Arrangements and Computations III: Λ(V ) and BGGschenck/Japan3.pdfcils/nets/webs; recent work in...

21
Arrangements and Computations III: Λ(V ) and BGG x i 0 0 0 0 x i 0 0 0 0 x i 0 0 0 0 x i x 1 + x 4 + x 5 0 0 0 0 x 2 + x 3 + x 5 0 0 0 0 x 0 + x 3 + x 4 0 0 0 0 x 0 + x 1 + x 2 x 3 0 0 x 3 0 x 4 0 x 4 0 0 x 5 x 5 x 0 x 0 0 0 x 2 0 x 2 0 0 x 1 x 1 0 . 4 10 15 20 25 ··· Hal Schenck Mathematics Department University of Illinois August 19, 2009 1

Transcript of Arrangements and Computations III: Λ(V ) and BGGschenck/Japan3.pdfcils/nets/webs; recent work in...

Page 1: Arrangements and Computations III: Λ(V ) and BGGschenck/Japan3.pdfcils/nets/webs; recent work in this area by: • Falk–Yuzvinsky • Pereira–Yuzvinsky Recall conjectural connection

Arrangements and

Computations III:

Λ(V ) and BGG

∑xi 0 0 0

0∑

xi 0 0

0 0∑

xi 0

0 0 0∑

xi

x1 + x4 + x5 0 0 00 x2 + x3 + x5 0 00 0 x0 + x3 + x4 00 0 0 x0 + x1 + x2

−x3 0 0 x3

0 x4 0 x4

0 0 −x5 x5

x0 x0 0 0x2 0 −x2 00 x1 x1 0

.

4 10 15 20 25 · · ·

Hal Schenck

Mathematics Department

University of Illinois

August 19, 2009

1

Page 2: Arrangements and Computations III: Λ(V ) and BGGschenck/Japan3.pdfcils/nets/webs; recent work in this area by: • Falk–Yuzvinsky • Pereira–Yuzvinsky Recall conjectural connection

Let A be the Orlik-Solomon algebra of Cℓ \ A,

with |A| = n. For each a =∑

aiei ∈ A1, we

consider the complex (A, a).

The ith term is Ai, and differential is ∧a:

(A, a): 0 // A0a

// A1a

// A2a

// · · · a// Aℓ

// 0 .

Arose in

• hypergeometric functions (Aomoto)

• cohomology with local system coefficients

–Esnault, Schechtman, Viehweg

–Schechtman, Terao, Varchenko

The resonance varieties of A are the loci of

points a =∑n

i=1 aiei ↔ (a1 : · · · : an) ∈ Pn−1 for

which (A, a) fails to be exact, that is:.

Definition 1 For each k ≥ 1,

Rk(A) = {a ∈ Pn−1 | Hk(A, a) 6= 0}.

Yuzvinsky: for generic a, (A, a) is exact.

2

Page 3: Arrangements and Computations III: Λ(V ) and BGGschenck/Japan3.pdfcils/nets/webs; recent work in this area by: • Falk–Yuzvinsky • Pereira–Yuzvinsky Recall conjectural connection

Definition 2 Π partition of A is neighborly if

∀Y ∈ L2(A), π block of Π,

µ(Y ) ≤ |Y ∩ π| −→ Y ⊆ π.

Falk: proved that components of R1(A) arise

from neighborly partitions, and conjectured that

R1(A) is a union of linear components.

This was proved by

• Cohen–Suciu and by

• Libgober–Yuzvinsky R1(A) = ∐L+i

• Cohen–Orlik also true for R≥2(A)

• Falk can fail if characteristic 6= 0.

