference   of   the   Parties,   United   Nations   Framework   Convention   on   Climate   Change,   December   11   2010,  http://unfccc.int/files/meetings/cop_16/application/pdf/cop16_lca.pdf,  Accessed  on  December  15,  2010.  5Outcome  of  the  work  of   the  Ad  Hoc  Working  Group  on  Further  Commitments  for  Annex   I  Parties  under  the  Kyoto  Protocol  and  its  fifteenth  session,  The  Conference  of  the  Parties,  United  Nations  Framework  Convention  on  Climate  Change,   December   11,   2010,   http://unfccc.int/files/meetings/cop_16/application/pdf/cop16_kp.pdf.   Accessed   on  December  15,  2010.  6Outcome  of   the  work  of   the  Ad  Hoc  Working  Group  on   long-­‐term  Cooperative  Action  under   the  Convention,   The  Conference   of   the   Parties,   United   Nations   Framework   Convention   on   Climate   Change,   December   11   2010,  http://unfccc.int/files/meetings/cop_16/application/pdf/cop16_lca.pdf.  Accessed  on  December  15,  2010.  

Page 65: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   45  

  May  2011  

that  being  said,  however,  it  remains  unlikely  that  the  world  will  reach  a  new  agreement  on  legally  binding  GHG  emission  targets  next  year.  

The  United  States  As  the  UNFCCC  conference  in  Copenhagen  came  to  a  close   in  2009,   it  was  questionable  whether  or  not  the   US   Congress   would   be   able   to   pass   climate   change   legislation,   and  meet   its   stated   GHG   emission  reduction  pledge  of   17  percent  below  2005   levels  by  2020.  As   expected,  proposed   energy  and   climate  change  bills,  which  included  cap-­‐and-­‐trade  programs,  were  not  passed  in  2010  as  such  legislation  would  have  increased  operating  costs  and  impeded  job  creation  while  the  US  remained  in  a  delicate  economic  situation.  Furthermore,   it   is   not  expected   that   federal   climate  change   legislation  will  be  enacted  during  the  112th  Congressional  session,  given  the  results  of  the  November  2010  US  mid-­‐term  elections.  This  will  likely  prevent  the  US  from  entering   into  a  potential   legally-­‐binding  international  agreement  at  the  2011  UN  Conference  in  Durban,  South  Africa.  

On  December  7,  2009,  the  EPA  issued  two  findings  which  stated  that  the  emissions  of   6  GHG  emissions  (carbon  dioxide  (CO2),  methane  (CH4),  nitrous  oxide  (N2O),  hydro  fluorocarbons  (HFCs),  per  fluorocarbons  (PFCs),   and   sulfur   hexafluoride   (SF6)),   and   the   combination   of   the   6   GHG   emissions   from   new   motor  vehicle  and  motor  vehicle  engines,  endanger  the  health  and  welfare  of  current  and  future  generations.7  With   these   findings,   the   EPA   is   obliged,   under   the   Clean   Air   Act,   to   regulate   the   emissions   of   the   6  aforementioned  GHGs,  according  to  a  2007  US  Supreme  Court  ruling.    

As   the   EPA   is   attempting   to   show,   through  GHG   standards,  mandatory   GHG   reporting,   and   permitting  rules,  the  regulation  of  GHG  emissions  need  not  result  from  federal  legislation.  In  July  2011  and  December  2011,  the  EPA  is  anticipated  to  propose  new  GHG  emission  standards  for  fossil  fuel-­‐fired  power  plants  and  oil  refineries,  respectively,  and  issue  final  emission  standards  in  2012.8  

Circumventing   the   US   Congress,   however,   may   not   be   an   easy   task   for   the   EPA,   as   the   Republican  controlled  US  House  of  Representatives  could  simply  restrict  the  activities  of  the  EPA  through  budgetary  constraints.  Additionally,  members  of  the  US  Congress  have  called  for  a  delay  of  the  EPA  regulations  for  two  years,9  endangerment  finding  and  proposed  rules.10  A  previous  attempt  to  prevent  the  EPA  from  regulating  GHG  

                                                                                                                                 7Environmental  Protection  Agency  40  CFR  Chapter  1  Endangerment  and  Cause  or  Contribute  Findings  for  Greenhouse  Gases  Under  Section  202(a)  of  the  Clean  Air  Act;  Final  Rule,  Federal  Register,  Vol.  74,  No.  239,  December  15,  2009,  http://www.epa.gov/climatechange/endangerment/downloads/Federal_Register-­‐EPA-­‐HQ-­‐OAR-­‐2009-­‐0171-­‐Dec.15-­‐09.pdf.  Accessed  on  December  27,  2010.  8EPA   to   Set  Modest   Pace   for   Greenhouse  Gas   Standards/Agency   stresses   flexibility   and   public   input   in   developing  cost-­‐effective   and   protective   GHG   standards   for   largest   emitters,   United   States   Environmental   Protection   Agency,  December   23,   2010,   http://yosemite.epa.gov/opa/admpress.nsf/d0cf6618525a9efb85257359003fb69d/  d2f038e9daed78de8525780200568bec!OpenDocument.  Accessed  on  December  27,  2010.  9West   Virginia   Senator   Jay   Rockefeller,   Press   Release,   December   17,   2010,   http://rockefeller.senate.gov/press/  record.cfm?id=300339&.  Accessed  on  December  27,  2010.  10Upton,   Frank  a2010,   http://online.wsj.com/article/SB10001424052748703929404576022070069905318.html.   Accessed   on  December  28,  2010.  

Page 66: Canadian Energy Research Institute oilsands report -  2011

46   Canadian  Energy  Research  Institute  

May  2011  

-­‐47)  in  the  U.S.  Senate  in  June  2010.11  

Although  climate  change  legislation  may  be  stalled  at  the  federal  level,  efforts  to  reduce  GHG  emissions  at  the   state   and   regional   levels   are  moving   full   steam   ahead.   At   the   state   level,   GHG   emission   reduction  targets  have  been  established  in  24  states,12  including  California,  where  an  economy  wide  cap-­‐and-­‐trade  program   was   approved   on   December   16,   2010,   to   aid   the   state   in   reaching   GHG   emission   reduction  

32).13   -­‐and-­‐trade  scheme  will  begin  in  2012,  and  cover  electricity  (including  imports),  and  large  industrial  facilities,  and  will  be  extended  to  cover  distributors  of  transportation  fuels,  natural  gas  and  other  fuels  in  2015.14    Figure  5.1  displays  the  states  that  have  set  GHG  emission  reduction  targets.15  

Figure  5.1  States  with  GHG  Emission  Reduction  Targets  

 Source:  Pew  Center  on  Global  Climate  Change  

With   the   exception   of   Hawaii   and   Florida,   states   with   GHG   emission   reduction   targets   are   also   either  participants  or  observers  in  regional  climate  change  programs.  There  exist  three  regional  programs,  which  include  Canadian  provinces  and  one  territory,  that  have  established,  or  intend  to  establish,  GHG  emission  reduction  targets,  and  supporting  cap-­‐and-­‐trade  schemes  to  enable  participating  states  and  provinces  to  meet   those   targets.   Additionally,   the   three   regional   programs   (Regional   Greenhouse   Gas   Initiative,  Midwestern  Greenhouse  Gas  Reduction  Accord,  and  Western  Climate  Initiative)  have  developed  a  forum,  referred   to  as   the  Three-­‐Regions  process,   to  discuss   regional   cap-­‐and-­‐trade  design  and   implementation                                                                                                                                    11 -­‐US  Senate   defeats  move   to   stop  EPA  CO2   regulation,  Reuters,  June  10,  2010,  http://www.reuters.com/article/idUSN1012304420100610.  Accessed  on  December  27,  2010.  12

http://www.pewclimate.org/sites/default/modules/usmap/pdf.php?file=5902.  Accessed  on  December  21,  2010.  13Under  AB  32,  GHG  emissions  are  to  be  reduced  to  1990  levels  by  2020.  14   Board,  October,  27,  2010,  http://www.arb.ca.gov/newsrel/2010/capandtrade.pdf.  Accessed  on  December  21,  2010.  15Greenhouse   Gas   Emission   Targets,   Pew   Center   on   Global   Climate   Change,   June   24,   2010,  http://www.pewclimate.org/what_s_being_done/in_the_states/emissionstargets_map.cfm.   Accessed   on   December  21,  2010.  

