Calculus 101 to a Nobel Prize in under 50 minutes - School of

55
Calculus 101 to a Nobel Prize in under 50 minutes William J. Parnell Faculty Research Fellow School of Mathematics, University of Manchester, UK [email protected] http://www.maths.man.ac.uk/wparnell. W.J.Parnell, School of Mathematics, University of Manchester. – p.1/51

Transcript of Calculus 101 to a Nobel Prize in under 50 minutes - School of

Calculus 101 to a Nobel Prize in under 50 minutes

William J. Parnell

Faculty Research Fellow

School of Mathematics, University of Manchester, UK

[email protected]

http://www.maths.man.ac.uk/∼wparnell.

W.J.Parnell, School of Mathematics, University of Manchester. – p.1/51

Scattering of elastic, acoustics, electromagnetic by a single obstacle

Multiple scattering by many obstacles - complicated scattered field andcomplex effects can develop.

Uei(kx−ωt)

Uei(kx−ωt)

W.J.Parnell, School of Mathematics, University of Manchester. – p.2/51

Applications

• Composite Material Design

W.J.Parnell, School of Mathematics, University of Manchester. – p.3/51

• Biomechanics (imaging, prognosis)

W.J.Parnell, School of Mathematics, University of Manchester. – p.4/51

Overview

• Scattering from a single inclusion (Calculus 101)

• Scattering from multiple inclusions

• Some results......

• Anderson Localization (A Nobel Prize)

W.J.Parnell, School of Mathematics, University of Manchester. – p.5/51

Calculus 101 - scattering from anisolated inclusion

W.J.Parnell, School of Mathematics, University of Manchester. – p.6/51

Scattering from a single, cylindrical void

First, don’t worry about boundary conditions.Let’s just play around with solving the wave equation:

∇2u =1

c2utt

Assume

u = U(r, θ)e−iωt

Urr +1

rUr +

1

r2Uθθ + k2U = 0

W.J.Parnell, School of Mathematics, University of Manchester. – p.7/51

Separation of VariablesSeek a separable solution of the form

U(r, θ) = R(r)Θ(θ)

so that, on dividing by RΘ/r2 and rearranging:

r2 Rrr

R+ r

Rr

R+ k2r2 = −

Θθθ

Θ= n2

The Θ problem:

Θθθ + n2Θ = 0

Clearly for fixed n,

Θ(θ) = exp(±inθ)

and also n ∈ Z since solution must be periodic in θ.

W.J.Parnell, School of Mathematics, University of Manchester. – p.8/51

TheR problem

We get:

r2Rrr + rRr + (k2r2 − n2)R = 0

which on setting s = kr becomes

s2Rss + sRs + (s2 − n2)R = 0

Frobenius series methods then define a special function.........

W.J.Parnell, School of Mathematics, University of Manchester. – p.9/51

TheR problem

We get:

r2Rrr + rRr + (k2r2 − n2)R = 0

which on setting s = kr becomes

s2Rss + sRs + (s2 − n2)R = 0

Frobenius series methods then define a special function.........We define this as Bessel’s function of the first kind and order n:

R(r) = Jn(kr)

which, importantly is bounded at the origin.

W.J.Parnell, School of Mathematics, University of Manchester. – p.9/51

Of course the ode is second order so we can generate a secondsolution from the first:

R(r) = Yn(kr)

which is Bessel’s function of the second kind and order n.This solution is singular at the origin.

W.J.Parnell, School of Mathematics, University of Manchester. – p.10/51

Hankel functions

Note that we can now define:

H(1)n (kr) = Jn(kr) + iYn(kr)

H(2)n (kr) = Jn(kr) − iYn(kr)

and importantly these have far-field behaviour:

H(1)n (kr)e−iωt ∼ exp(i(kr − ωt))Cn

2

πkr

H(2)n (kr)e−iωt ∼ exp(i(kr + ωt))Cn

2

πkr

the former is outgoing, the latter is incoming.

W.J.Parnell, School of Mathematics, University of Manchester. – p.11/51

Solutions

Hence the following three forms of solutions to the wave equation areusually used, depending upon the domain:

����������������������������������������������������������������������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

U =

∞∑

n=∞

AnJn(kr)einθ

U =∞∑

n=∞

(AnJn(kr) + BnYn(kr))einθ

U =∞∑

n=∞

(AnH(1)n (kr) + BnH(2)

n )einθ

W.J.Parnell, School of Mathematics, University of Manchester. – p.12/51

Scattering

Now consider boundary conditions!

