“High Brightness and High Polarization Electron Source for Electron Microscope”
Embed Size (px)
description
Transcript of “High Brightness and High Polarization Electron Source for Electron Microscope”

“High Brightness and High Polarization Electron Source
for Electron Microscope”
Tsutomu NAKANISHI(Department of Physics, Graduate School of Science,
Nagoya University)
PESP-2008 Workshop (3. October, 2008 @J-Lab)

Beam requirements for electron sources from
three kinds of electron accelerators
Φ10mm
Φ1mm
Φ1μm
High peak current(≥ 10A )
High average current(≥ 10mA )
High current density(≥ 1A/mm2 )
ILC
ERL
SPLEEM

Contents of this talkhave already explained
partially in
1) Talk by Toru Ujihara,[ R/D of transmission PC ]
2) Poster by Naoto Yamamoto (“small” Y)[ Proto-type SPLEEM gun
performances ]

Specimen
Objective lens
Beam separator
LaB6 emitter
Energy analyzer( 90°or 180°bend )
Screen
Objective lens
Image lens Focus lens
Contrast aperture
h
PEEM
LEEM
LEEM / PEEM type Electron Microscope(developed by E. Bauer)

エネルギー分析器
試料準備室
CCD カメラ
マニピュレーター
高輝度水銀ランプシステム
電子銃
コントラストアパーチャー
入射側アパーチャー(イルミネーション アパーチャー)
制限視野アパーチャー
電子ビーム
測定室
LaB6 Gun
Koshikawa & Yasue Group
Made by ELMITEC co. (Germany)

FOV10m0-3.2MLbcc
Dynamic observation of Cu thin film growth on W(110) at 100 ℃
layer-by-layer growth(Room temp. - ~ 150℃)
The third layer does not start just after
2.13MLbcc and it start at around 2.47
MLbcc.Coverage[MLbcc]1 2 30 2.13 2.47

Polarization of incident beam
Imaging of magnetic domainsImaging of magnetic domains
LEEM Image
Mag. Domain Image
:P
:Magnetization of surfaceM
P
M
A : Magnetic contrast (Asymmetry)
2
III
IIIIA
P
P
I+ = I + I = I
Mag. Domain contrast : LEEM contrast : I +
MP A
Pure Spin effects can be obtained in Magnetic domain images

Proposal of this work (April 2008)
Real-time observation of
magnetic domain formation process
Approved at September 2005 by Japan Science and Technology Agency (JST), as Technology Development Program for Advanced Measurement and Analysis (Program-T)

talk contents
1. Procedure for Higher Brightness Transmission Type Photocathode
2. A 20keV Test-Gun Apparatus Performances
Beam Performances
3. A 20keV gun for SPLEEMAssembling finished
Beam test in Progress

HV= - 20kV 、 gap-width=5.34mm Needle-tip (20nm radius)
NEA-GaAs emitter
M.Kuwahara et al. JJAP 45 (2006) 6245● Field emitter polarized electron source
▲ Serious Problem : Current limit ( Tip melt-down by self-heating ) ( current / tip 30 nA )
Our first trial toward higher brightness ( 2003 )

This work toward much higher brightness (2005)
Laser
Photocathode
Anode
Electron
Lens f=a few mm
Photocathode Anode
Mirror
Spherical Condenser
Lens f >20cm
Lens f >20cm
Laser
Laser
Electron
Electron
▲ Conventional TypeLaser spot size 50m
● New transmission type Laser spot size
≈ diffraction limit a few m
Laser spot size (exp.)1.3μm(FWHM) @λ : 777nm)
Advantage : Electron & Laser beam lines do not interfere

Lens stage to make the minimum laser spot
CCDcamera
Ti-SapphireLaser
Fiber Collimater
Polarizing Beam splitter
Quarter WaveplateImaging Lens
Positioner
XHV
PhotocathodeFocusing Lens
Electron Beam
Optical Fiber
FocusingLens
Photo-cathode 0
0.25
0.5
0.75
1
-3 -2 -1 0 1 2 3
Laser Spot Profile
YX
Inte
nsity
[A.U
.]
Posision [m]
FMHW Y : 1.4 mX : 1.3 m

talk contents
1. Procedure for Higher Brightness Transmission Type Photocathode
2. A 20keV Test-Gun Apparatus Performances
Beam Performances
3. A 20keV gun for SPLEEMAssembling finished
Beam test in Progress

A 20keV test-gun’s Compositions
NEA activation chamber
Gun chamber
Beam size monitor
Spherical condenser
100keV-Mott Analyzer
Laser optics equipment

20keV
4keV
○ Laser spot=φ3μm○ Electrode gap=4mm○ Voltage=20kV Field gradient=5MV/m○ Electrode: Mo (cathode) material Ti (anode)○ Photocathode exchanged by a load-lock system
Ceramic
Electrode
Mo
Ti
SL-PC
Dark current could be suppressedbelow 10nA under 25kV
Beam simulation
Beam simulation
adopted

20keV proto-type-gun designed for SPLEEM ( JPES - 1 )

Mott detector system

Apparatus performanceof JPES-1
Load-locktransfer-rod
Gun assembly
Activationchamber
Apparatus Specification AchievedLaser system 10m spot 2μm
HV Dark current 10nA
6nA (25kV)
UHV system 10-10Pa at NEA surface
9×10-10 Pa