Page 67: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   47  

  May  2011  

issues,  as  well  as  the  possibility  of  integrating  the  regional  programs  in  the  future.16  Figure  5.2  displays  the  states  and  provinces  that  are  involved  in  existing  or  proposed  cap-­‐and-­‐trade  schemes.17  

Figure  5.2  Regional  Cap-­‐and-­‐Trade  Schemes  

 Source:  Pew  Center  on  Global  Climate  Change  

 Regional  Greenhouse  GasInitiative  The   Regional   Greenhouse   Gas   Initiative   (RGGI)   was   the   first   mandatory   cap-­‐and-­‐trade   scheme  implemented  in  the  US  to  reduce  GHG  emissions  from  power  plants.  The  10  Northeast  and  Mid-­‐Atlantic  member   states  of   the  RGGI   (Connecticut,  Delaware,  Maine,  Maryland,  Massachusetts,  New  Hampshire,  New   Jersey,   New   York,   Rhode   Island,   and   Vermont)   have   committed   to   reduce   GHG   emissions   by   10  percent  below  2009  levels  by  the  end  of  2018.18  Observing  states  and  provinces  include  New  Brunswick,  Ontario,   Pennsylvania,   and   Quebec.   Table   5.1   displays   annual   GHG   emission   limits   for   each   of   the  participating  states  between  2009  and  2018.  

                                                                                                                                 16 -­‐ -­‐Regions  Offset   Working   Group,   May   2010,   http://www.rggi.org/docs/3_Regions_Offsets_Announcement_05_17_10.pdf.  Accessed  on  December  26,  2010.  17North   American   Cap-­‐and-­‐Trade   Initiatives,   Pew   Center   on   Global   Climate   Change,   June   24,   2010,  http://www.pewclimate.org/what_s_being_done/in_the_states/NA-­‐capandtrade.  Accessed  on  December  21,  2010.  18

http://www.rggi.org/docs/RGGI_Fact_Sheet.pdf.  Accessed  on  December  27,  2010.  

Page 68: Canadian Energy Research Institute oilsands report -  2011

48   Canadian  Energy  Research  Institute  

May  2011  

Table  5.1  Annual  GHG  Emission  Caps  

    Annual  GHG  Emissions  Cap  (Tons/Year)  

    2009-­‐2014   2015   2016   2017   2018  

Connecticut   10,695,036   10,427,660   10,160,284   9,892,908   9,625,532  

Delaware   7,559,787   7,370,792   7,181,798   6,992,803   6,803,808  

Maine   5,948,902   5,800,179   5,651,457   5,502,734   5,354,012  

Maryland   37,504,000   36,566,400   35,628,800   34,691,200   33,753,600  

Massachusetts   26,660,204   25,993,699   25,327,194   24,660,689   23,994,184  

New  Hampshire   8,620,460   8,404,949   8,189,437   7,973,926   7,758,414  

New  Jersey   22,892,730   22,320,412   21,748,094   21,175,775   20,603,457  

New  York   64,310,805   62,703,035   61,095,265   59,487,495   57,879,725  

Rhode  Island   2,659,239   2,592,758   2,526,277   2,459,796   2,393,315  

Vermont   1,225,830   1,195,184   1,164,539   1,133,893   1,103,247    Individual   states   auction   a  majority   of   RGGI   CO2   allowances,   and   invest   the   proceeds   in   programs   that  improve  energy  efficiency,  increase  renewable  energy,  and  develop  clean  energy  technologies.  During  the  

ded  the  supply  by  39.2  million  allowances.  Allowances  sold  at  a  market  clearing  price  of  US$3.07,  generating  a  total  of  US$38.6  million.19   10thquarterly   carbon  credit  auction  generated  US$48.2  million  from  the  sale  of  24.8  million  CO2  allowances  for  the  current  three-­‐year  compliance  period  (2009-­‐2011),   and   1.2   million   allowances   for   the   following   compliance   period   (2012-­‐2014).20   All   CO2  allowances  were  sold  at  the  minimum  reserve  price  of  US$1.86  per  allowance.21  

In   June   2010,   RGGI  member   states,   along  with   the   state   of   Pennsylvania   and   the  District   of   Columbia,  established  the  Transportation  and  Climate  Initiative,  with  the  intent  to  develop  regional  low  carbon  fuel  standards,  in  order  to  reduce  GHG  emissions  from  fuels  used  in  the  transportation  sector.22  

Midwestern  Greenhouse  Gas  Reduction  Accord    Illinois,   Iowa,   Kansas,   Manitoba,   Michigan,   Minnesota,   and   Wisconsin   signed   an   agreement     the  Midwestern   Greenhouse   Gas   Reduction   Accord   (MGGRA)     in   November   2007,   to   set   GHG   emission  reduction  targets  in  participating  states  and  provinces.  To  meet  these  targets,  a  regional  multi-­‐sector  cap-­‐and-­‐trade  scheme  is  to  be  developed,  along  with  various  supporting  climate  change  policies  (e.g.,  energy  efficiency,  renewable  electricity,  advanced  CCS,  low  carbon  fuel  standards),  and  a  GHG  registry  to  ensure  compliance.  Observing  states  and  provinces  include  Indiana,  Ohio,  Ontario,  and  South  Dakota.    

                                                                                                                                 19

http://www.rggi.org/docs/rggi_press_9_29_2008.pdf.  Accessed  on  December  27,  2010.  20Pierce  Emilee,  2010,  http://www.rggi.org/docs/Auction_10_Release_Report.pdf.  Accessed  on  December  27,  2010.  21

2010,  http://www.rggi.org/docs/Auction_10_Release_Report.pdf,  Accessed  on  December  27,  2010.  22Regional   Low   Carbon   Fuel   Standard   Program,   State   of   New   Jersey,   December   30,   2009,  http://www.nj.gov/globalwarming/pdf/lcfs_factsheet.pdf.  Accessed  on  December  26,  2009.  