Uinc

r = a

What happens when an incidentwave

Uinc = exp(ikx) = exp(ikr cos θ)

is incident on a circular (cylindri-cal) cavity where

∂U

∂r= 0 on r = a

W.J.Parnell, School of Mathematics, University of Manchester. – p.13/51

First, we can use the so-called generating function

exp

(

kr

2(t − 1/t)

)

=∞∑

n=−∞

tnJn(kr)

with t = i exp(iθ) to give (Jacobi-Anger identity)

exp(ikr cos θ) =∞∑

n=∞

inJn(kr)einθ

Now write U = Us + Uinc with

Us =∞∑

n=∞

in(AnH(1)n (kr) + BnH(2)

n (kr))einθ

but obviously the scattered field will be outgoing so we choose

Bn = 0

W.J.Parnell, School of Mathematics, University of Manchester. – p.14/51

SolutionThe boundary condition

∂U

∂r= 0 on r = a

translates into

∞∑

n=−∞

in (J ′n(kr) + AnH ′

n(kr))∣

r=aeinθ = 0

so that we can satisfy this with An = −J ′n(ka)/H ′

n(ka), i.e.

Us =∞∑

n=∞

−inJ ′

n(ka)

H ′n(ka)

Hn(kr)einθ

so the total field is

U = eikx −∞∑

n=∞

inJ ′

n(ka)

H ′n(ka)

Hn(kr)einθ

W.J.Parnell, School of Mathematics, University of Manchester. – p.15/51

Low frequency scattering

Note that is ǫ = ak ≪ 1, we have

Us ∼ A0H0(kr) + A1H1(kr) cos θ

where

A0 =ǫ2π

4iA1 = −

ǫ2π

4i

W.J.Parnell, School of Mathematics, University of Manchester. – p.16/51

Multiple Scattering

W.J.Parnell, School of Mathematics, University of Manchester. – p.17/51

2D Composite Slab

x1

x2

h−h

D

θinc

O

pspj

rs

rj

θs

θj

θjs

Rjs

W.J.Parnell, School of Mathematics, University of Manchester. – p.18/51

Multiple scattering problem

Scale lengthscales on host wavenumber k0.So ǫ = ak0 is radius of fibres..

(∇2 + 1)U = 0

and boundary conditions

∂U

∂r= 0,

on rj = ǫ, j = 1, 2, ..., N .For ease of exposition let’s consider normal incidence, θinc = 0.

W.J.Parnell, School of Mathematics, University of Manchester. – p.19/51

Solutions

U = Uinc +N

j=1

∞∑

n=−∞

AjnZnH(1)

n (rj)einθj , in the host phase,

Near jth inclusion, incident wave is (Jacobi-Anger identity)

Uinc(x, y) = eix =∞∑

n=−∞

inJn(rj)einθj

where (rj , θj) are local polar coordinates with origin (pj , qj).Hence solution in vicinity of sth inclusion is

W.J.Parnell, School of Mathematics, University of Manchester. – p.20/51

Solutions

U = Uinc +N

j=1

∞∑

n=−∞

AjnZnH(1)

n (rj)einθj , in the host phase,

Near jth inclusion, incident wave is (Jacobi-Anger identity)

Uinc(x, y) = eix =∞∑

n=−∞

inJn(rj)einθj

where (rj , θj) are local polar coordinates with origin (pj , qj).Hence solution in vicinity of sth inclusion is

U(rs, θs) =∞∑

n=−∞

(

inJn(rs)einθs + As

nZnH(1)n (rs)e

inθs

)

+N

j=1,j 6=s

∞∑

n=−∞

AjnZnH(1)

n (rj)einθj

W.J.Parnell, School of Mathematics, University of Manchester. – p.20/51

Graf’s addition theorem

Graf’s addition theorem says that in vicinity of jth inclusion:

H(1)n (rj)e

inθj =∞∑

m=−∞

H(1)n−m(|rj − rs|)e

i(n−m)θjsJm(rs)eimθs

and thus

W.J.Parnell, School of Mathematics, University of Manchester. – p.21/51

Graf’s addition theorem

Graf’s addition theorem says that in vicinity of jth inclusion:

