9.3-4: Phase Plane Portraits - Colorado Stategerhard/M345/CHP/ch9_3-4.pdf · 9.3-4: Phase Plane...

9
9.3-4: Phase Plane Portraits Classification of 2d Systems: x = Ax, A = ab cd : T = a + d, D = ad bc, p(λ)= λ 2 + D Case A: T 2 4D> 0 real distinct eigenvalues λ 1,2 =(T ± T 2 4D )/2 General Solution: (v 1 , v 2 : eigenvectors) x(t)= c 1 e λ 1 t v 1 + c 2 e λ 2 t v 2 L 1,2 : Full lines generated by v 1,2 Half line trajectories: if c 2 =0 x(t)= c 1 e λ 1 t v 1 trajectory is half line H 1+ = {x = αv 1 | α> 0} if c 1 > 0 H 1= {x = αv 1 | α< 0} if c 1 < 0 Same for H 2± if c 1 = 0, c 2 > 0 or < 0 The 4 half line trajectories separate 4 regions of R 2 y x v 1 v 2 H 1+ H 1- H 2- H 2+ 2v 2 v 2 v 1 2v 1 -v 2 -2v 2 -v 1 -2v 1 x y Phase portrait: Sketch trajectories. Indicate direction of motion by arrows point- ing in the direction of increasing t Direction of Motion on Half Line Trajectories: If λ 1 > 0 then x(t)= c 1 e λ 1 t v 1 moves out to for t →∞ (outwards arrow on H 1+ ) approaches 0 for t → −∞ If λ 1 < 0 then x(t)= c 1 e λ 1 t v 1 approaches 0 for t →∞ (inwards arrow on H 1+ ) moves out to for t → −∞ 1

Transcript of 9.3-4: Phase Plane Portraits - Colorado Stategerhard/M345/CHP/ch9_3-4.pdf · 9.3-4: Phase Plane...

Page 1: 9.3-4: Phase Plane Portraits - Colorado Stategerhard/M345/CHP/ch9_3-4.pdf · 9.3-4: Phase Plane Portraits ... Degenerate Node: Borderline Case Spiral/Node • Assume T2 − 4D = 0

9.3-4: Phase Plane PortraitsClassification of 2d Systems:

x′ = Ax, A =

[

a bc d

]

: T = a + d, D = ad − bc, p(λ) = λ2 − Tλ + D

Case A: T2 − 4D > 0

⇒ real distinct eigenvalues

λ1,2 = (T ±

T2 − 4D )/2

General Solution:(v1,v2: eigenvectors)

x(t) = c1eλ1tv1 + c2e

λ2tv2

L1,2: Full lines generated by v1,2

Half line trajectories:

if c2 = 0 ⇒ x(t) = c1eλ1tv1

⇒ trajectory is half line

H1+ = {x = αv1 |α > 0} if c1 > 0

H1− = {x = αv1 |α < 0} if c1 < 0

Same for H2± if c1 = 0, c2 > 0 or < 0

• The 4 half line trajectories separate

4 regions of R2

y

x

v1

v2

H1+

H1−

H2−

H2+

2v

2

v2

v1 2v

1

−v2

−2v2

−v1

−2v1

x

y

Phase portrait:Sketch trajectories. Indicatedirection of motion by arrows point-ing in the direction of increasing t

Direction of Motion on Half LineTrajectories:

• If λ1 > 0 then x(t) = c1eλ1tv1

– moves out to ∞ for t → ∞(outwards arrow on H1+)

– approaches 0 for t → −∞

• If λ1 < 0 then x(t) = c1eλ1tv1

– approaches 0 for t → ∞(inwards arrow on H1+)

– moves out to ∞ for t → −∞1

Page 2: 9.3-4: Phase Plane Portraits - Colorado Stategerhard/M345/CHP/ch9_3-4.pdf · 9.3-4: Phase Plane Portraits ... Degenerate Node: Borderline Case Spiral/Node • Assume T2 − 4D = 0

Subcases of Case A

Saddleλ1 > 0 > λ2

Half line trajectoriesy

x

L1

L2

Generic Trajectories

L1

L2

x

y

Generic trajectory ineach region approaches• L1 for t → ∞• L2 for t → −∞

Nodal sourceλ1 > λ2 > 0

Half line trajectoriesy

x

L2

L1

fast

slow

Generic Trajectories

L1

L2 y

x •

→→: fast escape to ∞

Generic trajectory is• parallel to L1 for

t → ∞• tangent to L2 for

t → −∞

Nodal sinkλ1 < λ2 < 0

Half line trajectoriesy

x

L2

L1

fast

slow

Generic Trajectories

L1

L2 y

x •

→→: fast approach to 0

Generic trajectory is• parallel to L1 for t → −∞• tangent to L2 for t → ∞

2

Page 3: 9.3-4: Phase Plane Portraits - Colorado Stategerhard/M345/CHP/ch9_3-4.pdf · 9.3-4: Phase Plane Portraits ... Degenerate Node: Borderline Case Spiral/Node • Assume T2 − 4D = 0

