PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect...

29
PHOTOELECTRON SPECTROSCOPY (PES)

Transcript of PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect...

Page 1: PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect Albert Einstein , Nobel Prize 1921 Kaiser-Wilhelm-Institut (now Max-Planck-Institut)

PHOTOELECTRON SPECTROSCOPY (PES)

Page 2: PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect Albert Einstein , Nobel Prize 1921 Kaiser-Wilhelm-Institut (now Max-Planck-Institut)

Law of Photoelectric effectAlbert Einstein, Nobel Prize 1921

Kaiser-Wilhelm-Institut (now Max-Planck-Institut) für Physik Berlin, Germany

INTRODUCTION

High-resolution electron spectroscopyKai Siegbahn, Nobel Prize 1981

Uppsala university, Sweden

Page 3: PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect Albert Einstein , Nobel Prize 1921 Kaiser-Wilhelm-Institut (now Max-Planck-Institut)

Valence band

EB

ωhE

EF

Evac

Detector (Ef)

φ

Ek

Discrete core levels

kinB EE −−= φωh

ωhBE

kinE

φ

Where, = Binding energy referred to the Fermi level= Photon energy= Work function of spectrometer

= Kinetic energy of ejected photoelectron

BASIC CONCEPT

Page 4: PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect Albert Einstein , Nobel Prize 1921 Kaiser-Wilhelm-Institut (now Max-Planck-Institut)

ENERGY REFERENCE

Same level

e-

Fermi level

Spectrometer

Vacuum level

φspec.

.speckinB EE φω −−= h

sampleBkin EE φω −−= h

)( . samplespecsampleBkin EE φφφω −−−−= h

.specBkin EE φω −−= h

Core level

φsample

Fermi level

Vacuum level

EB

Sample

ωh

Page 5: PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect Albert Einstein , Nobel Prize 1921 Kaiser-Wilhelm-Institut (now Max-Planck-Institut)

BASIC REQUIREMENT OF PES SYSTEM

1. A monochromatic photon source.

2. An electron energy analyser (which can disperse the emittedelectrons according to their kinetic energy, and thereby measure the flux of emitted electrons of a particular energy.

3. A high vacuum environment.

Page 6: PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect Albert Einstein , Nobel Prize 1921 Kaiser-Wilhelm-Institut (now Max-Planck-Institut)

LIGHT SOURCES

X-rays

Al K α 1486 eV

Mg Kα 1254 eV

XPS, ESCA

He-lamp 21.2 eV40.8 eV

Ne-lamp 16.8 eV26.9 eV

UV

H-lamp 4 ≤ hv ≤ 12 eV

UPS

Synchrotron radiation PES

Page 7: PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect Albert Einstein , Nobel Prize 1921 Kaiser-Wilhelm-Institut (now Max-Planck-Institut)

SYNCHROTRON RADIATION

•Unique feature of Synchrotron radiation�Ultra-bright light, high polarization�Highly directional, collimated beam�Wide spectrum of wavelength, stretching from IR to X-rays

•Spot size ~1x3 mm2

•High energy resolution

HardX-ray

Ultravioletlight

Visiblelight

Infraredlight

Radiowave

Wavelength (meter)

Atom nucleus

Atom Protein Cell

10 eV4000 eV

Page 8: PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect Albert Einstein , Nobel Prize 1921 Kaiser-Wilhelm-Institut (now Max-Planck-Institut)

BASIC REQUIREMENT OF PES SYSTEM

1. A monochromatic photon source.

2. An electron energy analyser (which can disperse the emittedelectrons according to their kinetic energy, and thereby measure the flux of emitted electrons of a particular energy.

3. A high vacuum environment.

Page 9: PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect Albert Einstein , Nobel Prize 1921 Kaiser-Wilhelm-Institut (now Max-Planck-Institut)

ELECTRON ENERGY ANALYSERS

Page 10: PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect Albert Einstein , Nobel Prize 1921 Kaiser-Wilhelm-Institut (now Max-Planck-Institut)

ELECTRON ENERGY ANALYSER

Ek

Retarding Voltage (Eret.)

Epass

Ek-Eret=Epass

Page 11: PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect Albert Einstein , Nobel Prize 1921 Kaiser-Wilhelm-Institut (now Max-Planck-Institut)

ENERGY RESOLUTION

Schematic view of a spherical deflector analyser. Source and exit slit widths s and w. Sphere radii R1 and R2 and the optical radius Rm = (R1+R2)/2.

