A.2 Semiconductor Equations - Electrical, Computer...

5
A.2 Semiconductor Equations Semiconductor carrier concentrations Thermal equilibrium n = N c e -(E c -E f )/kT = n i e (E f -E i )/kT p = N v e -(E f -E v )/kT = n i e (E i -E f )/kT N c = 2 [ 2π m e * kT h 2 ] 3/2 N v = 2 [ 2π m h * kT h 2 ] 3/2 n p = n i 2 = N c N v e -E g /kT f(E) = 1 1 + e (E-E f )/kT n = N d -N a 2 + (N d -N a ) 2 4 + n i 2 p = N a -N d 2 + (N a -N d ) 2 4 + n i 2 Not in thermal equilibrium n = N c e -(E c -F n )/kT = n i e (F n -E i )/kT p = N v e -(F p -E v )/kT = n i e (E i -F p )/kT p n = n i 2 e (F n -F p )/kT = N c N v e (-E g /2+F n -F p )/kT Field, potential and energy q = - q dφ dx = dE c dx = dE v dx = dE i dx q = - q ∇φ = E c = E v = E i d dx = ρ ε s = q ε s (p - n + N d + - N a - ) ∇. ∇. = ρ ε s = q ε s (p - n + N d + - N a - ) dA = Q ε s Poisson's equation 2 φ = 2 φ x 2 + 2 φ y 2 + 2 φ z 2 = -ρ ε s cylindrical coordinates: 1 r r [r ∂φ r ] + 1 r 2 2 φ ∂θ 2 + 2 φ z 2 = -ρ ε s spherical coordinates: 1 r 2 r [r 2 ∂φ r ] + 1 r 2 sinθ ∂θ [r 2 sinθ ∂φ ∂θ ] + 1 r 2 sinθ 2 φ ∂ϕ 2 = -ρ ε s Current relations including drift and diffusion Principles of Electronic Devices A2.1 © Bart J. Van Zeghbroeck 1996

Transcript of A.2 Semiconductor Equations - Electrical, Computer...

Page 1: A.2 Semiconductor Equations - Electrical, Computer ...ecee.colorado.edu/~bart/ecen6355/app-02.pdf · A.2 Semiconductor Equations Semiconductor carrier concentrations Thermal equilibrium

A.2 Semiconductor Equations

Semiconductor carrier concentrations

Thermal equilibrium

n = Nc e-(Ec-Ef)/kT = ni e(Ef-Ei)/kT p = Nv e-(Ef-Ev)/kT = ni e(Ei-Ef)/kT

Nc = 2 [2π me* kT

h2 ]3/2 Nv = 2 [2π mh* kT

h2 ]3/2

n p = ni2 = NcNv e-Eg/kT f(E) = 1

1 + e(E-Ef)/kT

n = Nd-Na

2 + (Nd-Na)2

4 + ni2 p = Na-Nd

2 + (Na-Nd)2

4 + ni2

Not in thermal equilibrium

n = Nc e-(Ec-Fn)/kT = ni e(Fn-Ei)/kT p = Nv e-(Fp-Ev)/kT = ni e(Ei-Fp)/kT

p n = ni2 e(Fn-Fp)/kT= NcNv e(-Eg/2+Fn-Fp)/kT

Field, potential and energy

q = - q dφdx =

dEcdx =

dEvdx =

dEidx q = - q ∇∇φ = ∇∇Ec = ∇∇Ev = ∇∇Ei

ddx =

ρεs

= qεs

(p - n + Nd+ - Na-) ∇.∇. = ρεs

= qεs

(p - n + Nd+ - Na-)

⌡⌠ dA = Qεs

Poisson's equation

∇∇2φ = ∂2φ∂x2 +

∂2φ∂y2 +

∂2φ∂z2 =

-ρεs

cylindrical coordinates: 1r

∂∂r

[r ∂φ∂r

] + 1r2

∂2φ∂θ2 +

∂2φ∂z2 =

-ρεs

spherical coordinates: 1r2

∂∂r

[r2 ∂φ∂r

] + 1

r2sinθ ∂

∂θ [r2sinθ ∂φ∂θ] +

1r2sinθ

∂2φ∂ϕ2 =

-ρεs

Current relations including drift and diffusion

Principles of Electronic Devices A2.1 © Bart J. Van Zeghbroeck 1996

Page 2: A.2 Semiconductor Equations - Electrical, Computer ...ecee.colorado.edu/~bart/ecen6355/app-02.pdf · A.2 Semiconductor Equations Semiconductor carrier concentrations Thermal equilibrium

Jn = q n µn + q Dn ∂n∂x

Jn = q n µn + q Dn ∇∇n Dn = µn Vt

Jp = q p µp - q Dp ∂p∂x

Jp = q p µp - q Dp ∇∇n Dp = µp Vt

Minority carrier rate (continuity) equations

∂np∂t

= 1q

∂Jn∂x

+ (Gn-Rn) ∂pn∂t

= -1q

∂Jp∂x

+ (Gp-Rp)

∂np∂t

= 1q ∇.∇.Jp -

(np - np0)τn

+ Gn ∂pn∂t

= -1q ∇.∇.Jn -

(pn - pn0)τp

+ Gp

Gn = Gp = generation due to light, avalanche multiplication, etcetera.