Page 69: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   49  

  May  2011  

In   May   2010,   the   MGGRA   Advisory   Group,   consisting   of   representatives   from   government,   industry,  academia,   and  environmental   groups,   released   its   final   recommendations   for   introducing   regional  GHG  

-­‐and-­‐trade  scheme.  GHG  emission  reduction  targets  of  20   percent   below   2005   levels   by   2020   and   80   percent   below   2005   levels   by   2050   have   been  recommended   by   the   MGGRA   Advisory   Group.23   Sectors   covered   by   the   cap-­‐and-­‐trade   scheme   will  include:  electricity   generators   and   importers;   industrial   combustion   sources;   industrial   process   sources;  fuels   serving   residential,   commercial,   and   industrial   buildings,   with   some   exceptions,   and   excluding  Manitoba   until   the   second   compliance   period;   and   transportation   fuels,   excluding   Manitoba   until   the  second  compliance  period.24   It  was   recommended   that   the  cap-­‐and-­‐trade  scheme  begin  at   least   twelve  months   after   an   implementation   memorandum   of   understanding   is   signed   by   the   seven   participating  members.25  

Western  Climate  Initiative  The  Western  Climate  Initiative  (WCI)  is  a  collaboration  between  7  US  states  (Arizona,  California,  Montana,  New  Mexico,  Nevada,  Utah,  Washington),  and  4  Canadian  provinces  (British  Columbia,  Manitoba,  Ontario,  

 Cap-­‐and-­‐Trade  Program  and  complimentary  climate  change  policies  in  each  of  the  participating  jurisdictions.  The  multi-­‐sector  cap-­‐and-­‐trade  scheme,  which   is  set  to  commence   in   January   2012,   will   cover   90   percent   of   total   GHG   emissions   in  WCI   member   states   and  provinces  by  the  time  the  program  is  fully  implemented  in  2015.26  Cumulative  GHG  emissions  reductions,  over  the  three  compliance  periods,  have  been  estimated  at  719  million  metric  tonnes  of  CO2e.

27  Carbon  allowance  prices  were  forecast  by  the  WCI  to  reach  US$33  per  metric  tonne  of  CO2e  by  2020,  under  the  

-­‐and-­‐trade  scenarios  produced  2020  carbon  allowance  prices  ranging  from  a  minimum  of  US$13  per  metric  tonne  of  CO2e  to  more  than  US$50  per  metric  tonne  of  CO2e.

28  As  shown   in   Figure   5.3,   32   percent   of   total   GHG   emissions   reductions   are   expected   to   result   from   GHG  offsets,  while  the  remaining  68  percent  of  reductions  will  be  sourced  from  the  covered  sectors.29  

   

                                                                                                                                 23Advisory   Group   Final   Recommendations,   Midwestern   Greenhouse   Gas   Reduction   Accord,   May   2010,  http://midwesternaccord.org/Accord_Final_Recommendations.pdf.  Accessed  on  December  26,  2010.  24  Ibid.  25  Ibid.  26The  WCI   Cap  &   Trade   Program,   The  Western   Climate   Initiative,   http://www.westernclimateinitiative.org/the-­‐wci-­‐cap-­‐and-­‐trade-­‐program.  Accessed  on  December  27,  2010.  27Updated  Economic  Analysis  of  the  WCI  Regional  Cap-­‐and-­‐Trade  Program,  Western  Climate  Initiative,  July  2010.  28  Ibid.  29  Ibid.  

Page 70: Canadian Energy Research Institute oilsands report -  2011

50   Canadian  Energy  Research  Institute  

May  2011  

Figure  5.3  Sources  of  Emissions  Reductions  Under  the  Cap  

Main  Policy  Case  Relative  to  the  Reference  Case,  2012-­‐2020  

 Source:  WCI  

Observing   US   states,   Canadian   provinces,   and   Mexican   states   in   the   WCI   are   Alaska,   Baja   California,  Chihuahua,   Coahuila,   Colorado,   Idaho,   Kansas,   Nevada,   New   Brunswick,   Nova   Scotia,   Nuevo   Leon,  Saskatchewan,  Sonora,  Tamaulipas,  Wyoming,  and  the  Yukon  Territory.  

Tailings  Management  Water  plays   a   crucial   role   in   the  development  of   the  oil   sands.  Mining  operations  use   approximately   4  barrels  of  fresh  water  per  barrel  of  bitumen  produced  (about  2  to  3  barrels  of  which  are  sourced  from  the  Athabasca  River),  and  about  1/2  a  barrel  of  fresh  water  per  barrel  of  oil  produced  is   required  by   in  situ  operations  (none  of  which  is  sourced  directly  from  the  Athabasca  River).  Current  oil  sands  fresh  water  use  is  approximately  171  million  cubic  meters  (m3)  per  year.30  

Tailings  ponds  are  a  part  of  operations  common  to  various  types  of  surface  mining,   including  oil   sands,  coal,   metals,   diamonds   and   others.   With   oil   sands   mining,   once   the   oil   sands   have   been   mined,   it   is  separated  from  the  sand  and  clay  by  mixing  it  with  water.  The  oil  is  sent  for  further  processing,  and  the  leftover  mixture  of  water,  sand,  clay,  and  residual  oil  (referred  to  as  tailings)  is  transported  for  storage  in  large  ponds    often  built   in  discontinued  mine  pits,  where   solids  will   settle  and  water  will  be   recycled.  Coarse  solids  settle  rapidly,  while  the  fine  solids  remain  suspended  in  the  pond.31    These  fine  solids,  also  known  as  mature  fine  tailings  (MFT),  represent  a  significant  challenge  to  the  reclamation  of  tailings  ponds.  As  a  result,  mining  operators  have  needed  more,  and  larger,  oil  sands  tailings  ponds  over  the  years.    

                                                                                                                                 30  31  

 

Page 71: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   51  

  May  2011  

Existing  tailings  ponds  cover  an  area  of  170  square  kilometers  (km2)32  and  can  have  a  long  life,  remaining  part  of  an  active  tailings  management  system  for  up  to  30  or  40  years,  either  for  tailings  deposits,  or  for  storage  and  water  recycling.  Given  this  long  life  cycle,  no  tailings  ponds  have  yet  been  reclaimed.33  

Presently,   consolidated   tailings   (CT)   technology   is  being  used  at   existing  oil   sands  operations   to   solidify  fluid  tailings.34  With  the  CT  process,  fluid  fine  tailings  are  mixed  with  coarse  sand,  and  a  chemical  agent  (e.g.,   gypsum),   forming   a   non-­‐segregating   mixture   in   order   to   transform   the   fluid   tailings   into   a   solid  deposit.  Extensive  research  on  tailings  has  been  conducted,  with  the  goal  of  developing  technologies  and  approaches  that  reduce  the  volume  of  fine  tailings  generated,  and  increase  the  rate  of  solidification.    

One  such   innovation   is   the   Tailings  Reduction  Operation   (TRO )  process,   introduced  by  Suncor  Energy,  and   approved   in   June   2010   by   the   ERCB.35   During   the   TRO process,   MFT   are   mixed   with   a   polymer  flocculent  before  it  is  deposited,  in  thin  layers,  over  sand  beaches  with  shallow  slopes.  This  drying  process  occurs  over  a  matter  of  weeks,  allowing  reclamation  to  occur  more  rapidly.  The  resulting  product  is  a  dry  material  that  can  be  reclaimed  in  place,  or  moved  to  another  location  for  contouring,  and  replanting  with  native  vegetation.  The  new  process   is  expected   to   improve   tailings  management   in   the   future,  and  can  also   be   used   to   reduce   existing   tailings   inventory.   Figure   5.4   shows   MFT   that   have   been  converted  to  a  dry,  solid  surface  after  only  14  days.  

Figure  5.4  MFT  Surface  after  14  Days  

 Source:  Suncor  Energy  

 

                                                                                                                                 32    ERCB,  April  2010.  33Simieritsch,  

December  2009.  34   Directive:   Tailings   Performance   Criteria   and   Requirements   for   Oil   Sands   Mining  

 35  http://www.suncor.com/en/newsroom/2418.aspx?id=1278055,  Accessed  on  December  27,  2010.  