Libgober–Yuzvinsky connects R1(A) to pen-

cils/nets/webs; recent work in this area by:

• Falk–Yuzvinsky

• Pereira–Yuzvinsky

Recall conjectural connection to LCS ranks φk:

Conjecture 3 (Suciu) Under certain conditions,

k≥1

(1 − tk)φk =∏

Li∈R1(A)

(1 − (dim(Li)t)

3

Page 4: Arrangements and Computations III: Λ(V ) and BGGschenck/Japan3.pdfcils/nets/webs; recent work in this area by: • Falk–Yuzvinsky • Pereira–Yuzvinsky Recall conjectural connection

Example 4 Let A = V (xy(x − y)z) ⊆ P2, and

E = Λ(C4), with generators e1, . . . , e4. The

Orlik-Solomon algebra

A = E/〈∂(e1e2e3), ∂(e1e2e3e4)〉, with

∂(e1e2e3) = e1 ∧ e2 − e1 ∧ e3 + e2 ∧ e3

To compute R1(A), we need only the first

two differentials in the Aomoto complex. Use

e13, e14, e23, e24, e34 as a basis for A2.

e1 7→ e1 ∧ (4∑

i=1

aiei) = a2e12 + a3e13 + a4e14.

Since e12 = e13 − e23, a2e12 = a2(e13 − e23),

giving (a2 + a3)e13 + a4e14 − a2e23. compute!

0 −→ C1

a1

a2

a3

a4

−−−−−→ C4

a2 + a3 −a1 −a1 0a4 0 0 −a1

−a2 a1 + a3 −a2 00 a4 0 −a2

0 0 a4 −a3

−−−−−−−−−−−−−−−−−−−−−−−−−−→ C5

4

Page 5: Arrangements and Computations III: Λ(V ) and BGGschenck/Japan3.pdfcils/nets/webs; recent work in this area by: • Falk–Yuzvinsky • Pereira–Yuzvinsky Recall conjectural connection

Letting a =n∑

i=1aiei, we have

R1(A) ↔ H1(A,∧a)↔ ∃b ∈ E1 | a ∧ b vanishes in A2↔ ∃b ∈ E1 | a ∧ b ∈ I2↔ decomposable 2-tensors in I2↔ P(I2) ∩ Gr(2, E1) ⊆ P(

∧2 E1)

I2 is determined by the intersection lattice L(A)

in rank ≤ 2, so to study R1(A), let A ⊆ P2.

Grassmannian gives fastest compution of R1(A).

Problem Code up for R≥2(A) (Segre map).

Note interesting connection to syzygies. Since

a ∧ b ∈ I2 −→ a ∧ b =∑

cifi, ci ∈ C, fi ∈ I2, the

relations a ∧ a ∧ b = 0 = b ∧ a ∧ b yield linear

syzygies on I2:∑

acifi = 0 =∑

bcifi.

That is,

R1(A) is related to TorE2 (A, C)3

5

Page 6: Arrangements and Computations III: Λ(V ) and BGGschenck/Japan3.pdfcils/nets/webs; recent work in this area by: • Falk–Yuzvinsky • Pereira–Yuzvinsky Recall conjectural connection

Example 5 For A = V (xy(x − y)z) ⊆ P2, the

Orlik-Solomon algebra is just

A = E/∂(e1e2e3),

since the relation ∂(e1e2e3e4) is redundant:

∂(e1e2e3e4) = e1 ∧ ∂(e1e2e3) − e4∂(e1e2e3)

Observe that

e1 ∧ e2 − e1 ∧ e3 + e2 ∧ e3 = (e1 − e2)∧ (e2 − e3)

This means that the line

s(e1 − e2) + t(e2 − e3) ⊆ R1(A) ⊆ P(E1)

Parametrically, this may be written

(s : t − s : −t : 0) = V (a4, a1 + a2 + a3)

Such components of R1(A) are called local.

(Compute) the corresponding linear syzygies.

6

Page 7: Arrangements and Computations III: Λ(V ) and BGGschenck/Japan3.pdfcils/nets/webs; recent work in this area by: • Falk–Yuzvinsky • Pereira–Yuzvinsky Recall conjectural connection

WHO CARES? Conjecturally, R1(A) is (some-

times) connected to the LCS ranks. But it is

always connected to the Chen ranks! Intro-

duced by K.T. Chen, these are the LCS ranks

of the maximal metabelian quotient of G:

θk(G) := φk(G/G′′),

where G′ = [G, G].

Conjecture 6 (Suciu) Let G = G(A) be an

arrangement group, and let hr be the number

of components of R1(A) of dimension r. Then,

for k ≫ 0:

θk(G) = (k − 1)∑

r≥1

hr

(r + k − 1

k

).

For Example 3, R1(A) ≃ P1 and thus

θk(G) = (k − 1).