Rn = (np - np0)

τn Rp =

(pn - pn0)τp

Generation-Recombination equations

Gn = ∂n∂t

light = Gp = ∂p∂t

light = α q Popt(x)A Eph

Ub-b = b (np - ni2)

USHR = (pn - ni2)

[n + p + 2 ni cosh((Ei-Et)/kT)] τ0 , with

1τ0

= Nt vth σ

Us = s p' with s = Nst vth σ

UA = Γn n (np - ni2) + Γp p (np - ni2)

Diffusion equations

0 = Dn d2ndx2 -

np - np0τn

, x < -xp , Dn = µn Vt

0 = Dp d2pdx2 -

pn - pn0τp

, x > xn , Dp = µp Vt

0 = Dn ∇∇2n - (np - np0)

τn0 = Dp ∇∇2p -

(pn - pn0)τp

Metal-semiconductor junction

Principles of Electronic Devices A2.2 © Bart J. Van Zeghbroeck 1996

Page 3: A.2 Semiconductor Equations - Electrical, Computer ...ecee.colorado.edu/~bart/ecen6355/app-02.pdf · A.2 Semiconductor Equations Semiconductor carrier concentrations Thermal equilibrium

φi - Va = ΦM - χ - 1q(Ec - Efn) -Va =

q Nd xn2

2εs (n-type)

φi - Va = χ + 1q(Ec - Efp) - ΦM -Va =

q Na xp2

2εs (p-type)

p-n junction relations (abrupt junction)

φi - Va = q Nd xn2/2εs + q Na xp2/2εs

max = q Nd xn/εs = q Na xp/εs

φi = Vt ln(NaNd

ni2) xd =

2εsq (

1Na

+ 1

Nd) (φi-Va)

xn = 2εsq

NaNd

1

Na+Nd (φi-Va) xp =

2εsq

NdNa

1

Na+Nd (φi-Va)

J = J0 (eVa/Vt - 1), J0 = q ni2 (Dp

NdWn' + Dn

NaWp') (ideal current for a short diode)

np(-xp) = np0 eVa/Vt pn(-xn) = pn0 eVa/Vt

Jt = q (Dp pn0

Lp +

Dnnp0Ln

+ xd ni2 b) (eVa/Vt - 1) + q x' ni2τ0

(eVa/2Vt - 1)

Principles of Electronic Devices A2.3 © Bart J. Van Zeghbroeck 1996

Page 4: A.2 Semiconductor Equations - Electrical, Computer ...ecee.colorado.edu/~bart/ecen6355/app-02.pdf · A.2 Semiconductor Equations Semiconductor carrier concentrations Thermal equilibrium

BJT relations (npn with short emitter, base and collector)

IE = a11 (eVBE/Vt - 1) + a12 (eVBC/Vt - 1)

IC = a21 (eVBE/Vt - 1) + a22 (eVBC/Vt - 1)

where for short quasi-neutral regions (short compared to the diffusion length)

a11 = -IES = - q A ni2 (DE

NEwE +

DBNBwB

)

a12 = a21 = αF IES = αR ICS = - q A ni2 (DB

NBwB)

a22 = -ICS = - q A ni2 (DC

NCwC +

DBNBwB

)

α = 1

1 + wBNBDEwENEDB

αT = 1 - wB

2

2DBτB

IrB = q A ni2wB

2NBτB (eVBE/2Vt - 1)

Principles of Electronic Devices A2.4 © Bart J. Van Zeghbroeck 1996

Page 5: A.2 Semiconductor Equations - Electrical, Computer ...ecee.colorado.edu/~bart/ecen6355/app-02.pdf · A.2 Semiconductor Equations Semiconductor carrier concentrations Thermal equilibrium

Miscellaneous Fundamental Relations

F = Q ( + v x B) , Q = charge of the particle

C = dQdV =

εsxd

F = m* dvdt =

h2π

dkdt

1m* =

4π2

h2 ∂2E∂k2

vg = 2πh

∂E∂k

∇2 Ψ + 8π2 m*

h2 (E - V(x)) Ψ = 0

∇2 φ = − ρε

Principles of Electronic Devices A2.5 © Bart J. Van Zeghbroeck 1996