Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx,...

80
Calculus I - Lecture 10 Trigonometric Functions and the Chain Rule Lecture Notes: http://www.math.ksu.edu/˜gerald/math220d/ Course Syllabus: http://www.math.ksu.edu/math220/spring-2014/indexs14.html Gerald Hoehn (based on notes by T. Cochran) February 24, 2014

Transcript of Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx,...

Page 1: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Calculus I - Lecture 10Trigonometric Functions and the Chain Rule

Lecture Notes:http://www.math.ksu.edu/˜gerald/math220d/

Course Syllabus:http://www.math.ksu.edu/math220/spring-2014/indexs14.html

Gerald Hoehn (based on notes by T. Cochran)

February 24, 2014

Page 2: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Recall the definition of sin θ and cos θ. 2π radians = 360◦.

Graph of sin θ:

Graph of cos θ:

Both are periodic functions with period 2π.

Page 3: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Recall the definition of sin θ and cos θ. 2π radians = 360◦.

Graph of sin θ:

Graph of cos θ:

Both are periodic functions with period 2π.

Page 4: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Recall the definition of sin θ and cos θ. 2π radians = 360◦.

Graph of sin θ:

Graph of cos θ:

Both are periodic functions with period 2π.

Page 5: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Section 3.6 – Trigonometric Derivatives

Findddx

sin x graphically and algebraically.

Solution: graphically

ddx

sin x = cos x

Page 6: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Section 3.6 – Trigonometric Derivatives

Findddx

sin x graphically and algebraically.

Solution: graphically

ddx

sin x = cos x

Page 7: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Section 3.6 – Trigonometric Derivatives

Findddx

sin x graphically and algebraically.

Solution: graphically

ddx

sin x = cos x

Page 8: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Section 3.6 – Trigonometric Derivatives

Findddx

sin x graphically and algebraically.

Solution: graphically

ddx

sin x = cos x

Page 9: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Solution: algebraically

ddx

sin x = limh→0

sin(x + h)− sin(x)

h

= limh→0

sin x cos h + sin h cos x − sin x

h

= sin x · limh→0

(cos h − 1

h

)+ cos x · lim

h→0

(sin h

h

)= sin x · 0 + cos x · 1 = cos x

Where we used

limh→0

cos h − 1

h= lim

h→0

√1− sin2 h − 1

h

= limh→0

(√

1− sin2 h − 1)(√

1− sin2 h + 1)

h (√

1− sin2 h + 1)

= limh→0

sin h

h· limh→0

sin h√1− sin2 h + 1

= 1 · 0√1 + 1

= 0.

Page 10: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Solution: algebraically

ddx

sin x = limh→0

sin(x + h)− sin(x)

h

= limh→0

sin x cos h + sin h cos x − sin x

h

= sin x · limh→0

(cos h − 1

h

)+ cos x · lim

h→0

(sin h

h

)= sin x · 0 + cos x · 1 = cos x

Where we used

limh→0

cos h − 1

h= lim

h→0

√1− sin2 h − 1

h

= limh→0

(√

1− sin2 h − 1)(√

1− sin2 h + 1)

h (√

1− sin2 h + 1)

= limh→0

sin h

h· limh→0

sin h√1− sin2 h + 1

= 1 · 0√1 + 1

= 0.

Page 11: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Solution: algebraically

ddx

sin x = limh→0

sin(x + h)− sin(x)

h

= limh→0

sin x cos h + sin h cos x − sin x

h

= sin x · limh→0

(cos h − 1

h

)+ cos x · lim

h→0

(sin h

h

)

= sin x · 0 + cos x · 1 = cos x

Where we used

limh→0

cos h − 1

h= lim

h→0

√1− sin2 h − 1

h

= limh→0

(√

1− sin2 h − 1)(√

1− sin2 h + 1)

h (√

1− sin2 h + 1)

= limh→0

sin h

h· limh→0

sin h√1− sin2 h + 1

= 1 · 0√1 + 1

= 0.

Page 12: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Solution: algebraically

ddx

sin x = limh→0

sin(x + h)− sin(x)

h

= limh→0

sin x cos h + sin h cos x − sin x

h

= sin x · limh→0

(cos h − 1

h

)+ cos x · lim

h→0

(sin h

h

)= sin x · 0 + cos x · 1

= cos x

Where we used

limh→0

cos h − 1

h= lim

h→0

√1− sin2 h − 1

h

= limh→0

(√

1− sin2 h − 1)(√

1− sin2 h + 1)

h (√

1− sin2 h + 1)

= limh→0

sin h

h· limh→0

sin h√1− sin2 h + 1

= 1 · 0√1 + 1

= 0.

Page 13: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Solution: algebraically

ddx

sin x = limh→0

sin(x + h)− sin(x)

h

= limh→0

sin x cos h + sin h cos x − sin x

h

= sin x · limh→0

(cos h − 1

h

)+ cos x · lim

h→0

(sin h

h

)= sin x · 0 + cos x · 1 = cos x

Where we used

limh→0

cos h − 1

h= lim

h→0

√1− sin2 h − 1

h

= limh→0

(√

1− sin2 h − 1)(√

1− sin2 h + 1)

h (√

1− sin2 h + 1)

= limh→0

sin h

h· limh→0

sin h√1− sin2 h + 1

= 1 · 0√1 + 1

= 0.

Page 14: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Solution: algebraically

ddx

sin x = limh→0

sin(x + h)− sin(x)

h

= limh→0

sin x cos h + sin h cos x − sin x

h

= sin x · limh→0

(cos h − 1

h

)+ cos x · lim

h→0

(sin h

h

)= sin x · 0 + cos x · 1 = cos x

Where we used

limh→0

cos h − 1

h

= limh→0

√1− sin2 h − 1

h

= limh→0

(√

1− sin2 h − 1)(√

1− sin2 h + 1)

h (√

1− sin2 h + 1)

= limh→0

sin h

h· limh→0

sin h√1− sin2 h + 1

= 1 · 0√1 + 1

= 0.

