Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3...

47
Analog to Digital in a Few Simple Steps A Guide to Designing with SAR ADCs Miro Oljaca Senior Applications Engineer Texas Instruments Inc Tucson, Arizona USA [email protected]

Transcript of Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3...

Page 1: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Analog to Digital in a Few Simple Steps

A Guide to Designing with SAR ADCs

Miro OljacaSenior Applications Engineer

Texas Instruments IncTucson, Arizona USA

[email protected]

Page 2: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

SAR ADC’s Block Diagram

Sample & HoldAmplifier

SamplingSignal

Page 3: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Equivalent Input Circuit

From the Data Sheet for ADS8326:- Sampling capacitor is 48pF- Sampling switch resistance is 50Ω

RS1

CSH

VSH0

+

S1 S2

SAR ADCSample & Hold Amplifier

VIN

Page 4: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Sample and Conversion Process

RS1

CSH

VSH0

+

S1 S2VIN RS1

CSH

VSH0

+

S1 S2VIN

Page 5: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Sample and Conversion Timing

Page 6: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Voltage Ripple on The Input of ADC

RS1

CSH

S1VIN

SamplingSignal

Analog InputSignal

Page 7: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Voltage Across Sampling Capacitor

)1()]([)()( 00t

CSHINCSHCSH etVVtVtV

VSH0

VIN

tAQ Time

1/2 LSB

VCSH(t)

t0

RS1

CSH

S1

VCSH

VIN

t=0

SHS CR 1

Page 8: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Settling Time as a Function of Time Constant

LSBtVV AQCSHIN 21)(

VCSH(tAQ) is voltage across the CSH, at the end of the sampling period

tAQ is acquisition time, the time from the beginning of the sampling period (t0) to the end of the sampling period

1ktAQ

)2ln()1(1 Nk

1221

N

FSRLSB

(LSB = Least Significant Bit, FSR is the full-scale range of the N-Bit converter)

Page 9: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Time-Constant-Multiplier (k1)for SAR ADC

*note – using worst case values: VIN = full-scale voltage or 2N, VSH0 = 0V

k1ADC time-constant-multiplie

Resolution 1/2 LSB accuracy, 1/2N+1

8 6.210 7.612 9.014 10.416 11.818 13.220 14.6

Page 10: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

SAR ADC With Input RC Filter

RS1

CSH

VSH0

+

S1 S2

SAR ADCVCSH

VINRF

CF

)2ln()1(

Nt

CR AQFF

Page 11: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

ADC Input With Proper RC Filter

Start Acquisition

End Acquisition

Page 12: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

ADC Input With Wrong RC Filter

Start Acquisition

End Acquisition

Page 13: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Op Amp Driving RC Filter

RF

CF

VOA

-

+

RO

Page 14: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Modified Open-LoopVoltage Gain

-40dB/Dec60

40

20

0

140

120

100

80

-20

Frequency (Hz)

10010 1k 10k 100k 1M 10M1

Volta

ge G

ain

(dB

) fPX, GPX

fC

-20dB/Dec

fZX, GZX

fU

-20dB/Dec

Page 15: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Added Pole and Zero

FFZX

FFOPX

CRf

CRRf

21

)(21

PX

ZXPXZX

U

PXPX

ffGG

ffG

log40

log20Gain of added pole

Gain of added zero

Frequency of added pole

Frequency of added zero

Page 16: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Good Design Guideline

dBGff

orff

ff

ZX

UZX

CZX

UC

641

21

21

9

101

OF

ZXPX

RR

ff

dBGff

orff

ff

ZX

UZX

CZX

UC

641

21

21

a0219294
铅笔
Page 17: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Final Circuit

RS1

CSH

VSH0

+

S1 S2

SAR ADCVCSH

VINRF

CF

-

+

RO

OP AMP

Page 18: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Minimum Acquisition Timeand Op Amp’s GBW

• Calculate time-constant multiplier

• Determine minimum time-constant

• Calculate frequency of added zero

• Find Unity Gain Bandwidth

ktAQ

)2ln()1( Nk

ZXfGBW 4

21

ZXf

Page 19: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Minimum Acquisition Time for Different Op Amps

12 Bit 16 BitGBW fZ τ tAQ tAQ

(MHz) (MHz) (ns) (ns) (ns)

INA155 Medium Speed, Precision INA 0.55 0.14 1,157 5,672 8,881INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977OPA340 CMOS, 0.0007% THD+N 5.5 1.38 116 567 888OPA363 1.8V, High CMRR, SHDN 7.0 1.75 91 446 698