Vf

E

N(Ek)

EkinE

IN

N(Ek)

EkinE

∆E

OUT

Page 12: PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect Albert Einstein , Nobel Prize 1921 Kaiser-Wilhelm-Institut (now Max-Planck-Institut)

V f

Epass

ENERGY RESOLUTION

)(2

1

1

2

R

R

R

R

e

EV pass

f −=

2

22α++=∆

mmpass R

w

R

s

E

E

broading a giveAnalyser Q

Energy resolution

Choose:s, w and Epass� small

Page 13: PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect Albert Einstein , Nobel Prize 1921 Kaiser-Wilhelm-Institut (now Max-Planck-Institut)

BASIC REQUIREMENT OF PES SYSTEM

1. A monochromatic photon source.

2. An electron energy analyser (which can disperse the emittedelectrons according to their kinetic energy, and thereby measure the flux of emitted electrons of a particular energy.

3. A high vacuum environment.

Page 14: PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect Albert Einstein , Nobel Prize 1921 Kaiser-Wilhelm-Institut (now Max-Planck-Institut)

WHY ULTRA HIGH VACUUM (UHV) IS NEEDED ?

Consider an ideal gas.The number of gas atoms/molecules striking a unit area of a surface per second is given by;

T

P

R

N

V

NRT

N

NnRTpVBut

M

RTwhere

V

NI

a

a

n

=⇒==

==π

νν 8

4

)(1

105.3)(1

106.28

4 222

2224 torrinp

smMT

px

m

Ninp

smMT

px

MT

pR

R

NI a

n

==π

Page 15: PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect Albert Einstein , Nobel Prize 1921 Kaiser-Wilhelm-Institut (now Max-Planck-Institut)

Ex. Assume an atom of radius of ca. 3 Å. Then there is room for ca. 1015

atom on a cm2.

With p ≈ 10-6 torrM = 28kg/kmol In ≈ 3x1014 (1/cm2s)T = 300 K

If every atom sticks to the surface a monolayer is formed in about 3 sec!.

At p ≈ 10-10 torr a monolayer is formed in about 3x104 seconds≈ 8 hours.Big differences (in sticking probability) between different materials.

(From experience at 10-10 torr Si, Au etc days, Al, Cu etc. hours, Ti, Mo etc. minutes)

AN EXAMPLE

Page 16: PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect Albert Einstein , Nobel Prize 1921 Kaiser-Wilhelm-Institut (now Max-Planck-Institut)

HOW UHV CAN BE OBTAINED?

•Good choice of material selected ex. stainless steel

•Good design of chamber

•Good pumping systems

•Long time baking

Page 17: PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect Albert Einstein , Nobel Prize 1921 Kaiser-Wilhelm-Institut (now Max-Planck-Institut)

On a larger scale, the sample surface is hit with photon flux focused in a small spot. Electrons emitted by the photon are from ca. 10-100Å of the surface layers depending on electron escape depth in the sample investigated.

SAMPLE SIZE?

Page 18: PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect Albert Einstein , Nobel Prize 1921 Kaiser-Wilhelm-Institut (now Max-Planck-Institut)

Electrons : give a high surface sensitivitySinceλ = mean free path is small in solids

λ = average distance an electron travels before it is inelastically scattered, i.e. Suffers energy losses

λ(Ek) increases monotonically with Ekin (for Ekin ≥ 50 eV)

SENSITIVITY

Page 19: PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect Albert Einstein , Nobel Prize 1921 Kaiser-Wilhelm-Institut (now Max-Planck-Institut)

The flux of electrons of a given energy and momentum decaysexponentially with the distance travelled in a material.

I0I

x

θ

θcos

x

θλ cos0

⋅−

=x

eII

λx

eII−

= 0

Small λ gives high surface sensitivity

Electrons that have not beeninelastically scattered have beengenerated close to the surface.

The surface sensitivity can be enhanced by selecting a larger electronemission angle, θ. Normal emission , θ=0o.

ELECTRON’S FLUX

Page 20: PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect Albert Einstein , Nobel Prize 1921 Kaiser-Wilhelm-Institut (now Max-Planck-Institut)

A SIMPLE LAYER ATENUATION MODEL

d d d

Io Io Io

θ

θλ

λ

λλλ

cos

0

0

)3

()2

()(

0

1

1

1

1

.....)1(

dtot

dtot

ddd

tot

e

II

e

II

eeeII

−−−

−=

−=

=++++=

1cos

cos

0

−=

=

=

θλ

θλ

d

bulk

Surf

d

totbulk

Surf

eI

I

eII

IId d d

Io Io Io

θ

d

Surf layer

Normal emission

Angle dependent

Page 21: PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect Albert Einstein , Nobel Prize 1921 Kaiser-Wilhelm-Institut (now Max-Planck-Institut)

z 0d

. 1 ,

overlayer from )1(

overlayer no withi.e.