Page 15: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Solution: algebraically

ddx

sin x = limh→0

sin(x + h)− sin(x)

h

= limh→0

sin x cos h + sin h cos x − sin x

h

= sin x · limh→0

(cos h − 1

h

)+ cos x · lim

h→0

(sin h

h

)= sin x · 0 + cos x · 1 = cos x

Where we used

limh→0

cos h − 1

h= lim

h→0

√1− sin2 h − 1

h

= limh→0

(√

1− sin2 h − 1)(√

1− sin2 h + 1)

h (√

1− sin2 h + 1)

= limh→0

sin h

h· limh→0

sin h√1− sin2 h + 1

= 1 · 0√1 + 1

= 0.

Page 16: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Solution: algebraically

ddx

sin x = limh→0

sin(x + h)− sin(x)

h

= limh→0

sin x cos h + sin h cos x − sin x

h

= sin x · limh→0

(cos h − 1

h

)+ cos x · lim

h→0

(sin h

h

)= sin x · 0 + cos x · 1 = cos x

Where we used

limh→0

cos h − 1

h= lim

h→0

√1− sin2 h − 1

h

= limh→0

(√

1− sin2 h − 1)(√

1− sin2 h + 1)

h (√

1− sin2 h + 1)

= limh→0

sin h

h· limh→0

sin h√1− sin2 h + 1

= 1 · 0√1 + 1

= 0.

Page 17: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Solution: algebraically

ddx

sin x = limh→0

sin(x + h)− sin(x)

h

= limh→0

sin x cos h + sin h cos x − sin x

h

= sin x · limh→0

(cos h − 1

h

)+ cos x · lim

h→0

(sin h

h

)= sin x · 0 + cos x · 1 = cos x

Where we used

limh→0

cos h − 1

h= lim

h→0

√1− sin2 h − 1

h

= limh→0

(√

1− sin2 h − 1)(√

1− sin2 h + 1)

h (√

1− sin2 h + 1)

= limh→0

sin h

h· limh→0

sin h√1− sin2 h + 1

= 1 · 0√1 + 1

= 0.

Page 18: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Solution: algebraically

ddx

sin x = limh→0

sin(x + h)− sin(x)

h

= limh→0

sin x cos h + sin h cos x − sin x

h

= sin x · limh→0

(cos h − 1

h

)+ cos x · lim

h→0

(sin h

h

)= sin x · 0 + cos x · 1 = cos x

Where we used

limh→0

cos h − 1

h= lim

h→0

√1− sin2 h − 1

h

= limh→0

(√

1− sin2 h − 1)(√

1− sin2 h + 1)

h (√

1− sin2 h + 1)

= limh→0

sin h

h· limh→0

sin h√1− sin2 h + 1

= 1 · 0√1 + 1

= 0.

Page 19: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Solution: algebraically

ddx

sin x = limh→0

sin(x + h)− sin(x)

h

= limh→0

sin x cos h + sin h cos x − sin x

h

= sin x · limh→0

(cos h − 1

h

)+ cos x · lim

h→0

(sin h

h

)= sin x · 0 + cos x · 1 = cos x

Where we used

limh→0

cos h − 1

h= lim

h→0

√1− sin2 h − 1

h

= limh→0

(√

1− sin2 h − 1)(√

1− sin2 h + 1)

h (√

1− sin2 h + 1)

= limh→0

sin h

h· limh→0

sin h√1− sin2 h + 1

= 1 · 0√1 + 1

= 0.

Page 20: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Theorem (Derivatives of Trigonometric functions)

ddx

sin x = cos x

ddx

cos x = − sin x

ddx

tan x = sec2 x =1

cos2 xddx

cot x = − csc2 x = − 1

sin2 xddx

sec x = sec x tan x

ddx

csc x = − csc x cot x

Here: sec2 x = (sec x)2, etc.

Note the pattern: The derivatives of the “co”-trigonometricfunctions all have minus (-) signs.

Page 21: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Theorem (Derivatives of Trigonometric functions)

ddx

sin x = cos x

ddx

cos x = − sin x

ddx

tan x = sec2 x =1

cos2 xddx

cot x = − csc2 x = − 1

sin2 xddx

sec x = sec x tan x

ddx

csc x = − csc x cot x

Here: sec2 x = (sec x)2, etc.

Note the pattern: The derivatives of the “co”-trigonometricfunctions all have minus (-) signs.

Page 22: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Theorem (Derivatives of Trigonometric functions)

ddx

sin x = cos x

ddx

cos x = − sin x

ddx

tan x = sec2 x =1

cos2 x

ddx

cot x = − csc2 x = − 1

sin2 xddx

sec x = sec x tan x

ddx

csc x = − csc x cot x

Here: sec2 x = (sec x)2, etc.

Note the pattern: The derivatives of the “co”-trigonometricfunctions all have minus (-) signs.

Page 23: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Theorem (Derivatives of Trigonometric functions)

ddx

sin x = cos x

ddx

cos x = − sin x

ddx

tan x = sec2 x =1

cos2 xddx

cot x = − csc2 x = − 1

sin2 x

ddx

sec x = sec x tan x

ddx

csc x = − csc x cot x

Here: sec2 x = (sec x)2, etc.

Note the pattern: The derivatives of the “co”-trigonometricfunctions all have minus (-) signs.

Page 24: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Theorem (Derivatives of Trigonometric functions)

ddx

sin x = cos x

ddx

cos x = − sin x

ddx

tan x = sec2 x =1

cos2 xddx

cot x = − csc2 x = − 1

sin2 xddx

sec x = sec x tan x

ddx

csc x = − csc x cot x

Here: sec2 x = (sec x)2, etc.