7

Page 8: Arrangements and Computations III: Λ(V ) and BGGschenck/Japan3.pdfcils/nets/webs; recent work in this area by: • Falk–Yuzvinsky • Pereira–Yuzvinsky Recall conjectural connection

How to determine the Chen ranks? The Alexan-

der invariant G′/G′′ is a module over Z[G/G′].

For arrangements, Z[G/G′] = Laurent polyno-

mials in n-variables.

Massey:∑

k≥0

θk+2 tk = HS(gr G′/G′′ ⊗ Q, t)

Easier to work with is the linearized Alexander

invariant B of Cohen-Suciu

(A2 ⊕ E3) ⊗ S ∆// E2 ⊗ S // B // 0 , where

∆ is built from Koszul diff. and (E2 → A2)t.

Theorem 7 (Cohen-Suciu)

V (ann B) = R1(A)

Theorem 8 (Papadima-Suciu) For k ≥ 2,

k≥2

θk tk = HS(B, t).

In particular, the Chen ranks are combinatori-

ally determined, and depend only on L(A) in

rank ≤ 2.

8

Page 9: Arrangements and Computations III: Λ(V ) and BGGschenck/Japan3.pdfcils/nets/webs; recent work in this area by: • Falk–Yuzvinsky • Pereira–Yuzvinsky Recall conjectural connection

Example 9 Recall the matroid for A3 is:

@@

@@

@@

@

��

��

��

PPPPPPPPPPP

�����������v v

v v

v

v

5

4

1

3

2

0

For A3, B is the cokernel of the matrix on the

first slide. (compute) R1(A3) =

V (x1 + x4 + x5, x0, x2, x3)∐

V (x2 + x3 + x5, x0, x1, x4)∐

V (x0 + x3 + x4, x1, x2, x4)∐

V (x0 + x1 + x2, x3, x4, x5)∐

V (x0 + x1 + x2, x0 − x5, x1 − x3, x2 − x4).

and (compute) the Hilbert Series of B:

(4t2+2t3−t4)/(1−t)2 = 4t2+10t3+15t4+20t5+· · ·

Magic Trick! (compute) TorEi (A3, C)i+1

Magic Trick! (compute) free resolution of the

cokernel of last map in the Aomoto complex.

9

Page 10: Arrangements and Computations III: Λ(V ) and BGGschenck/Japan3.pdfcils/nets/webs; recent work in this area by: • Falk–Yuzvinsky • Pereira–Yuzvinsky Recall conjectural connection

Theorem 10 (Eisenbud-Popescu-Yuzvinsky)

For an arrangement A, the Aomoto complex

is exact, as a sequence of S-modules:

0 // A0 ⊗ S ·a// A1 ⊗ S ·a

// · · · ·a // Aℓ ⊗ S // F(A) // 0 .

Theorem 11 (–, Suciu) The linearized Alexan-

der invariant B is functorially determined by

the Orlik-Solomon algebra:

B ∼= Extℓ−1S (F(A), S).

Use this, localization, and the result of Libgober-

Yuzvinsky that R1(A) = ∐Li to obtain:

Theorem 12 (–, Suciu) For k ≫ 0,

θk(G) ≥ (k − 1)∑

Li∈R1(A)

(dimLi + k − 1

k

).

Problem Prove the remaining inequality! Note:

θk(G) is polynomial in k, of degree = dimR1(A).

10

Page 11: Arrangements and Computations III: Λ(V ) and BGGschenck/Japan3.pdfcils/nets/webs; recent work in this area by: • Falk–Yuzvinsky • Pereira–Yuzvinsky Recall conjectural connection

WHAT MAKES ALL THIS WORK IS BGG:

the Bernstein-Gelfand-Gelfand correspondence.

Let S = Sym(V ∗) and E =∧(V ). BGG is an

isomorphism between derived categories of

• bounded cpxs of coherent sheaves on P(V ∗).

• bounded cpxs of f.gen’d, graded E–modules.

From this, can extract functors

R: f.gen’d, graded S-modules −→ linear free

E-complexes.

L: f.gen’d, graded E-modules −→ linear free

S-complexes.

Point: can translate problems to possibly sim-

pler setting. For example, we’ll see this gives a

fast way to compute sheaf cohomology, using

Tate resolutions.