Page 72: Canadian Energy Research Institute oilsands report -  2011

52   Canadian  Energy  Research  Institute  

May  2011  

Another   example   of   an   innovative   tailings   practice   is   being   fine-­‐tuned   at   Canadian   Natural   Resources     project.   CO2   is   captured   from   the   facility,   and  mixed  with   silts   in   the   tailings,   which  

causes  a  reaction  that  forms  a  solid,  and  allows  the  silts  to  settle  more  quickly.  This  process  reduces  GHG  emissions  in  two  ways:  the  CO2  is  permanently  trapped  in  the  silts,  and  most  of  the  water  can  be  recycled  while  it  is  still  hot  which  reduces  the  energy  required  to  reheat  the  water.  

ERCB  Directive  74  Reducing  the  volume  and  accelerating  the  solidification  of  fine  tailings  are  essential  to  improving  the  pace  of  the  tailings  pond  reclamation  process.  Achieving  this  objective  is  precisely  the  intent  of  the  new  Tailings  Performance  Criteria  Directive  074,  issued  by  the  ERCB  in  February  2009.36  

The   Directive   outlines   performance   criteria   for   the   reduction   of   fluid   tailings,   and   the   formation   of  .37  These  criteria  are  required  to  ensure  that  the  ERCB  can  hold  mineable  oil  sands  

operators   accountable   for   tailings   management.   Companies   were   required   to   submit   a   tailings  management   plan   to   the   ERCB   on   September   30,   2009,   indicating   plans   to   meet   the   Drequirements.  

The  ERCB  allows  companies  to  phase-­‐in  the  implementation  of  the  proportion  of  fluid  tailings  that  must  be  sent  to  Dedicated  Disposal  Areas  (DDAs).38  The  percentage  of  total  fines  in  the  tailings  feed  that  must  be  reported  to  the  DDAs  is:  

20  percent  from  July  1,  2010,  to  June  30,  2011   30  percent  from  July  1,  2011,  to  June  30,  2012   50  percent  from  July  1,  2012,  to  June  30,  2013,  and  annually  thereafter.  

These  percentages  are   in  addition   to   the   fines   that  will  be  captured   in  coarse   sand  deposits,  which  are  used  to  build  dikes  and  beaches.  Companies  are  to  provide  the  ERCB  with  progress  reports  on  a  quarterly  and  annual  basis.  

Although  the  above  criteria  must  be  met  by  all  oil  sands  mining  operators,  the  ERCB  recognizes  that  fluid  tailings  management   is  still   in   the  development  stages,  and  that  operators  may  need  flexibility   to  apply  technologies  and  techniques  that  best  suit  the  circumstances  of  particular  projects.  As  such,  the  ERCB  will  consider   submissions   by   operators,   and   determine   project-­‐specific   requirements   related   to   the  Directive.39  

   

                                                                                                                                 36  2009.  37 t  have  been  created  through  consolidation,  drying,  drainage  and  or  capping  must  have  a  minimum  shear  strength.  38  technologies.   The   material   deposited   each   year   must   achieve   minimum   undrained   shear   strength   of   5   kPa  

 39  http://www.edmontonjournal.com/business/Shell+CNRL+miss+target+tailings+standards/3995941/story.html.  Accessed  on  December  27,  2010.  

Page 73: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   53  

  May  2011  

Technology  Options  and  Efficiency  Improvements  When   the  oil   sands   resource   is   considered   in   a   global   context,   the  myth   that   it   is   the  dirtiest   resource  becomes  blurred,  as  evidenced  by  a  host  of  lifecycle  analyses  (LCAs)  that  have  been  performed.  In  2010,  Cambridge  Energy  Research  Associates  (CERA)  provided  an  excellent  summary  analysis  of  approximately  13   LCA   studies,   which   examined   oil   sands   production   methods,   in   addition   to   other   oil   extraction  techniques   and   locations.40   The   results   further   confirm   that,   while   the   oil   sands   extraction   is   energy  intensive,  it  is  by  no  means  the  most  energy  intensive.  Furthermore,  the  vast  majority  of  GHG  emissions  come  from  the  end  user.  

While   this   information  could   allow   the   industry   to  become  complacent,   it   is   continuing   to  explore  new  extraction   techniques   which,   if   successful,   could   transform   the   oil   sands   industry   from   an   emissions  

hat  generates  lower  GHG  emissions  per  barrel  of  output,  relative  to  current  production  methods.  

Figure  5.5  Well-­‐to-­‐Wheels  GHG  Emissions  for  Oil  Sands  and  Other  Crudes  

 Source:  IHS  CERA  

bitumen  extraction  technology  options  with  improved  energy  efficiency  and/or  reduced  GHG  emissions.  This  section  will  provide  a  brief  overview  of  some  of  these  technology  options,  excluding  SAGD  and  CSS,  in  addition  to  an  update  on  the  status  of  the   technologies.   Unfortunately,   due   to   the   proprietary   nature   of   new   technology   research   and  development,  there  is  insufficient  data  available  to  perform  a  detailed  cost  analysis  on  each  technology.  

                                                                                                                                     40  

Page 74: Canadian Energy Research Institute oilsands report -  2011

54   Canadian  Energy  Research  Institute  

May  2011  

Nuclear  Although  the  low  natural  gas  prices  environment  has  effectively  muted  the  discussion  on  nuclear  energy  in  the  oil  sands,  it  is  still  worth  commenting  on  from  a  steam  generation  perspective.  Nuclear  energy  can  act  as  an  excellent  hedge  against  high  natural  gas  prices,  and  GHG  emissions  compliance  costs.  However,  it  is  a  technology  option  that  would  require  a  long-­‐term  commitment  from  an  oil  sands  operator.  Such  a  commitment  introduces  substantial  financial  risks  that  may  not  be  offset,  given  the  current  abundance  of  natural  gas  in  North  America.  With  the  low  price  of  natural  gas,  nuclear  energy  is  not  viewed  as  a  viable  option  for  the  oil  sands  within  the  projection  timeframe  of  this  report.    

Solvent  Based  Extraction  Solvent  based  extraction  has  been  widely   tested,  and   is  considered  a  viable  alternative   to  traditional   in  situ  extraction  methods  for  reducing  the  viscosity  of  the  bitumen.41    There  are  a  wide  variety  of  processes  that  utilize  a  mixture  of  different  types  of  solvents  and  quantities  of  steam.    

With   the   vapour  extraction  process   (VAPEX),  which   relies   upon   the  basic  principle   that   the   viscosity  of  bitumen  can  be  reduced  not  only  by  heat,  but  by  solvents  as  well,42  the  solvents  are  selected  by  molecular  weight  (lower  than  bitumen),  the  reservoir  temperature  and  pressure,  the  ability  of  the  solvent  to  remain  as  a  vapour  during  extraction,  the  ability  of  the  solvent  to  partially  upgrade  the  bitumen,  the  availability  and  cost  of  the  solvent,  the  solubility  of  the  solvent,  and  the  solvents  ability  to  generate  high  extraction  rates.43   In  other  words,   it   is  unlikreservoir  specific.  

A  vapourized  solvent  is  injected  through  an  upper   injection  well  to  dissolve  the  oil  sands,  separating  the  bitumen  from  the  sand,  without  the  use  of  steam.  The  solvent-­‐diluted  bitumen  drains,  by  gravity,  to  the  lower  production  well,  where  it  is  then  pumped  to  the  surface.    