Note the pattern: The derivatives of the “co”-trigonometricfunctions all have minus (-) signs.

Page 25: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Theorem (Derivatives of Trigonometric functions)

ddx

sin x = cos x

ddx

cos x = − sin x

ddx

tan x = sec2 x =1

cos2 xddx

cot x = − csc2 x = − 1

sin2 xddx

sec x = sec x tan x

ddx

csc x = − csc x cot x

Here: sec2 x = (sec x)2, etc.

Note the pattern: The derivatives of the “co”-trigonometricfunctions all have minus (-) signs.

Page 26: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Theorem (Derivatives of Trigonometric functions)

ddx

sin x = cos x

ddx

cos x = − sin x

ddx

tan x = sec2 x =1

cos2 xddx

cot x = − csc2 x = − 1

sin2 xddx

sec x = sec x tan x

ddx

csc x = − csc x cot x

Here: sec2 x = (sec x)2, etc.

Note the pattern: The derivatives of the “co”-trigonometricfunctions all have minus (-) signs.

Page 27: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Theorem (Derivatives of Trigonometric functions)

ddx

sin x = cos x

ddx

cos x = − sin x

ddx

tan x = sec2 x =1

cos2 xddx

cot x = − csc2 x = − 1

sin2 xddx

sec x = sec x tan x

ddx

csc x = − csc x cot x

Here: sec2 x = (sec x)2, etc.

Note the pattern: The derivatives of the “co”-trigonometricfunctions all have minus (-) signs.

Page 28: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

For sin x , we showed already how to get the derivative.

For cos x this can be done similarly or one uses the fact that thecosine is the shifted sine function.The remaining trigonometric functions can be obtained from thesine and cosine derivatives.

Example: Findddx

tan x .

Solution:

ddx

tan x =ddx

(sin x

cos x

)(use quotient rule)

=(

ddx

sin x) · cos x − sin x · ( ddx

cos x)

cos2 x

=cos x cos x − sin x(− sin x)

cos2 x

= cos2 x + sin2 xcos2 x

= 1cos2 x

= sec2 x

Page 29: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

For sin x , we showed already how to get the derivative.For cos x this can be done similarly or one uses the fact that thecosine is the shifted sine function.

The remaining trigonometric functions can be obtained from thesine and cosine derivatives.

Example: Findddx

tan x .

Solution:

ddx

tan x =ddx

(sin x

cos x

)(use quotient rule)

=(

ddx

sin x) · cos x − sin x · ( ddx

cos x)

cos2 x

=cos x cos x − sin x(− sin x)

cos2 x

= cos2 x + sin2 xcos2 x

= 1cos2 x

= sec2 x

Page 30: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

For sin x , we showed already how to get the derivative.For cos x this can be done similarly or one uses the fact that thecosine is the shifted sine function.The remaining trigonometric functions can be obtained from thesine and cosine derivatives.

Example: Findddx

tan x .

Solution:

ddx

tan x =ddx

(sin x

cos x

)(use quotient rule)

=(

ddx

sin x) · cos x − sin x · ( ddx

cos x)

cos2 x

=cos x cos x − sin x(− sin x)

cos2 x

= cos2 x + sin2 xcos2 x

= 1cos2 x

= sec2 x

Page 31: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

For sin x , we showed already how to get the derivative.For cos x this can be done similarly or one uses the fact that thecosine is the shifted sine function.The remaining trigonometric functions can be obtained from thesine and cosine derivatives.

Example: Findddx

tan x .

Solution:

ddx

tan x =ddx

(sin x

cos x

)(use quotient rule)

=(

ddx

sin x) · cos x − sin x · ( ddx

cos x)

cos2 x

=cos x cos x − sin x(− sin x)

cos2 x

= cos2 x + sin2 xcos2 x

= 1cos2 x

= sec2 x

Page 32: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

For sin x , we showed already how to get the derivative.For cos x this can be done similarly or one uses the fact that thecosine is the shifted sine function.The remaining trigonometric functions can be obtained from thesine and cosine derivatives.

Example: Findddx

tan x .

Solution:

ddx

tan x =ddx

(sin x

cos x

)(use quotient rule)

=(

ddx

sin x) · cos x − sin x · ( ddx

cos x)

cos2 x

=cos x cos x − sin x(− sin x)

cos2 x

= cos2 x + sin2 xcos2 x

= 1cos2 x

= sec2 x

Page 33: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

For sin x , we showed already how to get the derivative.For cos x this can be done similarly or one uses the fact that thecosine is the shifted sine function.The remaining trigonometric functions can be obtained from thesine and cosine derivatives.

Example: Findddx

tan x .

Solution:

ddx

tan x =ddx

(sin x

cos x

)(use quotient rule)

=(

ddx

sin x) · cos x − sin x · ( ddx

cos x)

cos2 x

=cos x cos x − sin x(− sin x)

cos2 x

= cos2 x + sin2 xcos2 x

= 1cos2 x

= sec2 x

Page 34: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

For sin x , we showed already how to get the derivative.For cos x this can be done similarly or one uses the fact that thecosine is the shifted sine function.The remaining trigonometric functions can be obtained from thesine and cosine derivatives.

Example: Findddx

tan x .

Solution:

ddx

tan x =ddx

(sin x

cos x

)(use quotient rule)

=(

ddx

sin x) · cos x − sin x · ( ddx

cos x)

cos2 x

=cos x cos x − sin x(− sin x)

cos2 x

= cos2 x + sin2 xcos2 x

= 1cos2 x

= sec2 x

Page 35: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

For sin x , we showed already how to get the derivative.For cos x this can be done similarly or one uses the fact that thecosine is the shifted sine function.The remaining trigonometric functions can be obtained from thesine and cosine derivatives.

Example: Findddx

tan x .