0
1
2
-3 0 3
電流密度
dI/d
X [A
/mm
]
Position [mm]
0
2
4
6
-3 0 3
電流値
Cur
rent
[A
]
Position [mm]
knife-edge
Farady cup
Gun
L
Beam sizeR=1.00±0.02mm (HWHM)
L=531mm
Beam size (Brightness) measurement
Source size (S) estimation= Laser spot size +Electron diffusion length= 0.65μm(HWHM) + 1μm ~ 1.5±0.3μm
Conditions : Beam energy (U) = 20k e V , Beam current (I) = 5.3μA
ReducedBrightness
Br I1π S2
L2
π R S 2
1
U
Current (I)
=1.0±0.4×107 A m-2 sr-1 V-1
Current density (dI/dx)


Performance of GaAs-GaAsP superlattice (Reflection PC by Nagoya group)
Polarization ~ 92%Q.E. ~ 0.5%
☆ GaAs-GaAsP superlattice shows the best performance !
@778nm

90% Polarization achieved( 2007/10/26 )
Uniformity of Polarization assured
Position dependence of Polarization
Transmission PC

Polarization improvement by change of
strain property of GaAsP buffer-layer
Pol. 65% Pol. 90%

Summary of JPES-1Performances
• Beam size at PC 1.3m (780nm laser)• Polarization ≥ 90 % • Quantum efficiency ≥ 0.1 % • Average Current ≥ 15A
• Brightness ≥ 2107A/cm2/str (@20keV)• Brightness (reduced) ≥ 1107A/m2/str/V • NEA lifetime ≥ 200h (without beam)• NEA lifetime ≥ 30h (with 5 A)• Vacuum at PC 9.0 10-10 Pa
Performances of 20keV polarized electron gunwith transmission type photocathode (PC)


Documents on a transmission PC PES
[ Published Papers ]( 1 )“High brightness and high polarization electron source using transmission photocathode with GaAs-GaAsP superlattice layers“ N. Yamamoto et al. Journal of Applied Physics vol.103, (2008), 064905 ( 2 ) “Super-high brightness and high spin-polarization photocathode”X. Jin et al. Applied Physics Express Vol. 1 (2008), Article No.: 045002[ Doctor Thesis ] Naoto Yamamoto : “ NEA-GaAs 型超格子薄膜結晶を用 い た高輝度・高スピン偏極度・大電流密度ビームを生成する電子源の開発” ( Nagoya University 、 2007 年度)[ Patents ]
1) T. Nakanishi : “スピン偏極電子源装置”、特願 2006-084303 2) T. Ujihara 、 T. Nakanishi 他 5 名:“透過光吸収フォトカソード型偏極
電子源”、特願 2008-079292 ( 2008/3/25 出願)

talk contents
1. Procedure for Higher Brightness Transmission Type Photocathode
2. A 20keV Test-Gun Apparatus Performances
Beam Performances
3. A 20keV gun for SPLEEMAssembling finished and
final beam test in progress

JPES - 2 (gun, spin-manipulator & beam SW line) for SPLEEM



High Brightness & High PolarizationElectron Source for LEEM
LEEM (Osaka)PES (Nagoya)
Within one month, this PES system will be transferred to Osaka and jointed with LEEM

Additional remarks (1)
○ Advantages of transmission-PC PES
Freedom to design both of laser & electron beam
Lines independently. Laser beam line can be optimized to satisfy various requirements.
• Minimum laser spot size obtained (this work)• Symmetrical beam distribution to beam axis• Relax the laser heating problem for ERL-PC• Two photon excitation becomes easily. • Others, etc. etc. …..

Possible applications of the new-type PES
[ SPLEEM ]Surface magnetic
domain
Magnetic memories
[TEM ]Bulk magnetic
properties
Electron holography
[ Biology ]
Chiralitystudies
[ HE Accelerators ]
High current + low emittance electron source
[ Inverse Photo-emissionSpectroscopy ]
Spin IPES
We start to contact with various fields researchers (Looking for the academic users of our PES)

SPLEEM collaboration
T. Nakanishi, S. Okumi, M. Yamamoto, [M. Kuwahara],[N. Yamamoto], [A. Mano], Y. Nakagawa
(Faculty of Science, Nagoya University)
Y. Takeda, T. Ujihara, X. J. Kim (Faculty of Engineer, Nagoya University)
T. Saka(Daido Institute of Technology)
T. Kato(Daido Steel Co. Ltd.)
T. Koshikawa, T. Yasue, M. Suzuki (Osaka Electro-Communication University)
T. Ohshima 、 T. Kohashi (Central Research Laboratory, Hitachi Ltd.)
High EnergyPhysics
SemiconductorPhysics
LEEM Physics
Electron Microscope Physics

Thanks for your attentions !

Examples of Examples of SPLEEM imageSPLEEM image
φφ
θθ
MP
A
φθ
2 mMP
MP
//
MP
//
MP
Electron injection energy
Ei=0.7 [eV] 、 50 [sec/image]
FOV=30 [m] FOV=10 [m] FOV=6 [m]
P
M
W(110)
Co : 4 ML

Mechanisms of spin-flip depolariztion
GaAs-substrate
GaP-substrate GaAs-substrate
Crystal defects of buffer-layer carried onto SL-layer
Dislocations meet with electrons
Cracks do not meetwith electrons
Crack-like defects are favorable than dislocation-like defects
SL-layers
GaAsPbuffer-layer
Spin-flip occurs Spin-flip does not occur
GaP-substrate