OPA2613 Dual VFB, Low Noise 12.5 3.13 51 250 391OPA627 Ultra-Low THD+N, Wide BW 16.0 4.00 40 195 305OPA381 Precision High-Speed Amp 18.0 4.50 35 173 271OPA727 CMOS, e-trim™, Low Noise 20.0 5.00 32 156 244OPA228 Precision, Low Noise, G ≥ 5 33.0 8.25 19 95 148OPA350 Precision ADC Driver 38.0 9.50 17 82 129OPAy365 High-Speed, Zero-Crossover 50.0 12.50 13 62 98OPA2889 Dual, Low Power, VFB 75.0 18.75 8 42 65OPA211 36V, Bipolar Precision 80.0 20.00 8 39 61THS4281 Very Low Power RRIO 80.0 20.00 8 39 61OPA358 CMOS, 3V Operation, SC70 80.0 20.00 8 39 61

Page 20: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Not Good Design Guideline

StabilityProblem

dBGor

ff

ZX

ZXC

0

Page 21: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

After selecting ADC and OpAmp

9O

FRR

• Determine CF

• Calculate RF

• Verify value RF

• Calculate frequency of added pole

• Keep added pole and zero less then decade a part

FOFPX CRR

f

)(2

1

ZXFF fC

R

2

1

ZXPX ff 101

SHFSH CCC 6020

a0219294
铅笔
Page 22: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Design by Example

For ADS8326 we have tAQ=750ns, CSH=48pF and N=16.

nsnsk

tAQ 65.6378.11

750

78.11)2ln()116()2ln()1( Nk

MHzMHzfGBW ZX 105.244

MHzns

fZX 5.265.632

12

1

535.22.12

12

1MHznFfC

RZXF

F

nFCnFCpFpFCpFCCC

FF

FSHFSH

2.19.2960486048206020

2

3

4

1

Page 23: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

ADC and DAC Functions

REF

N

IN VVCODE

ADC2

:

NREF

OUTVCODEV

DAC

2

:

CODEVIN

VREF

CODE VOUT

VREF

Page 24: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Noise and ENOB of ADC

02.676.1 dBSINAD

ENOB

1010 1010log20)(THDSNR

dBSINAD

Signal-to-Noise Ratio and Distortion

Effective Number of Bits

),( THDSNRfENOB

Page 25: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Noise Sources in SAR ADCs

• Wideband ADC internal circuits noise• Noise due to aperture jitter• Quantization noise• Transition or DNL noise• Analog input buffer circuit noise• Reference input voltage noise

Page 26: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Measuring Reference Input Noise

+

- VOUT

CS

CLK

SDOADS8326

REF5040

REFINVIN ≈ 0Vor

VIN ≈ FSR

Page 27: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

0

5

10

15

20

25

30

35

40

45

50

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Input Voltage [V]

Noi

se [u

Vrm

s]

Noise Contribution

ADC Internal Noise

ADC + REF Noise

REF Noise

Page 28: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Quantization of Reference Noise

• Low noise analog input of 0.09V– Source of noise is ADC’s internal noise.– Measured noise is 27µVRMS or 179µVPP

• Low noise analog input of 4.02V– Source of noise is ADC’s internal noise

and reference input noise.– Measured noise is 43µVRMS or 287µVPP

Page 29: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

1.2V +

-

+

VOUT

Sources of the Noise in REF50xx

Noise Source

Page 30: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

RM

S

Broadband Region1/f Region Low pass filter

Low Pass Filter Shapes the Output Noise Spectrum

Source: Art Kay; OpAmp Noise 2006

Page 31: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

REF50xx Noise Test Circuit

GND

TEMP

VIN

TRIM

VOUT

1

2

3

4

8

7

6

5

NC

NC

NC

REF5040CIN

10FCOUT

1F - 50F

+5V

+4.096V

Variable

Page 32: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Capacitor Equivalent Circuit

C

ESR

IR

ESL

C CapacitanceESR Equivalent Series ResistanceESL Equivalent Series InductanceIR Insulation Resistance

Page 33: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Capacitive Load with ESR

+

-

CL

+

-

CL

VCC

ESRRO

LOP CESRR

f

)(2

1

LZ CESR

f

2

1

Page 34: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Measured Noise for different BW and LP Filters

Noise 22kHz 30kHz 80kHz >500kHz UnitsLP-5P LP-3P LP-3P

GND 0.8 1 1.8 4.9 µVRMS1µF 37.8 41.7 53.7 9,017 µVRMS2.2µF (cer) 41.7 46.2 55.1 60.8 µVRMS10µF 33.4 33.4 35.2 38.5 µVRMS10µF (cer) 37.1 37.2 37.8 39.1 µVRMS20µF (cer) 33.1 33.1 33.2 34.5 µVRMS47µF 23.2 23.8 24.1 26.5 µVRMS

Measurement Bandwith

The capacitor on the output of REF50xx together with internal components will create Low Pass filters.