Solution:

ddx

tan x =ddx

(sin x

cos x

)(use quotient rule)

=(

ddx

sin x) · cos x − sin x · ( ddx

cos x)

cos2 x

=cos x cos x − sin x(− sin x)

cos2 x

= cos2 x + sin2 xcos2 x

= 1cos2 x

= sec2 x

Page 36: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

For sin x , we showed already how to get the derivative.For cos x this can be done similarly or one uses the fact that thecosine is the shifted sine function.The remaining trigonometric functions can be obtained from thesine and cosine derivatives.

Example: Findddx

tan x .

Solution:

ddx

tan x =ddx

(sin x

cos x

)(use quotient rule)

=(

ddx

sin x) · cos x − sin x · ( ddx

cos x)

cos2 x

=cos x cos x − sin x(− sin x)

cos2 x

= cos2 x + sin2 xcos2 x

= 1cos2 x

= sec2 x

Page 37: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

For sin x , we showed already how to get the derivative.For cos x this can be done similarly or one uses the fact that thecosine is the shifted sine function.The remaining trigonometric functions can be obtained from thesine and cosine derivatives.

Example: Findddx

tan x .

Solution:

ddx

tan x =ddx

(sin x

cos x

)(use quotient rule)

=(

ddx

sin x) · cos x − sin x · ( ddx

cos x)

cos2 x

=cos x cos x − sin x(− sin x)

cos2 x

= cos2 x + sin2 xcos2 x

= 1cos2 x

= sec2 x

Page 38: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

For sin x , we showed already how to get the derivative.For cos x this can be done similarly or one uses the fact that thecosine is the shifted sine function.The remaining trigonometric functions can be obtained from thesine and cosine derivatives.

Example: Findddx

tan x .

Solution:

ddx

tan x =ddx

(sin x

cos x

)(use quotient rule)

=(

ddx

sin x) · cos x − sin x · ( ddx

cos x)

cos2 x

=cos x cos x − sin x(− sin x)

cos2 x

= cos2 x + sin2 xcos2 x

= 1cos2 x

= sec2 x

Page 39: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Section 3.7 – The Chain Rule

Let x , u, y be quantities such that

u = g(x) y = f (u)

change in x −→ change in u −→ change in y

dydx = change in y with respect to x

dudx = change in u with respect to x

dydu = change in y with respect to u

Theorem (Chain Rule)dy

dx=

dy

du· du

dx

Leibniz version of the chain rule

dy

dx

∣∣∣∣x=a

=dy

du

∣∣∣∣u=g(a)

· du

dx

∣∣∣∣x=a

Page 40: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Section 3.7 – The Chain Rule

Let x , u, y be quantities such that

u = g(x) y = f (u)

change in x −→ change in u −→ change in y

dydx = change in y with respect to x

dudx = change in u with respect to x

dydu = change in y with respect to u

Theorem (Chain Rule)dy

dx=

dy

du· du

dx

Leibniz version of the chain rule

dy

dx

∣∣∣∣x=a

=dy

du

∣∣∣∣u=g(a)

· du

dx

∣∣∣∣x=a

Page 41: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Section 3.7 – The Chain Rule

Let x , u, y be quantities such that

u = g(x) y = f (u)

change in x −→ change in u −→ change in y

dydx = change in y with respect to x

dudx = change in u with respect to x

dydu = change in y with respect to u

Theorem (Chain Rule)dy

dx=

dy

du· du

dx

Leibniz version of the chain rule

dy

dx

∣∣∣∣x=a

=dy

du

∣∣∣∣u=g(a)

· du

dx

∣∣∣∣x=a

Page 42: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Section 3.7 – The Chain Rule

Let x , u, y be quantities such that

u = g(x) y = f (u)

change in x −→ change in u −→ change in y

dydx = change in y with respect to x

dudx = change in u with respect to x

dydu = change in y with respect to u

Theorem (Chain Rule)dy

dx=

dy

du· du

dx

Leibniz version of the chain rule

dy

dx

∣∣∣∣x=a

=dy

du

∣∣∣∣u=g(a)

· du

dx

∣∣∣∣x=a

Page 43: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

The chain rule in function notation

u = g(x) y = f (u)

y = f (g(x)) = composition of f and g

Chain ruledy

dx=

dy

du· du

dxin Leibniz notation becomes

Theorem (Chain Rule)ddx

f (g(x)) = f ′(g(x)) · g ′(x)

The derivative of a composition is the derivation of the “outer”function evaluated at the “inner” function times the derviative ofthe “inner” function.

Example: Findddx

sin(x2).

Solution:ddx

sin(x2) = cos(x2) · ddx

x2 = 2x cos(x2).

Page 44: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

The chain rule in function notation

u = g(x) y = f (u)

y = f (g(x)) = composition of f and g

Chain ruledy

dx=

dy

du· du

dxin Leibniz notation becomes

Theorem (Chain Rule)ddx

f (g(x)) = f ′(g(x)) · g ′(x)

The derivative of a composition is the derivation of the “outer”function evaluated at the “inner” function times the derviative ofthe “inner” function.

Example: Findddx

sin(x2).

Solution:ddx

sin(x2) = cos(x2) · ddx

x2 = 2x cos(x2).

Page 45: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

The chain rule in function notation

u = g(x) y = f (u)

y = f (g(x)) = composition of f and g

Chain ruledy

dx=

dy

du· du

dxin Leibniz notation becomes

Theorem (Chain Rule)ddx

f (g(x)) = f ′(g(x)) · g ′(x)

The derivative of a composition is the derivation of the “outer”function evaluated at the “inner” function times the derviative ofthe “inner” function.

Example: Findddx

sin(x2).

Solution:ddx

sin(x2) = cos(x2) · ddx

x2 = 2x cos(x2).