11

Page 12: Arrangements and Computations III: Λ(V ) and BGGschenck/Japan3.pdfcils/nets/webs; recent work in this area by: • Falk–Yuzvinsky • Pereira–Yuzvinsky Recall conjectural connection

P a f’gend, graded E-module, then L(P) is the

complex

· · · // S ⊗ Pi+1·a

// S ⊗ Pi·a

// S ⊗ Pi−1·a

// · · · ,

where a =n∑

i=1xi⊗ei, so that 1⊗p 7→

∑xi⊗ei∧p

Note: elts of V ∗ deg = 1, elts of V deg = −1.

Example 13 P = E =∧

C3. Then we have

0 // S ⊗ E0// S ⊗ E1

// S ⊗ E2// S ⊗ E3

// 0 .

Clearly 1 7→∑3

1 xi ⊗ ei. For d1

e1 7→ −x2e12 − x3e13

e2 7→ x1e12 − x3e23

e3 7→ x1e13 + x2e23

d2 : e12 7→ x3e123, e13 7→ −x2e123 e23 7→ x1e123

Thus, L(E) is

S1

x1

x2

x3

−−−−−→ S3

−x2 x1 0−x3 0 x1

0 −x3 x2

−−−−−−−−−−−−−−−→ S3

[x3 −x2 x1

]−−−−−−−−−−−−−→ S1

The Koszul complex!

12

Page 13: Arrangements and Computations III: Λ(V ) and BGGschenck/Japan3.pdfcils/nets/webs; recent work in this area by: • Falk–Yuzvinsky • Pereira–Yuzvinsky Recall conjectural connection

M a f’gend, graded S-module, then R(M) is

the complex

· · · // E ⊗ Mi−1·a

// E ⊗ Mi·a

// E ⊗ Mi+1·a

// · · · ,

where a =n∑

i=1ei ⊗ xi, so 1 ⊗ m 7→

∑ei ⊗ xi · m,

and E is the C-dual of E:

E ≃ E(n) = HomC(E, C).

Just as L(P) = S ⊗C P , R(M) = HomC(E, M).

Example 14 M = C[x0, x1]/〈x0x1, x20〉. Then

0 // E ⊗ M0// E ⊗ M1

// E ⊗ M2// E ⊗ M3

// · · ·

1 7→ e0 ⊗ x0 + e1 ⊗ x1

x0 7→ e0 ⊗ x20 + e1 ⊗ x0x1

x1 7→ e0 ⊗ x0x1 + e1 ⊗ x21

xn1 7→ e0 ⊗ x0xn

1 + e1 ⊗ xn+11

Thus, R(M) is

E(2)1

[e0

e1

]

−−−−→ E(3)2

[0 e1

]−−−−−−−→ E(4)1

[e1

]−−−−→ E(5)1

[e1

]−−−−→ · · ·

13

Page 14: Arrangements and Computations III: Λ(V ) and BGGschenck/Japan3.pdfcils/nets/webs; recent work in this area by: • Falk–Yuzvinsky • Pereira–Yuzvinsky Recall conjectural connection

This complex is exact, except at the second

step. Obviously the kernel of[0 e1

]

is generated by α = [1,0] and β = [0, e1], with

relations im(d1) = β + e0α = 0, e1β = 0, so

that

H1(R(M)) ≃ E(3)/e0 ∧ e1

Compute this, and compute the free resolution

of M . This illustrates

Theorem 15 (Eisenbud-Fløystad-Schreyer)

Hj(R(M))i+j = TorSi (M, C)i+j.

Corollary 16 The Castelnuovo-Mumford reg-

ularity of M is ≤ d iff Hi(R(M)) = 0 for all

i > d.

14

Page 15: Arrangements and Computations III: Λ(V ) and BGGschenck/Japan3.pdfcils/nets/webs; recent work in this area by: • Falk–Yuzvinsky • Pereira–Yuzvinsky Recall conjectural connection

What can be said about higher resonance va-

rieties? Cohen–Orlik proved that for k ≥ 2,

Rk(A) =⋃

Li linear.

Suciu showed union need not be disjoint.