The  VAPEX  process  holds  several  potential  advantages  over  traditional  thermal  processes:  reduced  capital  cost  by  eliminating  steam  generating  facilities  (estimated  to  be  30  percent  of  capital  costs);44  a  complete  or  partial  elimination  of  water  recycling  and  disposal  facilities;  an  ability  to  recover  larger  quantities  of  the  original  oil/bitumen   in  place   (SAGD  recovery   factors  are  close  to  45  percent,   while   the   recovery   factors  with   CSS   at   least   25   percent);45   and   a   substantial   (if   not   complete)   elimination   of   GHG   emissions  associated  with  the  production  (and  partial  upgrading)  of  the  bitumen.  

Conventional  produced  bitumen  contains  large  quantities  of  asphaltenes,  which  can  reach  approximately  22  percent  by  weight.46   The  VAPEX  process  has   the  ability   to  partially  upgrade   the  bitumen   in  place  by  deasphalting  the  bitumen  if  the  solvent   is  of  a  sufficiently   low  molecular  weight.  This  results   in  partially  

                                                                                                                                 41 -­‐International  Petroleum  Conference  June  16-­‐18,  2009,  Petroleum  Society  of  Canada,  2009,  Paper  No.  2009-­‐115.  42

(SPE),  Petroleum  Recovery  Institute,  September  1998.  43Ibid.  44Ibid.  45Athabasca  Oil  Sands  Corp.  Preliminary  Prospectus.  Calgary:  Athabasca  Oil  Sands  Corp.,  2010.  46

(SPE),  Petroleum  Recovery  Institute,  September  1998.  

Page 75: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   55  

  May  2011  

upgraded  bitumen  with  a  higher  value  than  non-­‐upgraded  bitumen,  and  could  be  of  sufficient  quality  to  meet   pipeline   specifications.     Therefore,   VAPEX   could   offer   a   regional   benefit   of   reduced   demand   for  diluents   (such   as   condensate).   The   most   notable   drawback   is   that   the   deasphalting   process   leaves  asphaltenes  in  the  reservoir,  which  could  plug  the  reservoir,  and  dramatically  curtail  production.  

Electric  Thermal  Dynamic  Stripping  Process  E-­‐ -­‐Thermal   Dynamic   Stripping   Process   (ET-­‐DSPTM)   is   an   in   situ   technology   that   uses  electromagnetic  energy  to  heat  the  bitumen,  causing  the  viscosity  to  decrease.  Electricity  and  water  travel  down  the  electrodes,  which  are  inserted  into  vertical  wells,   in  a  grid-­‐like  pattern.  The  heated  bitumen  is  then   produced   through   vertical   extraction  wells,  which   follow   the   same   configuration   as   the   electrode  wells.  Figure  5.6  illustrates  the  ET-­‐DSPTM  well  configuration.  

Figure  5.6  -­‐DSPTM  Well  Configuration  

 Source:  E-­‐T  Energy  Ltd.  

E-­‐T  Energy  is  currently  conducting  a  field  test  of  the  ET-­‐DSPTMtechnology  in  the  McMurray  Formation  of  the  Athabasca  oil  sands  region,  and  has  applied  to  expand   the  field  test.  In  the  initial  field  test,  25  wells  (16  electrode  wells  and  9  extraction  wells)  were  drilled  8  meters  apart.  The  expanded   field  test,   lasting  between   1   to   2   years,  will   focus   on   optimal  well   spacing   and   reducing   the   ratio   of   extraction  wells   to  electrode  wells.  Once  approved,   the  E-­‐T   Energy  will   drill   a   total   of   64  wells   (46  electrode  wells   and  16  

Page 76: Canadian Energy Research Institute oilsands report -  2011

56   Canadian  Energy  Research  Institute  

May  2011  

be  the  Polar  Creek  ET-­‐DSPTM  Project,  expected  to  commence  operation  sometime  after  2011.  This  project  has  planned  production  volumes  of  10,000  BPD,  expanding  in  phases  to  110,000  BPD  beyond  2013.  

As   shown   in   Figure   5.7,   the  majority   of   the  Athabasca   oil   sands   resource   is   located   at   depths   that   are  

accessed  and  produced  using  E-­‐ -­‐DSPTM   technology.  The  potential   implications  on   the   total  size  of  the  oil  sands  resource  could  be  staggering   if  this  technology  can  unlock  the  vast  potential   in  the  Athabasca  region  that  is  currently  not  amenable  to  SAGD,  CSS,  mining,  and  likely  solvent  extraction.  

Figure  5.7  ET-­‐DSPTM  Production  Area  

 Source:  E-­‐T  Energy  Ltd.  

A  range  of  potential  benefits  exists  with  this  new  technology.  Unlike  other  production  methods,  natural  gas   is   not   needed   with   the   ET-­‐DSPTM   production   process.   Though   the   company   expects   a   bitumen  recovery  rate  of  75  percent,  the  thermal  efficiency  of  the  ET-­‐DSPTM  process  could  reduce  GHG  emissions  compared  to  other  extraction  methods,  but  this  is  highly  dependent  upon  the  source  of  electricity.  

The   water   requirements   are   minimal,   as   produced   water   is   recycled,   heated,   and   re-­‐injected   into   the  reservoir.  E-­‐T  Energy  has  reported  the  reservoir  energy  oil  ratio  to  be  62  kWh/bbl,  equivalent  to  a  steam  oil   ratio   (SOR)   of   0.56,47   which   is   37   percent   lower   than   the   SOR   from   solvent   extraction.   The   CO2e  emissions,  on  a  per  barrel  basis,  are  estimated  to  be  31.9  kg  of  CO2e/bbl  of  bitumen  produced.  However,  if   the  majority  of   the  electricity   is  generated  with  coal,   the  emissions   from  the  project  would  be  about  twice  as  much.  

   

                                                                                                                                 47E-­‐T  Energy  Ltd.,  http://www.e-­‐tenergy.com/London  January2009.pdf,  Accessed  on  March  17,  2009.  

Page 77: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   57  

  May  2011  

Toe-­‐to-­‐Heel  Air  Injection  Petrobank  Energy  and  Resources  Ltd.  has  introduced  a  thermal  in  situ  combustion  technique,  referred  to  as  Toe-­‐to-­‐Heel  Air  Injection  (THAITM),  which  combines  a  vertical  injection  well  with  a  horizontal  production  well   to   recover   the   bitumen.   The   company   is   continuing   to   report   successful   THAI   operations,   and   the  possibility   that   higher   reserve   estimates   could   be   provided,   based   upon   higher   THAI   recovery   rates,  relative  to  conventional  thermal  in  situ  production  methods.  In  November  2010,  a  month  after  receiving  

Dawson  project.48  

During   the   Pre-­‐Ignition   Heating   Cycle   (PIHC)   phase,   80   percent   quality   steam   is   injected   into   both   the  vertical   injection   well   and   the   horizontal   production   well,   in   order   to   heat   and   mobilize   the   bitumen  between   the   two  wells.49  Once   the  PIHC  phase   is   complete,   air   is   injected   into   the   vertical  well,   and  a  combustion  front   is   created,  with  peak  temperatures  of  more  than  700  degrees  Celsius.50  Ahead  of   the  combustion   front   is   the  coke   (fuel)   zone,  where   the  high   temperature  coke  oxidization  occurs.  The  hot  combustion  gases,  coming  into  contact  with  the  bitumen,  result  in  thermal  cracking  and  upgrading  of  the  bitumen.  With   reduced   viscosity,   the   bitumen   is   able   to  drain,   by   gravity,   to   the   horizontal   production  well.  The  remaining  coke  functions  as  a  fuel  source  for  further  combustion  as  the  process  moves  through  the  reservoir.  Figure  5.8  depicts  the  THAITM  extraction  process.  