Page 46: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

The chain rule in function notation

u = g(x) y = f (u)

y = f (g(x)) = composition of f and g

Chain ruledy

dx=

dy

du· du

dxin Leibniz notation becomes

Theorem (Chain Rule)ddx

f (g(x)) = f ′(g(x)) · g ′(x)

The derivative of a composition is the derivation of the “outer”function evaluated at the “inner” function times the derviative ofthe “inner” function.

Example: Findddx

sin(x2).

Solution:ddx

sin(x2) = cos(x2) · ddx

x2 = 2x cos(x2).

Page 47: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

The chain rule in function notation

u = g(x) y = f (u)

y = f (g(x)) = composition of f and g

Chain ruledy

dx=

dy

du· du

dxin Leibniz notation becomes

Theorem (Chain Rule)ddx

f (g(x)) = f ′(g(x)) · g ′(x)

The derivative of a composition is the derivation of the “outer”function evaluated at the “inner” function times the derviative ofthe “inner” function.

Example: Findddx

sin(x2).

Solution:

ddx

sin(x2) = cos(x2) · ddx

x2 = 2x cos(x2).

Page 48: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

The chain rule in function notation

u = g(x) y = f (u)

y = f (g(x)) = composition of f and g

Chain ruledy

dx=

dy

du· du

dxin Leibniz notation becomes

Theorem (Chain Rule)ddx

f (g(x)) = f ′(g(x)) · g ′(x)

The derivative of a composition is the derivation of the “outer”function evaluated at the “inner” function times the derviative ofthe “inner” function.

Example: Findddx

sin(x2).

Solution:ddx

sin(x2) = cos(x2) · ddx

x2

= 2x cos(x2).

Page 49: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

The chain rule in function notation

u = g(x) y = f (u)

y = f (g(x)) = composition of f and g

Chain ruledy

dx=

dy

du· du

dxin Leibniz notation becomes

Theorem (Chain Rule)ddx

f (g(x)) = f ′(g(x)) · g ′(x)

The derivative of a composition is the derivation of the “outer”function evaluated at the “inner” function times the derviative ofthe “inner” function.

Example: Findddx

sin(x2).

Solution:ddx

sin(x2) = cos(x2) · ddx

x2 = 2x cos(x2).

Page 50: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Example: Identify the inner and outer functions and find dydx .

a) y = sec(5x2).

Solution:

y = sec(5x2) = f (g(x)), f (u) = sec u (outer), g(x) = 5x2 (inner).

f ′(u) = sec u · tan u, g ′(x) = 10x .

dy

dx= f ′(g(x)) · g ′(x)

=[sec(5x2) tan(5x2)

]· 10x = 10x sec(5x2) tan(5x2)

b) y = e2x3

Solution:y = e2x3

= f (g(x)), f (u) = eu (outer), g(x) = 2x3 (inner).

f ′(u) = eu, g ′(x) = 6x2.

dy

dx= f ′(g(x)) · g ′(x)

= e2x3 · 6x2 = 6x2e2x3

Page 51: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Example: Identify the inner and outer functions and find dydx .

a) y = sec(5x2).

Solution:

y = sec(5x2) = f (g(x)), f (u) = sec u (outer), g(x) = 5x2 (inner).

f ′(u) = sec u · tan u, g ′(x) = 10x .

dy

dx= f ′(g(x)) · g ′(x)

=[sec(5x2) tan(5x2)

]· 10x = 10x sec(5x2) tan(5x2)

b) y = e2x3

Solution:y = e2x3

= f (g(x)), f (u) = eu (outer), g(x) = 2x3 (inner).

f ′(u) = eu, g ′(x) = 6x2.

dy

dx= f ′(g(x)) · g ′(x)

= e2x3 · 6x2 = 6x2e2x3

Page 52: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Example: Identify the inner and outer functions and find dydx .

a) y = sec(5x2).

Solution:

y = sec(5x2) = f (g(x)), f (u) = sec u (outer), g(x) = 5x2 (inner).

f ′(u) = sec u · tan u, g ′(x) = 10x .

dy

dx= f ′(g(x)) · g ′(x)

=[sec(5x2) tan(5x2)

]· 10x = 10x sec(5x2) tan(5x2)

b) y = e2x3

Solution:y = e2x3

= f (g(x)), f (u) = eu (outer), g(x) = 2x3 (inner).

f ′(u) = eu, g ′(x) = 6x2.

dy

dx= f ′(g(x)) · g ′(x)

= e2x3 · 6x2 = 6x2e2x3

Page 53: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Example: Identify the inner and outer functions and find dydx .

a) y = sec(5x2).

Solution:

y = sec(5x2) = f (g(x)), f (u) = sec u (outer), g(x) = 5x2 (inner).

f ′(u) = sec u · tan u, g ′(x) = 10x .

dy

dx= f ′(g(x)) · g ′(x)

=[sec(5x2) tan(5x2)

]· 10x = 10x sec(5x2) tan(5x2)

b) y = e2x3

Solution:y = e2x3

= f (g(x)), f (u) = eu (outer), g(x) = 2x3 (inner).

f ′(u) = eu, g ′(x) = 6x2.

dy

dx= f ′(g(x)) · g ′(x)

= e2x3 · 6x2 = 6x2e2x3

Page 54: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Example: Identify the inner and outer functions and find dydx .

a) y = sec(5x2).

Solution:

y = sec(5x2) = f (g(x)), f (u) = sec u (outer), g(x) = 5x2 (inner).

f ′(u) = sec u · tan u, g ′(x) = 10x .

dy

dx= f ′(g(x)) · g ′(x)

=[sec(5x2) tan(5x2)

]· 10x = 10x sec(5x2) tan(5x2)

b) y = e2x3

Solution:y = e2x3

= f (g(x)), f (u) = eu (outer), g(x) = 2x3 (inner).

f ′(u) = eu, g ′(x) = 6x2.

dy

dx= f ′(g(x)) · g ′(x)

= e2x3 · 6x2 = 6x2e2x3

Page 55: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Example: Identify the inner and outer functions and find dydx .

a) y = sec(5x2).