Theorem 17 (Eisenbud-Popescu-Yuzvinsky)

Resonance persists: p ∈ Rk(A) −→ p ∈ Rk+1(A).

The key observation is a ∈ Rk(A) ⊆ P(E) means

Hk(A, a) 6= 0 ↔ TorSℓ−k(F(A), S/I(p)) 6= 0.

The result follows from interpreting this in terms

of Koszul cohomology.

Theorem 18 (Denham, –) As for R1(A), higher

resonance may be interpreted via Ext:

Rk(A) =⋃

k′≤k

V (annExtℓ−k′(F(A), S)).

Differentials in free resolution can be analyzed

using BGG and Grothendieck spectral sequence

(work in progress, Denham, –).

15

Page 16: Arrangements and Computations III: Λ(V ) and BGGschenck/Japan3.pdfcils/nets/webs; recent work in this area by: • Falk–Yuzvinsky • Pereira–Yuzvinsky Recall conjectural connection

For a coherent sheaf F on Pd, there is a f’gend,

graded S-module M whose sheafification is F.

If F has Castelnuovo-Mumford regularity r, then

the Tate resolution of F is obtained by splic-

ing the complex R(M≥r):

0 // E ⊗ Mrdr

// E ⊗ Mr+1// E ⊗ Mr+2

// · · · ,

with a free resolution P• for the kernel of dr:

· · · // P1// P0

//

%%KKKKKK E ⊗ Mr// E ⊗ Mr+1

// · · ·

ker(dr)

66nnnnnn

))SSSSSSSSS

0

88ppppppp

0

By Corollary 16, R(M≥r) is exact except at

the first step, so this yields an exact complex

of free E-modules.

Example 19 Since M = S has regularity zero,

we obtain Cartan resolutions in both direc-

tions, with splice map E → E = E(d+1) multi-

plication by e0∧e1∧· · ·∧ed = ker

[e0, · · · , ed

]t.

16

Page 17: Arrangements and Computations III: Λ(V ) and BGGschenck/Japan3.pdfcils/nets/webs; recent work in this area by: • Falk–Yuzvinsky • Pereira–Yuzvinsky Recall conjectural connection

Theorem 20 (Eisenbud-Fløystad-Schreyer)

The ith free module T i in a Tate resolution for

F satisfies

T i =⊕

jE ⊗ Hj(F(i − j)).

Example 21 Twisted cubic I ⊆ S = C[x, y, z, w]

0 −→ S(−3)2

[−z wy −z−x y

]

−−−−−−−−−−→ S(−2)3

[y2−xz yz−xw z2−yw

]−−−−−−−−−−−−−−−−−−−−−−−−→ S −→ S/I

Display as a betti table:

bij = dimC TorSi (M, C)i+j.

total 1 3 20 1 – –1 – 3 2

This has regularity one, so now we can (com-

pute) the Tate resolution:

17

Page 18: Arrangements and Computations III: Λ(V ) and BGGschenck/Japan3.pdfcils/nets/webs; recent work in this area by: • Falk–Yuzvinsky • Pereira–Yuzvinsky Recall conjectural connection

Plugging these numbers into Theorem 20, we

see that

i −3 −2 −1 0 1 2

h1(F(i)) 8 5 2 0 0 0

h0(F(i)) 0 0 0 1 4 7

Does this make sense?

F = OX = OP1(3)

so

h1(F(i)) = h1(OP1(3i)) = h0(OP1(−3i − 2))

and

h0(F(i)) = h0(OP1(3i)) = 3i + 1, i ≥ 0

THE END! THANK YOU!

18

Page 19: Arrangements and Computations III: Λ(V ) and BGGschenck/Japan3.pdfcils/nets/webs; recent work in this area by: • Falk–Yuzvinsky • Pereira–Yuzvinsky Recall conjectural connection

K. Aomoto, Un theoreme du type de Matsushima-Murakami con-

cernant l’integrale des fonctions multiformes, J. Math. Pures Appl.

52 (1973), 1–11.

K.T. Chen, Iterated integrals of differential forms and loop space

cohomology, Ann. of Math. 97 (1973), 217-246.

D. Cohen, P. Orlik, Arrangements and local systems, Math. Res.

Lett. 7 (2000), 299–316.