Phase Portraits and Time Plots for Cases A (pplane6)

Saddle

Ex.: A =

[

1 42 −1

]

λ1 = 3 ↔ v1 = [2,1]T

λ2 = −3 ↔ v2 = [−1,1]T

x’=x+4y, y’=2x−y

−5 0 5

−5

0

5

x

y

Time Plots for ‘thick’ trajectory

−0.5 0 0.5 1

−30

−20

−10

0

10

20

30

t

x an

d y

xy

Nodal Source

Ex.: A =

[

3 11 3

]

λ1 = 4 ↔ v1 = [1,1]T

λ2 = 2 ↔ v2 = [−1,1]T

x’=3x+y, y’=x+3y

−5 0 5

−5

0

5

x

y

Time Plots for ‘thick’ trajectory

−2.5 −2 −1.5 −1 −0.5 0

0

5

10

15

20

t

x an

d y

xy

Nodal Sink

Ex.: A =

[

−3 −1−1 −3

]

λ1 = −4 ↔ v1 = [1,1]T

λ2 = −2 ↔ v2 = [−1,1]T

x’=−3x−y, y’=−x−3y

−5 0 5

−5

0

5

x

y

Time Plots for ‘thick’ trajectory

0 0.5 1 1.5 2 2.5

0

5

10

15

20

t

x an

d y

xy

3

Page 4: 9.3-4: Phase Plane Portraits - Colorado Stategerhard/M345/CHP/ch9_3-4.pdf · 9.3-4: Phase Plane Portraits ... Degenerate Node: Borderline Case Spiral/Node • Assume T2 − 4D = 0

Case B: T2 − 4D < 0 ⇒ λ = α + iβ; α = T/2, β =√

4D − T2/2λ complex ⇒ eigenvector v = u + iw complex ⇒ no half line solutions

General Solution: x(t) = eαt[c1(u cosβt − w sin βt) + c2(u sin βt + w cosβt)]

Subcases of Case B

Center: α = 0

⇒ x(t) periodic

⇒ trajectories areclosed curves

y

x •

Spiral Source:α>0

⇒ growing oscillations

⇒ trajectories areoutgoing spirals

y

x

Spiral Sink:α<0

⇒ decaying oscillations

⇒ trajectories areingoing spirals

y

x

Direction of Rotation: At x = [1,0]T : y′ = c. If

{

c > 0 ⇒ counterclockwisec < 0 ⇒ clockwise

Borderline Case:Center (α = 0) is border between spiral source (α > 0) and spiral sink (α < 0).

4

Page 5: 9.3-4: Phase Plane Portraits - Colorado Stategerhard/M345/CHP/ch9_3-4.pdf · 9.3-4: Phase Plane Portraits ... Degenerate Node: Borderline Case Spiral/Node • Assume T2 − 4D = 0

Phase Portraits and Time Plots for Cases B (pplane6)

Center

Ex.: A =

[

4 −102 −4

]

λ = 2i ↔ v =

[

2 + i1

]

x’=4x−10y, y’=2x−4y

−5 0 5

−2

−1

0

1

2

x

y

Time Plots for ‘thick’ trajectory

−5 0 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

t

x an

d y

xy

Spiral Source

Ex.: A =

[

0.2 1−1 0.2

]

λ = 0.2 + i ↔ v =

[

1i

]

x’=0.2x+y, y’=−x+0.2y

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

y

Time Plots for ‘thick’ trajectory

−20 −15 −10 −5 0 5

−2

−1

0

1

2

3

t

x an

d y

xy

Spiral Sink

Ex.: A =

[

−0.2 1−1 −0.2

]

λ = −0.2 + i ↔ v =

[

1i

]

x’=−0.2x+y, y’=−x−0.2y

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

y

Time Plots for ‘thick’ trajectory

−5 0 5 10 15 20

−4

−3

−2

−1

0

1

2

3

t

x an

d y

xy

5

Page 6: 9.3-4: Phase Plane Portraits - Colorado Stategerhard/M345/CHP/ch9_3-4.pdf · 9.3-4: Phase Plane Portraits ... Degenerate Node: Borderline Case Spiral/Node • Assume T2 − 4D = 0