Figure  5.8  THAITM  Extraction  Process  

 Source:  Petrobank  Energy  and  Resources  Ltd.  

                                                                                                                                 48News   Release:   Petrobank   Receives   Final   Regulatory   Approval   for   Dawson,   Petrobank   Energy   and   Resources   Ltd.,  November  29,  2010.  49WHITESANDS   Insitu   Ltd.,   WHITESANDS   Project   Expansion   Integrated   EUB/AENV   Application,   December   2007,  http://www.petrobank.com/webdocs/whitesands/WHITESANDS_Project_Expansion_Application.pdf,   Accessed   on  March  10,  2009.  50

Combustion   Operations   at   Whitesands   THAITM   Project.   http://www.petrobank.com/webdocs/news_2006/  2006_09_12_WHITESANDS_Update.pdf,  Accessed  on  March  10,  2009.  

Page 78: Canadian Energy Research Institute oilsands report -  2011

58   Canadian  Energy  Research  Institute  

May  2011  

The   combustion   front   sweeps   the  bitumen   from   the   toe   to   the  heel  of   the  horizontal   production  well,  efficiently  recovering  an  estimated  70  to  80  percent  of  the  bitumen  in  place,  while  partially  upgrading  the  bitumen   in   situ.  Other  potential   benefits  of   the  THAITM  production  process   include  minimal  natural   gas  and  fresh  water  usage,  partially  upgraded  oil  quality,   lower  capital  and  operating  costs,  50  percent   less  GHG   emissions,   reduced   diluent   requirements   for   transportation,   and   the   ability   to   operate   in   lower  pressure,   lower   quality,   thinner,   and   deeper   oil   sands   reservoirs   than   current   steam-­‐based   production  methods.51  Assuming  a  50  percent   reduction   in  emissions,  THAITM  would  emit  approximately  26.5  kg  of  CO2e/bbl,  slightly  more  than  emissions  from  solvent  extraction.  Given  the  lack  of  data  available  to  provide  a  more  detailed  estimate,  this  should  be  viewed  as  illustrative  in  terms  of  its  relative  ranking  in  emissions  reductions,  versus  solvent  extraction  and  ET-­‐DSPTM.  

TM  process  applies  a  layer  of  catalysts  to  the  horizontal  production  well  in  a  second  TM  bitumen,  which  is  already  partially  upgraded  with  the  THAITM  

technology   to   an   API   of   11.5   degrees,52   passes   through   the   sleeve   of   catalysts   (hydrodesulphurization  catalysts),   further   cracking   occurs,   and   the   resulting   oil   that   is   produced   is   ready   for   transportation  through  standard  oil  pipelines,  following  water  separation.  The  CAPRITM  process  was  able  to  improve  the  API   by  7  degrees,   according   to   laboratory   tests.53   Figure  5.9   TM  liner.  

Figure  5.9  CAPRI  Liner  

 Source:  Petrobank  

One  of  the  shortcomings  of  bitumen  recovery  with  the  THAITMprocess  is  the  associated  sand  production.  A  buildup  of  sand  at  the  bottom  of  the  reservoir  can  have  an  adverse  impact  on  the  combustion  front.  This  

                                                                                                                                 51 he   THAITM   http://www.petrobank.com/hea-­‐thaiprocess.html.  Accessed  on  March  13,  2009.  52 TM/CAPRITM   ProductionSeptember   22,   2008.   http://www.petrobank.com/webdocs/   news_2008/PBG_2008_09_22.pdf.   Accessed   on  March  13,  2009.  53Ibid.  

Page 79: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   59  

  May  2011  

TM/THAITM  test  well,  the  P-­‐3B.  The  narrow   slotted   liner   that   was   introduced   significantly   decreased   the   amount   of   produced   sand.   Any  additional  sand  will  be  removed  at  the  on-­‐site  processing  facility,  which  also  separates  the  water  from  the  oil.  

Oil  Sands  Merger  and  Acquisition  Revival  Although  the  US  recession  officially  came  to  an  end  in  June  2009,  the  ramifications  of  the  global  recession  are   still   being   felt,   as   countries   such   as   Spain   and   Ireland   are   starting   to   come   to   grips  with   troubling  balance  sheets.  Since  the  last  edition  of  the  oil  sands  update  in  2009,  CERI  has  stated  that  the  resumption  in  oil  sands  activity  was  markeand  that  it  would  still  take  a  couple  of  years  for  capital  spending  in  the  oil  sands  to  return  to  pre-­‐recession  levels.  

When   2010   came   to   a   close,   the   level   of   activity   in   the   oil   sands   began   to   pick   up,   as   indicated   by  increased  oil  sands  related  capital  spending  announcements  in  2011  capital  budgets.  While  this  increase  in  capital  spending  will  produce  positive  economic  benefits  in  Alberta,  and  across  Canada,  the  focus  of  this  section  is  on  the  level  of  merger  and  acquisition  (M&A)  activity  (including  joint  ventures).  After  reaching  a  peak  of  $12.4  billion  in  2006,  M&A  activity  declined  to  a  mere  $2.0  billion  in  2008.54  The  merger  of  Royal  Dutch   Shell   and  Shell   Canada   is   estimated   to   add  an  additional   $5.5  billion   to   the  2007  oil   sands  M&A  activity,  pushing  the  2007  total  to  $9.1  billion.55  

As  the  recession  took  hold,  M&A  activity  remained  weak  during  the  2008  to  2009  trough,  at  an  average  of  $2.4   billion,   or   just   below   2005   levels.56   While   the   Suncor/Petro-­‐Canada   merger   created   a   significant  increase   in   the  value  of  M&As   in  2009,   it  was  an  outlier,  and  reflects   the  undervalued  nature  of  Petro-­‐Canada.  Including  the  Suncor/Petro-­‐Canada  merger,  M&A  activity  in  2009  is  estimated  at  $12.1  billion.  

Oil   sands  M&A   activity   surged   in   2010   to   $13.2   billion,   as   a   result   of   over   a   dozen  mergers   and   joint  ventures  announced,   including  the  PTT  Exploration  and  Production   (Thailand)   joint  venture  with  Statoil,  

l  with  Total,  the  of  UTS  Energy,  and  other   sub  $1  billion  transactions.57  Additionally,   the   level  of  activity   in  2010  has   set  new  pricing  points  for  oil  sands  resources,  estimated  at  $1.37/bbl  of  recoverable  reserves  (Statoil  deal),58  as  companies  seeking    a  position  in  the  oil  sands  are  willing  to  pay  a  premium  to  secure  one  of  the  most  politically  stable  oil  resources  in  the  world.  Although  it  is  difficult  to  estimate  the  level  of  activity  in  2011,  it   is   expected   that   the   oil   sands  may   take   center   stage   in   North   American   non-­‐shale   gas   related  M&A  activity.  

   

                                                                                                                                 54CanOils  55Peters,  Terry,  Asad  Rawra,  Canaccord  Adams,  Daily  Letter,  October  24,  2006.  56CanOils,  CERI  57CanOils  58Ibid.  