Solution:

y = sec(5x2) = f (g(x)), f (u) = sec u (outer), g(x) = 5x2 (inner).

f ′(u) = sec u · tan u, g ′(x) = 10x .

dy

dx= f ′(g(x)) · g ′(x)

=[sec(5x2) tan(5x2)

]· 10x

= 10x sec(5x2) tan(5x2)

b) y = e2x3

Solution:y = e2x3

= f (g(x)), f (u) = eu (outer), g(x) = 2x3 (inner).

f ′(u) = eu, g ′(x) = 6x2.

dy

dx= f ′(g(x)) · g ′(x)

= e2x3 · 6x2 = 6x2e2x3

Page 56: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Example: Identify the inner and outer functions and find dydx .

a) y = sec(5x2).

Solution:

y = sec(5x2) = f (g(x)), f (u) = sec u (outer), g(x) = 5x2 (inner).

f ′(u) = sec u · tan u, g ′(x) = 10x .

dy

dx= f ′(g(x)) · g ′(x)

=[sec(5x2) tan(5x2)

]· 10x = 10x sec(5x2) tan(5x2)

b) y = e2x3

Solution:y = e2x3

= f (g(x)), f (u) = eu (outer), g(x) = 2x3 (inner).

f ′(u) = eu, g ′(x) = 6x2.

dy

dx= f ′(g(x)) · g ′(x)

= e2x3 · 6x2 = 6x2e2x3

Page 57: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Example: Identify the inner and outer functions and find dydx .

a) y = sec(5x2).

Solution:

y = sec(5x2) = f (g(x)), f (u) = sec u (outer), g(x) = 5x2 (inner).

f ′(u) = sec u · tan u, g ′(x) = 10x .

dy

dx= f ′(g(x)) · g ′(x)

=[sec(5x2) tan(5x2)

]· 10x = 10x sec(5x2) tan(5x2)

b) y = e2x3

Solution:y = e2x3

= f (g(x)), f (u) = eu (outer), g(x) = 2x3 (inner).

f ′(u) = eu, g ′(x) = 6x2.

dy

dx= f ′(g(x)) · g ′(x)

= e2x3 · 6x2 = 6x2e2x3

Page 58: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Example: Identify the inner and outer functions and find dydx .

a) y = sec(5x2).

Solution:

y = sec(5x2) = f (g(x)), f (u) = sec u (outer), g(x) = 5x2 (inner).

f ′(u) = sec u · tan u, g ′(x) = 10x .

dy

dx= f ′(g(x)) · g ′(x)

=[sec(5x2) tan(5x2)

]· 10x = 10x sec(5x2) tan(5x2)

b) y = e2x3

Solution:y = e2x3

= f (g(x)), f (u) = eu (outer), g(x) = 2x3 (inner).

f ′(u) = eu, g ′(x) = 6x2.

dy

dx= f ′(g(x)) · g ′(x)

= e2x3 · 6x2 = 6x2e2x3

Page 59: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Example: Identify the inner and outer functions and find dydx .

a) y = sec(5x2).

Solution:

y = sec(5x2) = f (g(x)), f (u) = sec u (outer), g(x) = 5x2 (inner).

f ′(u) = sec u · tan u, g ′(x) = 10x .

dy

dx= f ′(g(x)) · g ′(x)

=[sec(5x2) tan(5x2)

]· 10x = 10x sec(5x2) tan(5x2)

b) y = e2x3

Solution:y = e2x3

= f (g(x)), f (u) = eu (outer), g(x) = 2x3 (inner).

f ′(u) = eu, g ′(x) = 6x2.

dy

dx= f ′(g(x)) · g ′(x)

= e2x3 · 6x2 = 6x2e2x3

Page 60: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Example: Identify the inner and outer functions and find dydx .

a) y = sec(5x2).

Solution:

y = sec(5x2) = f (g(x)), f (u) = sec u (outer), g(x) = 5x2 (inner).

f ′(u) = sec u · tan u, g ′(x) = 10x .

dy

dx= f ′(g(x)) · g ′(x)

=[sec(5x2) tan(5x2)

]· 10x = 10x sec(5x2) tan(5x2)

b) y = e2x3

Solution:y = e2x3

= f (g(x)), f (u) = eu (outer), g(x) = 2x3 (inner).

f ′(u) = eu, g ′(x) = 6x2.

dy

dx= f ′(g(x)) · g ′(x)

= e2x3 · 6x2 = 6x2e2x3

Page 61: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Example: Identify the inner and outer functions and find dydx .

a) y = sec(5x2).

Solution:

y = sec(5x2) = f (g(x)), f (u) = sec u (outer), g(x) = 5x2 (inner).

f ′(u) = sec u · tan u, g ′(x) = 10x .

dy

dx= f ′(g(x)) · g ′(x)

=[sec(5x2) tan(5x2)

]· 10x = 10x sec(5x2) tan(5x2)

b) y = e2x3

Solution:y = e2x3

= f (g(x)), f (u) = eu (outer), g(x) = 2x3 (inner).

f ′(u) = eu, g ′(x) = 6x2.

dy

dx= f ′(g(x)) · g ′(x)

= e2x3 · 6x2

= 6x2e2x3

Page 62: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Example: Identify the inner and outer functions and find dydx .

a) y = sec(5x2).

Solution:

y = sec(5x2) = f (g(x)), f (u) = sec u (outer), g(x) = 5x2 (inner).

f ′(u) = sec u · tan u, g ′(x) = 10x .

dy

dx= f ′(g(x)) · g ′(x)

=[sec(5x2) tan(5x2)

]· 10x = 10x sec(5x2) tan(5x2)

b) y = e2x3

Solution:y = e2x3

= f (g(x)), f (u) = eu (outer), g(x) = 2x3 (inner).

f ′(u) = eu, g ′(x) = 6x2.

dy

dx= f ′(g(x)) · g ′(x)

= e2x3 · 6x2 = 6x2e2x3

Page 63: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Theorem (General Power Rule)ddx

(g(x)

)n= n

(g(x)

)n−1 · g ′(x)

This is a special case of the chain rule. The outer function isy = un, the inner is u = g(x).