Page 35: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Filtering Internal BandgapReference

1.2V +

-

+

VOUT

TRIM

10k

1k

Page 36: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Measured Noise with Added Bandgap Filter

Noise 22kHz 30kHz 80kHz >500kHz UnitsLP-5P LP-3P LP-3P

GND 0.8 1 1.8 4.6 µVRMS2.2µF (cer) 42.5 47.2 61.2 68.3 µVRMS2.2µF+1µF 17.5 19.4 22.6 24.5 µVRMS

10µF 34.4 35.6 37.7 44.5 µVRMS10µF+1µF 14.1 14.4 14.9 16.4 µVRMS

20µF (cer) 34.8 34.9 35.1 35.2 µVRMS20µF+1µF 14.4 14.4 14.7 15.1 µVRMS

Measurement Bandwith

Adding 1µF capacitor on the TRIM pin will reduce noise ~2.5x

Page 37: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

REF5040 Output with 10μF and <10mΩ ESR Capacitor

BW=80kHz noise=16.5μVRMSBW=65kHz noise=138μVPP

Page 38: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Added RC filter on the Output

1.2V

5V

REF5040

+

-

+

10uF

10uF

10k

ESR

Adding RC filter reduce noise from xx to xx

Page 39: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

REF5040 Output with added RC Filter

BW=80kHz noise=2.2μVRMSBW=65kHz noise=15μVPP

Page 40: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

SAR ADC Capacitive Conversion Network

-

+

Comparator

VREF

VIN+

S0

S1 SNS2 S3

C/2NC/2NC/23C/22C/21

CCapacitive Conversion Network

C

Scaling

ADS83xx

Page 41: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

REF Input With Proper Buffer

Start Conversion

End Conversion

Page 42: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

REF Input With Wrong Buffer

Start Conversion

End Conversion

Page 43: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Voltage-reference circuit with added buffer and output filter

5V

10uF

+

-

1.2V

5V

REF5040

+

-

+

10uF

10uF

10k

OPA350

ESRESR

BW=80kHz noise=4.5μVRMSBW=65kHz noise=42μVPP

Page 44: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Design by Example

1. Use REF5040 and 10μF with 0.5Ω<ESR<1.5Ω (Vn=39μVRMS/261μVPP)

2. Add 1μF on the TRIM pin (Vn=16μVRMS/138μVPP)

3. Use additional RC Filter (10kΩ/10μF) (Vn=2.2μVRMS/15μVPP)

4. Buffer output with OPA350 and 10μF with 0.2Ω<ESR (Vn=4.5μVRMS/42μVPP)

Page 45: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

References

1) Green, Tim, “Operational Amplifier Stability, Part 6 of 15: Capacitance-Load Stability: RISO, High Gain & CF, Noise Gain,”Analog Zone, 2005.

2) Miro Oljaca, and Baker Bonnie, “Start with the right op amp when driving SAR ADCs,” EDN, October 16, 2008,

3) Downs, Rick, and Miro Oljaca, “Designing SAR ADC Drive Circuitry, Part I: A Detailed Look at SAR ADC Operation,”Analog Zone, 2005.

4) Downs, Rick, and Miro Oljaca, “Designing SAR ADC Drive Circuitry, Part II: Input Behavior of SAR ADCs,” Analog Zone, 2005.

5) Downs, Rick, and Miro Oljaca, “Designing SAR ADC Drive Circuitry, Part III: Designing The Optimal Input Drive Circuit For SAR ADCs,” Analog Zone, 2007.

6) Baker, Bonnie, and Miro Oljaca, “External components improve SAR-ADC accuracy,” EDN, June 7, 2007,

7) Miroslav Oljaca, “Understand the Limits of Your ADC Input Circuit Before Starting Conversions,” Analog Zone, 2004.

Page 46: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

References Cont.

8) Art Kay, “Analysis and Measurement of Intrinsic Noise in Op Amp Circuits Part 1 to 8”, Analog Zone / En-Genius, 2006-2008

9) Oljaca, M., Klein, W., “Converter voltage reference performance improvement secrets”, Instrumentation & Measurement Magazine, IEEE, Volume: 12 Issue: 5 October 2009, Page(s): 21-27,

10) Bonnie Baker, and Miro Oljaca, "How the voltage reference affects ADC performance, Part 3 of 3", Analog Applications Journal, Texas Instruments, Q4Y09, 2009

11) Miro Oljaca, and Bonnie Baker, "How the Voltage Reference Affects your Performance: Part 2 of 3", Analog Applications Journal, Texas Instruments, Q3Y09, July 2009

12) Bonnie Baker, and Miro Oljaca, “How the Voltage-reference affects Your Performance: Part 1 of 3”,, Analog Applications Journal, Texas Instruments, Q2Y09, 2009

13) Miro Oljaca, “Converter Voltage Reference Performance Improvement Secrets” Embedded Systems Conference, Silicon Valley, 2008

Page 47: Analog to Digital in a Few Simple Steps · 2013. 8. 20. · INA128 High Precision, 120dB CMRR 1.3 0.33 490 2,400 3,757 INA331 High Bandwidth, Single Supply 5.0 1.25 127 624 977 OPA340

Questions?

Thanks for Your Interest in

From Analog to Digital:Design In a Few Simple Steps

Miro OljacaSenior Applications EngineerTexas Instruments IncTucson, Arizona [email protected]