Page 80: Canadian Energy Research Institute oilsands report -  2011

60   Canadian  Energy  Research  Institute  

May  2011  

Figure  5.10  Oil  Sands  Mergers  and  Acquisitions  

$0

$2

$4

$6

$8

$10

$12

$14

$16

2005 2006 2007 2008 2009 2010

Total 2010  -­‐ Q4 2010  -­‐ Q3 2010  -­‐ Q2 2010  -­‐ Q1 Petro-­‐CanadaOil  Sands

Shell  CanadaOil  Sands

C$  Billions

Source:  CanOils,  CERI    

Page 81: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   61  

  May  2011  

Chapter  6  Transportation    The  existing  crude  oil  pipeline   infrastructure  underwent  a  much  needed  expansion  recently,   in  order   to  accommodate   the   growing   volumes   of   oil   sands   production.   A   number   of   pipeline   expansions   were  completed  in  2009,  and  2  major  additional  pipelines  became  operational  at  the  end  of  2010.  Furthermore,  additional   capacity   to   major   traditional   markets   and   the   US   Gulf   Coast   will   be   available   once   other  scheduled   pipeline   projects   are   built   and   operating   in   the   next   few   years.   This   chapter   describes   the  existing  major  crude  oil  pipeline  network,  and  proposed  expansions  on  the  major  pipeline  routes  (export  and  domestic).  

Current  Transportation  (Pipeline)  Capacity  Given   the   production   projection   under   the   Realistic   Scenario,   the   current   pipeline   infrastructure   in  Alberta  will  not  be  sufficient  to  transport  the  forecasted  oil  sands  volumes  by  2024,  and  will  need  to  be  expanded.  Capacity  additions  are  needed  to  both  transport  blended  or  upgraded  bitumen  to  refineries,  and  supply  diluent/condensate  necessary  to  operate  the  oil  sands  projects.  Currently,  as  shown  in  Table  6.1,  the  capacity  of  regional  oil  pipelines  that  transport  SCO  and  non-­‐upgraded  bitumen  out  of   the  Cold  Lake  and  Athabasca  regions  is  almost  3.0  MMBPD.1  The  Cold  Lake  pipeline  system  delivers  SCO  and  heavy  oil  from  the  Cold  Lake  region  to  Edmonton,  Lloydminster  and  Hardisty  with  a  capacity  of  1.0  MMBPD.  The  capacity  of  the  Fort  McMurray  pipeline  system,  which  delivers  crude  oil  from  the  Fort  McMurray  region  to  Hardisty  and  Edmonton,  is  greater  than  that  of  the  Cold  Lake  system,  at  1.9  MMBPD.  

There  are  5  major  pipelines  that  are  directly  connected  to  the  Canadian  supply  hubs,  which  are  located  in  Edmonton   and   Hardisty,   Alberta:     Enbridge   Mainline,   Kinder   Morgan   Trans   Mountain,   Kinder   Morgan  Express,   Enbridge   Alberta   Clipper   and   the   TransCanada   Keystone   pipeline.   The   Alberta   Clipper   and  Keystone   pipelines   commenced   operations   in   2010,   adding   885,000   BPD   of   pipeline   capacity   out   of  western  Canada,  and  bringing  the  total  export  capacity  to  3.5  MMBPD  of  crude  oil,  as  shown  in  Table  6.1.  The  bitumen  production  forecast,  under  the  Realistic  Scenario,  suggests  that  excess  pipeline  capacity  will  exist  until  2024.  

   

                                                                                                                                 1   -­‐ -­‐2010,  June  2010.  

Page 82: Canadian Energy Research Institute oilsands report -  2011

62   Canadian  Energy  Research  Institute  

May  2011  

Table  6.1  Alberta  Regional  and  Export  Pipelines  

Name   Type   Destination  Capacity                    

(106bbl/d)  Cold  Lake  Area  pipelines  

Cold  Lake  Pipeline     Heavy  Oil   Hardisty     459.3  Edmonton    

Husky  Oil  Pipeline     Heavy  Oil  and  SCO   Hardisty     490.8  Lloydminster    

Echo  Pipeline     Heavy  Oil   Hardisty   75.5  

TOTAL           1,025.6  Fort  McMurray  Area  pipelines  

Athabasca  Pipeline     Semi-­‐processed  product  &  bitumen  blends  

Hardisty     390.1  

Corridor  Pipelines     Diluted  bitumen   Edmonton     300.1  

Syncrude  Pipeline     SCO   Edmonton     388.8  

Oil  Sands  Pipeline   SCO   Edmonton     144.7  

Access  Pipeline   Diluted  bitumen   Edmonton     149.7  

Waupisoo  Pipeline   Blended  bitumen   Edmonton     349.8  

Horizon  Pipeline   SCO   Edmonton     249.8  

TOTAL           1,973.2  Export  Pipelines  

Enbridge  Pipeline     Crude  oil   Eastern  Canada   1,868.0  U.S.  East  coast  U.S.  Midwest  

Kinder  Morgan  (Express)   Crude  oil   U.S.  Rocky  Mountains  

280.0  

U.S.  Midwest  Kinder  Morgan  (Trans  Mountain)   Crude  oil  &  Refined  

Products  British  Columbia   300.0  U.S.  West  Coast  Offshore  

Enbridge  Alberta  Clipper   Heavy  crude   US  Midwest   450.0  TransCanada  Keystone   Light/heavy  crude   US  Midwest   435.0  Milk  River  Pipeline   Light  oil   U.S.  Rocky  

Mountains  118.3  

Rangeland  Pipeline   Cold  Lake  blend   U.S.  Rocky  Mountains  

84.9  

TOTAL           3,536.2  

 Sources:   (1)   -­‐ST98-­‐2010,  June  2010.    

   

Page 83: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   63  

  May  2011  

Transportation  Capacity  Expansions  Future  plans   include   the  expansion  of  diluent  and  feeder  pipelines,  as  well  as  export  pipelines,   to  carry  crude  oil  to  various  markets.  Diluent  and  feeder  pipelines  in  Alberta  are  expanding  to  transport  diluent  to  the  region  and  growing  bitumen  volumes  to  the  major  hubs  of  Edmonton  and  Hardisty.  These  proposed  pipelines  are  shown  in  Table  6.2.    

By  2016,  the  additional  export  pipeline  capacity  could  reach  approximately  2.3  MMBPD  of  crude  oil,  on  top  of  the  current  capacity  of  3.5  MMBPD.  The  rate  of  expansion  will  greatly  depend  on  market  conditions  and   regulatory   approvals.   In   the  end,  producers  will   support   the  pipeline  projects   that  will   provide   the  highest  netbacks.  

It   is   possible   that   pipeline   companies   may   take   on   excess   throughput   risk   in   order   to   advance   the  development   of   individual   projects,   and   to   provide   shippers   with   attractive   terms,   thus   reducing   the  return  on  the  project  beyond  an  acceptable  risk-­‐adjusted   level.  Hence,  not  all  of   the  proposed  projects  will  be  completed.  

Table  6.2  Potential  Pipeline  Expansions  

Pipeline   Type  

 Capacity  Increase  (MBPD)  

Estimated  Completion  

Date   Market  Proposed  Alberta  Pipeline  Projects  

               

Inter  Pipeline  Corridor   Dilbit   165   2010-­‐2011   Edmonton  Enbridge  Fort  Hills   Diluted  bitumen   250   N/A   Sturgeon  

Diluent   70   Edmonton  Total     485        Proposed  Export  Pipeline  Projects    

               

Kinder  Morgan                    TMX2  

Crude  oil  &RPPs   80   2015   US  West  coast/Offshore/Far  East        TMX3   320   2016  

     TMX  Northern  leg  expansion   Crude  oil  &RPPs   400   2015   British  Columbia/US  West  coast/  Far  East  

Enbridge  Gateway     Crude  oil   525   2015-­‐2016   US  West  coast/Offshore/Far  East  

TCPL  Keystone  XL  expansion     700   2012   US  Midwest/US  Gulf  Coast  

Altex  Energy   Crude  oil   252   2013-­‐2014   US  Gulf  Coast  Total       2,277          

 Sources:   -­‐ -­‐2010,  June  2010.    