Example:ddx

3√

x3 + 2x =ddx

(x3 + 2x

)1/3

= 13

(x3 + 2x

) 13−1 · d

dx(x3 + 2x)

= 13

(x3 + 2x

)−2/3 · (3x2 + 2)

Example:ddx

sin5(x − x2) =ddx

[sin(x − x2)

]5= 5[sin(x − x2)

]4 · ddx

sin(x − x2)

= 5[sin(x − x2)

]4cos(x − x2) · d

dx(x − x2)

= 5[sin(x − x2)

]4cos(x − x2) · (1− 2x)

Page 64: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Theorem (General Power Rule)ddx

(g(x)

)n= n

(g(x)

)n−1 · g ′(x)

This is a special case of the chain rule. The outer function isy = un, the inner is u = g(x).

Example:ddx

3√

x3 + 2x =ddx

(x3 + 2x

)1/3

= 13

(x3 + 2x

) 13−1 · d

dx(x3 + 2x)

= 13

(x3 + 2x

)−2/3 · (3x2 + 2)

Example:ddx

sin5(x − x2) =ddx

[sin(x − x2)

]5= 5[sin(x − x2)

]4 · ddx

sin(x − x2)

= 5[sin(x − x2)

]4cos(x − x2) · d

dx(x − x2)

= 5[sin(x − x2)

]4cos(x − x2) · (1− 2x)

Page 65: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Theorem (General Power Rule)ddx

(g(x)

)n= n

(g(x)

)n−1 · g ′(x)

This is a special case of the chain rule. The outer function isy = un, the inner is u = g(x).

Example:ddx

3√

x3 + 2x

=ddx

(x3 + 2x

)1/3

= 13

(x3 + 2x

) 13−1 · d

dx(x3 + 2x)

= 13

(x3 + 2x

)−2/3 · (3x2 + 2)

Example:ddx

sin5(x − x2) =ddx

[sin(x − x2)

]5= 5[sin(x − x2)

]4 · ddx

sin(x − x2)

= 5[sin(x − x2)

]4cos(x − x2) · d

dx(x − x2)

= 5[sin(x − x2)

]4cos(x − x2) · (1− 2x)

Page 66: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Theorem (General Power Rule)ddx

(g(x)

)n= n

(g(x)

)n−1 · g ′(x)

This is a special case of the chain rule. The outer function isy = un, the inner is u = g(x).

Example:ddx

3√

x3 + 2x =ddx

(x3 + 2x

)1/3

= 13

(x3 + 2x

) 13−1 · d

dx(x3 + 2x)

= 13

(x3 + 2x

)−2/3 · (3x2 + 2)

Example:ddx

sin5(x − x2) =ddx

[sin(x − x2)

]5= 5[sin(x − x2)

]4 · ddx

sin(x − x2)

= 5[sin(x − x2)

]4cos(x − x2) · d

dx(x − x2)

= 5[sin(x − x2)

]4cos(x − x2) · (1− 2x)

Page 67: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Theorem (General Power Rule)ddx

(g(x)

)n= n

(g(x)

)n−1 · g ′(x)

This is a special case of the chain rule. The outer function isy = un, the inner is u = g(x).

Example:ddx

3√

x3 + 2x =ddx

(x3 + 2x

)1/3

= 13

(x3 + 2x

) 13−1 · d

dx(x3 + 2x)

= 13

(x3 + 2x

)−2/3 · (3x2 + 2)

Example:ddx

sin5(x − x2) =ddx

[sin(x − x2)

]5= 5[sin(x − x2)

]4 · ddx

sin(x − x2)

= 5[sin(x − x2)

]4cos(x − x2) · d

dx(x − x2)

= 5[sin(x − x2)

]4cos(x − x2) · (1− 2x)

Page 68: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Theorem (General Power Rule)ddx

(g(x)

)n= n

(g(x)

)n−1 · g ′(x)

This is a special case of the chain rule. The outer function isy = un, the inner is u = g(x).

Example:ddx

3√

x3 + 2x =ddx

(x3 + 2x

)1/3

= 13

(x3 + 2x

) 13−1 · d

dx(x3 + 2x)

= 13

(x3 + 2x

)−2/3 · (3x2 + 2)

Example:ddx

sin5(x − x2) =ddx

[sin(x − x2)

]5= 5[sin(x − x2)

]4 · ddx

sin(x − x2)

= 5[sin(x − x2)

]4cos(x − x2) · d

dx(x − x2)

= 5[sin(x − x2)

]4cos(x − x2) · (1− 2x)

Page 69: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Theorem (General Power Rule)ddx

(g(x)

)n= n

(g(x)

)n−1 · g ′(x)

This is a special case of the chain rule. The outer function isy = un, the inner is u = g(x).

Example:ddx

3√

x3 + 2x =ddx

(x3 + 2x

)1/3

= 13

(x3 + 2x

) 13−1 · d

dx(x3 + 2x)

= 13

(x3 + 2x

)−2/3 · (3x2 + 2)

Example:ddx

sin5(x − x2)

=ddx

[sin(x − x2)

]5= 5[sin(x − x2)

]4 · ddx

sin(x − x2)

= 5[sin(x − x2)

]4cos(x − x2) · d

dx(x − x2)

= 5[sin(x − x2)

]4cos(x − x2) · (1− 2x)

Page 70: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Theorem (General Power Rule)ddx

(g(x)

)n= n

(g(x)

)n−1 · g ′(x)

This is a special case of the chain rule. The outer function isy = un, the inner is u = g(x).