Degenerate Node: Borderline Case Spiral/Node

• Assume T2 − 4D = 0 ⇒ single eigenvalue λ = T/2

• Assume generic case: (A − λI) 6= 0 ⇒ single eigenvector v

• Let (A − λI)w = v ⇒ General solution:

x(t) = c1eλtv + c2eλt(w + tv)

⇒ only two half line solutions on straight line generated by v

Degenerate Nodal Source:

T > 0

borderline case

{

nodal sourcespiral source

• x

y

Degenerate Nodal Sink:

T < 0

borderline case

{

nodal sinkspiral sink

• x

y

6

Page 7: 9.3-4: Phase Plane Portraits - Colorado Stategerhard/M345/CHP/ch9_3-4.pdf · 9.3-4: Phase Plane Portraits ... Degenerate Node: Borderline Case Spiral/Node • Assume T2 − 4D = 0

Saddle–Node: Borderline Case Node/Saddle

• Assume D = 0, T 6= 0 ⇒ eigenvalues λ1 = 0, λ2 = T

• Let v1,v2 be the eigenvectors ⇒ General solution:

x(t) = c1v1 + c2eλ2tv2

⇒ – line of equilibrium points generated by v1

– infinitely many half line solutions on straight linesparallel to line generated by v2

Unstable Saddle–Node:

T > 0

borderline case

{

nodal sourcesaddle

• x

y

λ1=0

λ2>0

Stable Saddle–Node:

T < 0

borderline case

{

nodal sinksaddle

• x

y

λ1=0

λ2<0

7

Page 8: 9.3-4: Phase Plane Portraits - Colorado Stategerhard/M345/CHP/ch9_3-4.pdf · 9.3-4: Phase Plane Portraits ... Degenerate Node: Borderline Case Spiral/Node • Assume T2 − 4D = 0

9.4: The (T, D)–Plane: λ = T/2 ±√

T2 − 4D/2

Five Generic Cases:

• if D < 0 ⇒ saddle

• if D > 0 and

– T > 0 ⇒ source

– T < 0 ⇒ sink

– T2 > 4D ⇒ node

– T2 < 4D ⇒ spiral

Borderline Cases:

• if T = 0 and D > 0 ⇒ center

• if D=0, T 6=0⇒ saddle-node

– if T > 0 ⇒ unstable

– if T < 0 ⇒ stable

• if T2=4D, A 6=(T/2)I, and

– T >0 ⇒ d. nodal source

– T <0 ⇒ d. nodal sinkOther Special Case: A = λI, λ 6= 0

• only half line solutions from origin

• Name:

{

unstablestable

}

star if

{

λ > 0λ < 0

}

spiral source

degeneratenodal source

spiral sink

degenerate nodal sink

nodalsource

nodal sink

saddle unstablesaddle−node

stablesaddle−node

T

D D=T2/4

center

Ex.: A =

[

8 5−10 −7

]

{

D = −6}

⇒ saddle

Ex.: A =

[

−2 01 −1

] {

D = 2, T = −3T 2 − 4D = 1

}

⇒ nodal sink

Ex.: A =

[

−10 −255 10

] {

D = 25T = 0

}

⇒ centerc = 5 > 0 ⇒ counterclockwise

direction of rotation8

Page 9: 9.3-4: Phase Plane Portraits - Colorado Stategerhard/M345/CHP/ch9_3-4.pdf · 9.3-4: Phase Plane Portraits ... Degenerate Node: Borderline Case Spiral/Node • Assume T2 − 4D = 0

Typical Homework and Exam Problems

1. Given a matrix A =

[

a bc d

]

, classify the type of phase portrait.

In the case of centers and spirals you may also be asked to determine thedirection of rotation.

2. Given a matrix A =

[

a bc d

]

, sketch the phase portrait.

The sketch should show all special trajectories and a few generic trajectories.At each trajectory the direction of motion should be indicated by an arrow.

• In the case of centers, sketch a few closed trajectories with the rightdirection of rotation. For spirals, one generic trajectory is sufficient.

• In the case of saddles or nodes, the sketch should include all half linetrajectories and a generic trajectory in each of the four regions separatedby the half line trajectories. The half line trajectories should be sketchedcorrectly, that is, you have to compute eigenvalues as well as eigenvectors.

• In the case of nodes you should also distinguish between fast (doublearrow) and slow (single arrow) motions (see p.2).

3. Given A, find the general solution (or a solution to an IVP), classify thephase portrait, and sketch the phase portrait.

9