H(1)n (rj)e

inθj =∞∑

m=−∞

H(1)n−m(|rj − rs|)e

i(n−m)θjsJm(rs)eimθs

and thus

U(rs, θs) =∞∑

n=−∞

(

inJn(rs)einθs + As

nZnH(1)n (rs)e

inθs

)

+

N∑

j=1,j 6=s

∞∑

n=−∞

AjnZn

∞∑

m=−∞

H(1)n−m(Rjs)e

i(n−m)θjsJm(rs)eimθs

W.J.Parnell, School of Mathematics, University of Manchester. – p.21/51

Application of boundary conditions and orthogonality thus gives

Asm +

N∑

j=1,j 6=s

∞∑

n=−∞

AjnZnHn−m(Rjs)e

i(n−m)θjs = −im

for m ∈ Z.

Various techniques have been developed in order to speed up thesummation of these series in order to calculate An.

W.J.Parnell, School of Mathematics, University of Manchester. – p.22/51

"Effective" SH Waves

When ǫ ≪ 1 an effective or homogenized wave propagates through theinhomogeneous medium and it can be shown that this wave is of theform

U = exp(ik∗x)

where

k2∗ =

ρ∗µ∗

ω2

and thus

ρ∗ = (1 − φ)ρ,

µ∗ =(1 − φ)

(1 + φ)µ.

W.J.Parnell, School of Mathematics, University of Manchester. – p.23/51

Wave propagation throughinhomogeneous media

W.J.Parnell, School of Mathematics, University of Manchester. – p.24/51

Wave Propagation through inhomogeneous media

W.J.Parnell, School of Mathematics, University of Manchester. – p.25/51

Wave Propagation through inhomogeneous media

W.J.Parnell, School of Mathematics, University of Manchester. – p.26/51

Wave Propagation through inhomogeneous media

W.J.Parnell, School of Mathematics, University of Manchester. – p.27/51

Wave Propagation through inhomogeneous media

W.J.Parnell, School of Mathematics, University of Manchester. – p.28/51

Wave Propagation through inhomogeneous media

W.J.Parnell, School of Mathematics, University of Manchester. – p.29/51

Wave Propagation through inhomogeneous media

W.J.Parnell, School of Mathematics, University of Manchester. – p.30/51

Wave Propagation through inhomogeneous media

W.J.Parnell, School of Mathematics, University of Manchester. – p.31/51

Wave Propagation through inhomogeneous media

W.J.Parnell, School of Mathematics, University of Manchester. – p.32/51

Wave Propagation through inhomogeneous media

W.J.Parnell, School of Mathematics, University of Manchester. – p.33/51

Anderson Localization - the Nobel Prize

W.J.Parnell, School of Mathematics, University of Manchester. – p.34/51

Anderson Localization

• Anderson was awarded the Nobel Prize in 1977.• This work was related to transport of electrons.• Change in behaviour from diffusive regime (in which Ohm’s law

holds) to a localized state where the material behaves as aninsulator. Effect due to interaction of electrons which haveundergone multiple scattering.

• Explained Metal-Insulator transitions.• 1980’s: what about classical wave physics (light, ultrasound, etc.)

W.J.Parnell, School of Mathematics, University of Manchester. – p.35/51

I still don’t really understand all of this........

For classical systems, essentially the argument is:• Propagation of light through inhomogeneous media can be

described as a diffusion process• For diffusion of light through a disordered medium, the same

Ohm’s law holds as for diffusion of electrons through a resistor:transmission decreases linearly with system length

• Anderson localization brings diffusion to a halt: transmissiondecreases exponentially rather than linearly with system length

• This transition requires very strong scattering

W.J.Parnell, School of Mathematics, University of Manchester. – p.36/51

Localization of light

λ = 1064nm, three powder types.

• Electromagnetic propagation through very strongly scatteringsemiconductor powders.

• Powder is Gallium Arsenide (GaAs).• Very little absorption.

W.J.Parnell, School of Mathematics, University of Manchester. – p.37/51

localization of light

W.J.Parnell, School of Mathematics, University of Manchester. – p.38/51

Localization of ultrasound

W.J.Parnell, School of Mathematics, University of Manchester. – p.39/51

Link with multiple scattering theory

• Clearly there must be one!• However it is still unclear how this effect links in with the theory

described here, it particular the lengthscale effects described.• In particular the sample length effect.