0

0

dthicknessofoverlayerwitheII

Thus

toponoverlayerwhenebyattenuatedissignalsubstrateThe

ecdzceI

cdzceI

d

Subst

Overl

d

dd

z

Overlayer

zCleanSubstrate

−=

−=∝

=∝

−−

∞ −

λ

λ

λλ

λ

λ

λ

Page 22: PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect Albert Einstein , Nobel Prize 1921 Kaiser-Wilhelm-Institut (now Max-Planck-Institut)

Photoelectron Spectroscopy (PES) + Angle resolved photoelectron spectroscopy (ARPES)

Examine core-level hv ≈ 100-4000 eV

•Elementals annalysis

•Quantitative analysis

Thickness

Location

Examine valence levels hv ≈ 10-50 eV

•Surface band structure

•Density of state (DOS)

UNIQUE ADVANTAGE FOR PES TECHNIQUES

Page 23: PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect Albert Einstein , Nobel Prize 1921 Kaiser-Wilhelm-Institut (now Max-Planck-Institut)

KINETIC ENERGY (eV)

ELEMENTALS ANALYSIS

Binding Energy 2s = 117eV Binding Energy 2p = 73 eV

Binding Energy 2s = 149 eV Binding Energy 2p = 99 eV

Page 24: PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect Albert Einstein , Nobel Prize 1921 Kaiser-Wilhelm-Institut (now Max-Planck-Institut)

EFB exhibits chemical shifts (~1-10 eV)

depending on chemical surrounding�Information about the surrounding elements can be obtained.

In solids a specific signal from the atoms in the outermost surface layers can be obtainedsince they feel a different surrounding(potential) than atoms in the bulk. Surface shiftes < 1 eV.

Chemical shifts

Surface shifts

KINETIC ENERGY (eV)

Page 25: PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect Albert Einstein , Nobel Prize 1921 Kaiser-Wilhelm-Institut (now Max-Planck-Institut)

QUANTITATIVE ANALYSIS

Page 26: PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect Albert Einstein , Nobel Prize 1921 Kaiser-Wilhelm-Institut (now Max-Planck-Institut)

4f

5d

5p

5s

PHOTOIONIZATION CROSS SECTIONS

Page 27: PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect Albert Einstein , Nobel Prize 1921 Kaiser-Wilhelm-Institut (now Max-Planck-Institut)

Graphitelike carbon

C 1s SiC

286 284 282Binding Energy (eV)

θe=75o

θe < 75o

Int e

nsit y

(re l

ativ

e un

its)

CHARACTERIZATION

SiO2

SiC

Carbon ?

)(

)(;

)(

)( 2

SiCI

SiOISi

SiCI

gIC ==

Page 28: PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect Albert Einstein , Nobel Prize 1921 Kaiser-Wilhelm-Institut (now Max-Planck-Institut)

Emission angle0 20 40 60

80

Si

C0

2

4

Rat

ios

C/Si x 20

SiO2

C=0.05 Å

25.5 Å

SiC

)(

)(;

)(

)( 2

SiCI

SiOISi

SiCI

gIC ==

)1(

)1(

cos

coscos

2 −⋅=

−⋅⋅=

eSi

ox

eC

g

eC

ox

d

SiSiC

SiSiO

dd

CSiC

Cg

eC

CSi

eeC

CC

θλ

θλθλ

+

⋅⋅⋅⋅= 1ln

AA

BB

B

A

C

C

I

IOxide

σσλ

+

⋅⋅⋅⋅=

1ln1

λ

σσλ

d

CC

BB

B

C eC

C

I

IGraphite

Thickness

Layers attenuation model

A:=oxide, B:= bulk SiC , C:= graphite

TECHNIQUES

Page 29: PHOTOELECTRON SPECTROSCOPY (PES) · PHOTOELECTRON SPECTROSCOPY (PES) Law of Photoelectric effect Albert Einstein , Nobel Prize 1921 Kaiser-Wilhelm-Institut (now Max-Planck-Institut)

ADVANTAGES

•Good energy resolution (chemical shifts & surface shifts)•Semiquantitative analysis, within a few %, fairly easy

DISADVANTAGE

•Poor spatial resolution (in most cases).

PHOTOELECTRON SPECTROSCOPY