   

Page 84: Canadian Energy Research Institute oilsands report -  2011

64   Canadian  Energy  Research  Institute  

May  2011  

Figure  6.1  Alberta  Existing  and  Proposed  Regional  Pipelines  

 s  Energy  Reserves  2009  and  Supply/Demand  Outlook  2010-­‐ -­‐2010,  June  2010.  

Figure  6.2  Existing  and  Proposed  Export  Pipelines  

 -­‐ -­‐2010,  June  2010.  

Page 85: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   65  

  May  2011  

Canadian  crude  oil  supplies  will  continue  to  serve  traditional  markets  in  the  US  and  Canada.  The  demand  for  Canadian   crude  oil   the  US  Midwest  market  will   grow,   as  heavy  oil   refining   capacity   in   the   region   is  added.   However,   growing   volumes   of   Canadian   bitumen   supply   means   that   new   markets   for   these  volumes  must  be  found.  The  US  Gulf  Coast  is  one  such  market,  and  the  TransCanada  Keystone  XL  pipeline  project,  which  is  expected  to  be  in  service  in  2012,  will  provide  Canadian  producers  with  increased  access  to   this   market.   The   growing   demand   for   crude   oil   in   Asia   could   potentially   create   a   new   market   for  Canadian  crude  oil.  The  Northern  Gateway  Project  from  Edmonton,  Alberta  to  the  deepwater  port  located  in  Kitimat,  British  Columbia  is  being  designed  to  provide  525,000  BPD  of  crude  oil  export  capacity.  Crude  oil   would   be   loaded   on   tankers   for   delivery   to   the   US   West   coast   and   Far   East   markets.   Enbridge  submitted  an  application  to  the  National  Energy  Board  at  the  end  of  May  2010.  

   

Page 86: Canadian Energy Research Institute oilsands report -  2011

66   Canadian  Energy  Research  Institute  

May  2011  

 

Page 87: Canadian Energy Research Institute oilsands report -  2011

Canadian  Oil  Sands  Supply  Costs  and  Development  Projects  (2010-­‐2044)   67  

  May  2011  

Chapter  7  Conclusion    

great   economic   potential,   they   also   present  environmental   challenges   in   the  areas  of   greenhouse  gas   (GHG)  emissions,   air   pollution,  water,   tailings  ponds  and  land.  This  may  result  in  greater  regulatory  oversight,  and  an  attempt  to  balance  the  economic  benefits   associated  with   oil   sands   development,   and   the  environmental   impacts.  Of   the   environmental  impacts,   GHG   emissions   have   received   significant   attention   over   the   past   few   years,   as   projections   of  natural  gas  use  rise  with  production  estimates.  Applying  emissions  compliance  costs  to  oil  sands  projects  can  be  viewed  as  one  way  to  balance  the  environmental  concerns  and  economic  benefits  associated  with  the  oil  sands  development.  Another  environmental  impact,  which  has  received  negative  media  attention,  is   the  management   of   tailings   ponds   at   mining   operations.   Environmental   opposition   to   the   oil   sands  could   potentially   create   a   barrier   to   investment,   and   interfere   with   its   future   development   prospects,  however,   this   is   unlikely,   as   oil   sands   investments   have   been   shown   to   be   extremely   profitable   for   oil  sands   operators,   as   well   as   the   provincial   and   federal   governments.     Additionally,   given   the   growing  

robust.  

CERI Realistic  Scenario  strikes  a  balance  between  the  environment  and  oil  sands  development,  through  the  inclusion  of  a  modest  emissions  compliance  cost.  However,  under  the  current  method  for  calculating  compliance  costs,  the  costs  have  little  impact  on  total  supply  costs  since  they  are  royalty  deductible.  

Natural  gas  costs,  construction,  and  other  operating  costs  are  estimated  to  have  a  significant  impact  on  oil  sands   developments.   These   costs,   however,   will   be   offset   by   higher   oil   prices   which   will   ensure  profitability  for  most  oil  sands  ventures,  and  substantial  royalty  revenues  for  the  Government  of  Alberta.  

10  percent,  with   the   exception   of   integrated   mining   and   upgrading   projects,   and   as   high   as   19   percent.   The  WTI  equivalent  price   for  SAGD  projects   is   $123/bbl,  $128/bbl   for   Integrated  Mining  and  Upgrading  projects,  and   $123/bbl   for   stand-­‐alone  Mining   projects;   SAGD  projects   receive   the   highest   ROR.     The   plant   gate  supply   costs,   which   exclude   transportation   and   blending   costs,   are   $93,   $100,   and   $93/bbl   for   SAGD,  Integrated   Mining   and   Upgrading,   and   stand-­‐alone   Mining,   respectively.   While   capital   costs   and   the  return  on  investment  account  for  a  substantial  portion  of  the  total  supply  cost,  the  province s  per  barrel  take  is  estimated  at  18  to  22  percent.  

The  favourable  project  economics  are  expected  to  continue  well  into  the  future,  and  help  drive  oil  sands  investment   dollars   by   2044.   The   investment   will   support   the   expansion   of   the   oil   sands,   such   that  production   volumes   will   reach   2.1   MMBPD   by   2015,   and   4.8   MMBPD   by   2030.   By   the   end   of   the  projection  period,  raw  bitumen  production  from  the  oil  sands  could  exceed  5.0  MMBPD.  

The  environmental  challenges  to  the  oil  sands  have  come  into  focus  during  the  last  10  years.  In  that  short  time   span,   the   industry   has   started   to   implement   gradual   changes   towards   lowering   GHG   emissions,  

Page 88: Canadian Energy Research Institute oilsands report -  2011

68   Canadian  Energy  Research  Institute  

May  2011  

water  consumption  and  minimizing  the  tailings  ponds.  Uncertainty  and  time  remain  key  characteristics  of  research  and  innovation.  It  is  not  known  when  and  which  of  the  technologies  presently  in  the  pilot  stage  will  become  commercial  successes.  Given  time,  a  continued  steady  pace  of   investments   in  research  and  innovation,  and  sound  government  policy,   it   is   reasonable  to  expect   that   the  next  35  years  will   see  the  implementation   of   new   oil   sands   technologies   that   will   dramatically   reduce   the   environmental   impact  while  maintaining  economic  growth  and  the  creation  of  high  value  employment  in  Alberta  and  Canada.  

Canadian  crude  oil  supplies  will  continue  to  serve  traditional  markets  in  the  US  and  Canada.  The  demand  for  Canadian  crude  oil  in  the  US  Midwest  market  will  grow,  as  heavy  oil  refining  capacity  in  the  region  is  added.   However,   growing   volumes   of   Canadian   bitumen   supply   means   that   new   markets   for   these  volumes  must  be  found.  The  US  Gulf  Coast  is  one  such  market,  and  the  TransCanada  Keystone  XL  pipeline  project,  which  is  expected  to  be  in  service  in  2012,  will  provide  Canadian  producers  with  increased  access  to  this  market.    

The  growing  demand  for  crude  oil   in  Asia  could  potentially  create  a  new  market  for  Canadian  crude  oil.  The  Northern  Gateway  Project  from  Edmonton,  Alberta  to   the  deepwater  port  located  in  Kitimat,  British  Columbia   is   being   designed   to   provide   525,000   BPD   of   crude   oil   export   capacity.   Crude   oil   would   be  loaded  on  tankers  for  delivery  to  the  US  West  coast  and  Far  East  markets.