D. Cohen, A. Suciu, Alexander invariants of complex hyperplane

arrangements, Trans. Amer. Math. Soc. 351 (1999), 4043–4067.

D. Cohen, A. Suciu, Characteristic varieties of arrangements, Math.

Proc. Cambridge Phil. Soc. 127 (1999), 33–53.

W. Decker, D. Eisenbud, Sheaf algorithms using the exterior al-

gebra, in: Computations in Algebraic Geometry using Macaulay 2,

Springer-Verlag, Berlin-Heidelberg-New York, 2002.

G. Denham, H. Schenck, The double Ext spectral sequence and

rank varieties, preprint, 2009.

G. Denham, S. Yuzvinsky, Annihilators of Orlik-Solomon relations,

Adv. in Appl. Math. 28 (2002), 231–249.

D. Eisenbud, The geometry of syzygies, Springer-Verlag, Berlin-

Heidelberg-New York, 2004.

19

Page 20: Arrangements and Computations III: Λ(V ) and BGGschenck/Japan3.pdfcils/nets/webs; recent work in this area by: • Falk–Yuzvinsky • Pereira–Yuzvinsky Recall conjectural connection

D. Eisenbud, G. Fløystad, F.-O. Schreyer, Sheaf cohomology and

free resolutions over exterior algebras, Trans. Amer. Math. Soc.

355 (2003), 4397–4426.

D. Eisenbud, S. Popescu, S. Yuzvinsky, Hyperplane arrangement

cohomology and monomials in the exterior algebra, Trans. Amer.

Math. Soc. 355 (2003), 4365–4383.

H. Esnault, V. Schechtman, E. Viehweg, Cohomology of local

systems on the complement of hyperplanes, Invent. Math. 109

(1992), 557-561.

M. Falk, Arrangements and cohomology, Ann. Combin. 1 (1997),

135–157.

M. Falk, Resonance varieties over fields of positive characteristic,

IMRN 3 (2007)

M. Falk, S. Yuzvinsky, Multinets, resonance varieties, and pencils

of plane curves, Compos. Math. 143 (2007), 1069–1088

A. Libgober, S. Yuzvinsky, Cohomology of the Orlik-Solomon alge-

bras and local systems, Compositio Math. 121 (2000), 337–361.

P. Orlik, L. Solomon, Combinatorics and topology of complements

of hyperplanes, Invent. Math. 56 (1980), 167–189.

P. Orlik, H. Terao, Arrangements of hyperplanes, Grundlehren

Math. Wiss., Bd. 300, Springer-Verlag, Berlin-Heidelberg-New

York, 1992.

Page 21: Arrangements and Computations III: Λ(V ) and BGGschenck/Japan3.pdfcils/nets/webs; recent work in this area by: • Falk–Yuzvinsky • Pereira–Yuzvinsky Recall conjectural connection

J. Pereira, S. Yuzvinsky, Completely reducible hypersurfaces in a

pencil, Adv. Math. 219 (2008), 672–688.

V. Schechtman, H. Terao, A. Varchenko, Local systems over com-

plements of hyperplanes and the Kac-Kazhdan conditions for sin-

gular vectors, J. Pure Appl. Algebra 100 (1995), 93–102.

H. Schenck, A. Suciu, Lower central series and free resolutions of

hyperplane arrangements, Trans. Amer. Math. Soc. 354 (2002),

3409–3433.

H. Schenck, A. Suciu, Resonance, linear syzygies, Chen groups,

and the Bernstein-Gelfand-Gelfand correspondence, Trans. Amer.

Math. Soc. 358 (2006), 2269-2289.

A. Suciu, Fundamental groups of line arrangements: Enumerative

aspects, Contemporary Math., vol. 276, Amer. Math. Soc, Provi-

dence, RI, 2001, pp. 43–79.

S. Yuzvinsky, Cohomology of Brieskorn-Orlik-Solomon algebras,

Comm. Algebra 23 (1995), 5339–5354.

S. Yuzvinsky, Realization of finite Abelian groups by nets in P2,

Compos. Math. 140 (2004), 1614–1624.

S. Yuzvinsky, A new bound on the number of special fibers in a

pencil of plane curves, Proc. Amer. Math. Soc. 137 (2009),

1641–1648.