W.J.Parnell, School of Mathematics, University of Manchester. – p.40/51

Pre-stressed inhomogeneous media

W.J.Parnell, School of Mathematics, University of Manchester. – p.41/51

Problem description

aA

Undeformed Deformed

p∞

p∞

p∞

p∞

p∞

p∞

p∞p∞

W.J.Parnell, School of Mathematics, University of Manchester. – p.42/51

Problem description

a

p∞

p∞

p∞

p∞

p∞

p∞

p∞p∞

exp iΓx1

W.J.Parnell, School of Mathematics, University of Manchester. – p.43/51

Radial stressOnly 1 equilbrium equation:

dΣrr

dr+

1

r(Σrr − Σθθ) = 0

which can be integrated to give Σrr:

2 4 6 8 10

-5

-4

-3

-2

-1

rΣrr

p∞µ

= 1

p∞µ

= 2

p∞µ

= 4

W.J.Parnell, School of Mathematics, University of Manchester. – p.44/51

Incremental deformationSuperpose small amplitude waves on the finite deformation:

u = u + ηu′

where u is the finite displacement, η ≪ 1 and

u′ = (0, 0, w(r, θ)) exp(iωt).

W.J.Parnell, School of Mathematics, University of Manchester. – p.45/51

Incremental deformationSuperpose small amplitude waves on the finite deformation:

u = u + ηu′

where u is the finite displacement, η ≪ 1 and

u′ = (0, 0, w(r, θ)) exp(iωt).

Transpires that the modified wave equation is:

(

1 +k

r2

)

∂2w

∂r2+

1

r

(

1 −k

r2

)

∂w

∂r+

1

r2

(

1 −k

r2 + K

)

∂2w

∂θ2+ γ2w = 0.

Can think of this as:

(∇2 + Lk + γ2)w = 0

where Lk = 0 for no pre-stress.W.J.Parnell, School of Mathematics, University of Manchester. – p.45/51

Low Frequency Scattering

Once again assume a low frequency plane incident wave incomingfrom infinity:

winc = eiγr cos θ

so that the scattered wave is described by:

(∇2 + Lk + γ2)ws + I(r, θ) = 0

W.J.Parnell, School of Mathematics, University of Manchester. – p.46/51

Matched Asymptotics - Schematic

Scaling lengthscales on either a or γ gives inner and outer problems.

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

OuterOverlap

Inner

W.J.Parnell, School of Mathematics, University of Manchester. – p.47/51

Matching

Outer solution:F0(ro) = ǫ2

(

B0H(1)0 (ro) + E0(ro)

)

+ o(r2o)

Inner solution:

f0(ri) = ǫ2(1

4(1 + k) log(r2

i + k) + C0 log ǫ + D0

)

+ o(ǫ2)

Van Dyke’s matching principle says that f(1,1)0 = F

(1,1)0 which gives the

Modified Monopole Scattering Coefficient due to the pre-stress:

B0 =πǫ204i

[

a2L

A2(1 + (L − 1)S1)

(

1 +(A2 − a2)LS1

a2(1 + (L − 1)S1)

)]

W.J.Parnell, School of Mathematics, University of Manchester. – p.48/51

Monopole Scattering CoefficientB0

-3 -2 -1 1 2 3

1.0

1.5

2.0

p∞/µ

B0/Γ2

S1 = 1

S1 = 0.9

S1 = 0.8

W.J.Parnell, School of Mathematics, University of Manchester. – p.49/51

Dipole Scattering Coefficient:B1:

-3 -2 -1 0 1 2 3

0.5

1.0

1.5

2.0

p∞/µ

|B1|/Γ2

S1 = 1

S1 = 0.9

S1 = 0.8

W.J.Parnell, School of Mathematics, University of Manchester. – p.50/51

Effective shear propertiesWe can use this canonical problem in multiple scattering theory inorder to deduce the effective response of a pre-stressedinhomogeneous medium:

0.1 0.2 0.3 0.4

0.5

0.6

0.7

0.8

0.9

1.0

µ∗

φ0

p∞/µ = 1

p∞/µ = 0

p∞/µ = −1

W.J.Parnell, School of Mathematics, University of Manchester. – p.51/51