Example:ddx

3√

x3 + 2x =ddx

(x3 + 2x

)1/3

= 13

(x3 + 2x

) 13−1 · d

dx(x3 + 2x)

= 13

(x3 + 2x

)−2/3 · (3x2 + 2)

Example:ddx

sin5(x − x2) =ddx

[sin(x − x2)

]5

= 5[sin(x − x2)

]4 · ddx

sin(x − x2)

= 5[sin(x − x2)

]4cos(x − x2) · d

dx(x − x2)

= 5[sin(x − x2)

]4cos(x − x2) · (1− 2x)

Page 71: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Theorem (General Power Rule)ddx

(g(x)

)n= n

(g(x)

)n−1 · g ′(x)

This is a special case of the chain rule. The outer function isy = un, the inner is u = g(x).

Example:ddx

3√

x3 + 2x =ddx

(x3 + 2x

)1/3

= 13

(x3 + 2x

) 13−1 · d

dx(x3 + 2x)

= 13

(x3 + 2x

)−2/3 · (3x2 + 2)

Example:ddx

sin5(x − x2) =ddx

[sin(x − x2)

]5= 5[sin(x − x2)

]4 · ddx

sin(x − x2)

= 5[sin(x − x2)

]4cos(x − x2) · d

dx(x − x2)

= 5[sin(x − x2)

]4cos(x − x2) · (1− 2x)

Page 72: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Theorem (General Power Rule)ddx

(g(x)

)n= n

(g(x)

)n−1 · g ′(x)

This is a special case of the chain rule. The outer function isy = un, the inner is u = g(x).

Example:ddx

3√

x3 + 2x =ddx

(x3 + 2x

)1/3

= 13

(x3 + 2x

) 13−1 · d

dx(x3 + 2x)

= 13

(x3 + 2x

)−2/3 · (3x2 + 2)

Example:ddx

sin5(x − x2) =ddx

[sin(x − x2)

]5= 5[sin(x − x2)

]4 · ddx

sin(x − x2)

= 5[sin(x − x2)

]4cos(x − x2) · d

dx(x − x2)

= 5[sin(x − x2)

]4cos(x − x2) · (1− 2x)

Page 73: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Theorem (General Power Rule)ddx

(g(x)

)n= n

(g(x)

)n−1 · g ′(x)

This is a special case of the chain rule. The outer function isy = un, the inner is u = g(x).

Example:ddx

3√

x3 + 2x =ddx

(x3 + 2x

)1/3

= 13

(x3 + 2x

) 13−1 · d

dx(x3 + 2x)

= 13

(x3 + 2x

)−2/3 · (3x2 + 2)

Example:ddx

sin5(x − x2) =ddx

[sin(x − x2)

]5= 5[sin(x − x2)

]4 · ddx

sin(x − x2)

= 5[sin(x − x2)

]4cos(x − x2) · d

dx(x − x2)

= 5[sin(x − x2)

]4cos(x − x2) · (1− 2x)

Page 74: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Example: Compute the derivative of

√x2 +

√x2 +

√x .

Solution:

ddx

√x2 +

√x2 +

√x

=1

2√

x2 +√

x2 +√

(2x +

1

2√

x2 +√

x·(2x +

1

2√

x

))

=

2x+ 12√

x

2√

x2+√

x+ 2x

2√

x2 +√

x2 +√

x

Homework: Compute the second derivative.

Page 75: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Example: Compute the derivative of

√x2 +

√x2 +

√x .

Solution:

ddx

√x2 +

√x2 +

√x

=1

2√

x2 +√

x2 +√

(2x +

1

2√

x2 +√

x·(2x +

1

2√

x

))

=

2x+ 12√

x

2√

x2+√

x+ 2x

2√

x2 +√

x2 +√

x

Homework: Compute the second derivative.

Page 76: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Example: Compute the derivative of

√x2 +

√x2 +

√x .

Solution:

ddx

√x2 +

√x2 +

√x

=1

2√

x2 +√

x2 +√

(2x +

1

2√

x2 +√

x·(2x +

1

2√

x

))

=

2x+ 12√

x

2√

x2+√

x+ 2x

2√

x2 +√

x2 +√

x

Homework: Compute the second derivative.

Page 77: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Example: Compute the derivative of

√x2 +

√x2 +

√x .

Solution:

ddx

√x2 +

√x2 +

√x

=1

2√

x2 +√

x2 +√

(2x +

1

2√

x2 +√

x·(2x +

1

2√

x

))

=

2x+ 12√

x

2√

x2+√

x+ 2x

2√

x2 +√

x2 +√

x

Homework: Compute the second derivative.

Page 78: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Example: Compute the derivative of

√x2 +

√x2 +

√x .

Solution:

ddx

√x2 +

√x2 +

√x

=1

2√

x2 +√

x2 +√

(2x +

1

2√

x2 +√

x·(2x +

1

2√

x

))

=

2x+ 12√

x

2√

x2+√

x+ 2x

2√

x2 +√

x2 +√

x

Homework: Compute the second derivative.

Page 79: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Homework solution

60x7/2 + 42x2 − 7√

x2 +√

x + 4√

x2 +√

xx3/2 − 16√

x2 +√

xx3

64x3/2(x3/2 + 1

)√x2 +

√x(x2 +

√x2 +

√x)3/2

Page 80: Calculus I - Lecture 10 Trigonometric Functions and the ...gerald/math220d/lec10.pdf · For sinx, we showed already how to get the derivative. For cosx this can be done similarly

Homework solution

60x7/2 + 42x2 − 7√

x2 +√

x + 4√

x2 +√

xx3/2 − 16√

x2 +√

xx3

64x3/2(x3/2 + 1

)√x2 +

√x(x2 +

√x2 +

√x)3/2