22Ne(p,γ 23Na MEASUREMENT AT LUNA II · lab=186 keV E lab=215 keV E lab=436 keV E lab=479 keV...

21
22 Ne(p,γ) 23 Na MEASUREMENT AT LUNA II AND IMPACT ON ASTROPHYSICAL SCENARIOS MARIE-LUISE MENZEL for the LUNA collaboration

Transcript of 22Ne(p,γ 23Na MEASUREMENT AT LUNA II · lab=186 keV E lab=215 keV E lab=436 keV E lab=479 keV...

22Ne(p,γ)23Na MEASUREMENT AT LUNA IIAND IMPACT ON ASTROPHYSICAL SCENARIOS

MARIE-LUISE MENZELfor the LUNA collaboration

1. INTRODUCTION

1.1 NEON-SODIUM-CYCLE1.2 THE 22Ne(p,γ)23Na REACTION

NEON-SODIUM CYCLE

INTRODUCTION

> hydrogen burning process> temperature range: 0.1 - 0.4 GK

10!8

10!6

10!4

10!2

100

102

0.1 0.2 0.3 0.4 0.5

Therm

on

ucl

ear

React

ion R

ate

TN

RR

(cm

3/m

ol/s

)

Temperature T (109K)

Iliadis 20Ne(p,g)Iliadis 21Ne(p,g)Iliadis 22Ne(p,g)Iliadis 23Na(p,g)Iliadis 23Na(p,a)

21Ne(p,γ)22Na

23Na(p,α)20Ne23Na(p,γ)24Mg

22Ne(p,γ)23Na

20Ne(p,γ)21Na

(C. Illiadis et al., Nucl Phys A 841, 251 (2010)

17F 18F 19F

18Ne 19Ne 20Ne17Ne 21Ne 22Ne

20Na 21Na 22Na 23Na

20Mg 21Mg 22Mg19Mg 23Mg 24Mg 25Mg 26Mg

from CNO-cycle

THE 22Ne(p,γ)23Na REACTION

INTRODUCTIONLU

NA

ener

gy ra

nge

377±3

353 ?

319±3

309±3

278±3

245±1

206 ?

178±3

152±3

100 ?

68 ?35.4±0.5

28±3

3±3

394±3

369 ?

333±3

323±3

291±3

256±1

215 ?

186±3

159±3

104 ?

71 ?37.0±0.5

29±3

3±3

23Na

8794.1122Ne+p

ECM ELab Ex (keV)9171±3

9147 ?

9113±3

9103±3

9072±3

9038.7±1.0

9000 ?

8972±2

8946±3

8894 ?

8862 ?8829.5±0.5

8822±3

8797±3

0

3/2, 5/2+

5/2, 7/2-

1/2+

1/2+1/2+

3/2+

439.990±0.009 5/2+

2076.011±0.022 7/2+

10!8

10!7

10!6

10!5

10!4

10!3

10!2

10!1

100

101

0.1 0.2 0.3 0.4

Th

erm

on

ucl

ea

r R

ea

ctio

n R

ate

log

(NA<

!">

) [c

m3 m

ole

!1 s

ec!

1]

Temperature log(T) [109K]

Elab= 71 keVElab=104 keVElab=159 keVElab=186 keVElab=215 keVElab=436 keVElab=479 keV

(S.E. Hale et al., Phys Rev C 65 (2001))

2. 22Ne(p,γ)23Na MEASUREMENT AT LUNA II

2.1 LUNA II SETUP2.2 SPECTRAL ANALYSIS2.3 RESULTS

LUNA II SETUP

> windowless gas target chamber

> proton beam energy: 100 - 400 keV

> HPGe detector (high resolution)

> natural neon gas target 9.3% 22Ne, 0.3% 21Ne, 90.5% 20Ne

> lead and polyethylene-shielding

22Ne(p,γ)23Na MEASUREMENT

beam

indentation for HPGe detector

target chamber

back flangefor calorimeter

SPECTRAL ANALYSIS

22Ne(p,γ)23Na MEASUREMENT

23Na

Ex (keV) 8972±2

8945±2

0

3/2, 5/2

5/2, 7/2-

3/2+

439.990±0.009 5/2+

2076.011±0.022 7/2+

440

keV

1636

keV

0

10

20

30

40

50

60

1610 1620 1630 1640 1650 1660 1670

1600 1610 1620 1630 1640 1650 1660

cou

nts

pe

r ch

an

ne

l

channel number

E! (keV)

signallow energetic BG high energetic BG

1600 1610 1620 1630 1640 1650 1660

0

10

20

30

40

50

60

410 420 430 440 450 460 470

410 420 430 440 450 460 470

cou

nts

pe

r ch

an

ne

l

channel number

E! (keV)

signallow energetic BG high energetic BG

410 420 430 440 450 460 470

Eres = 186 keV lab

RESULTS: RESONANCE STRENGTHS - PRELIMINARY

22Ne(p,γ)23Na MEASUREMENT

(J. Görres et al., Nucl Phys A 408, 372 (1983)

(S.E. Hale et al., Phys Rev C 65 (2001)

(C. Illiadis et al., Nucl Phys A 841, 251 (2010)

-0.87.

0.001

0.01

0.1

1

0.1 1

Ra

tio lo

g(T

NR

Rnew

/TN

RR

NA

CR

E)

Temperature log (T) [109K]

Hale with LUNAIliadis with LUNA

22Ne(p,γ)23Na MEASUREMENT

RESULTS: THERMONUCLEAR REACTION RATE

3. EXPLOSIVE HYDROGEN BURNING IN NOVAE

3.1 ASTROPHYSICAL INTRODUCTION3.2 NUCLEAR NETWORK CALCULATION FOR NOVAE3.3 NEON-SODIUM-CYCLE

> compression of hydrogen matter on white dwarf surface> ignition of hydrogen in degenerated matter> thermonuclear runaway and ejection of outer envelope> 0.1 GK < T < 0.5 GK (120 keV < Ecm < 350 keV)

companion star

white dwarfwith accretion disk

Roche lobe of white dwarf

Roche lobe of companion star

Lagrange point

radiation pressure

gravitationalpressure

mattertransfer

ASTROPHYSICAL INTRODUCTION

EXPLOSIVE HYDROGEN BURNING IN NOVAE

NUCLEAR NETWORK CALCULATION

> public domain libnucnet code (B. S. Meyer, Clemson University)

> Requirements for network calculation:- initial mass composition for 50:50 white dwarf and giant star - temperature-density-profile - thermo-nuclear reaction rates (JINA database)

(C. Ritossa et al., ApJ 460, 489 (1996))

(sourceforge.net/u/mbrandle/nlog/)

10!1

100

80 90 100 110 120 130 140 150 160

Tem

pera

ture

T (

10

9 K

)

Tmax = 0.43 GKTmax = 0.35 GKTmax = 0.30 GKTmax = 0.25 GKTmax = 0.20 GK

100

101

102

103

104

105

80 90 100 110 120 130 140 150 160

Densi

ty !

(g/c

m3)

Time t (sec)

(Starrfield et al., APJSS 127, 458 (2000))

(K. Lodders et al., ApJ 591, 1220 (2003)

EXPLOSIVE HYDROGEN BURNING IN NOVAE

Tem

pera

ture

T (G

K)

Time t (sec)

a.)

b.)

c.)

d.)

e.)f.)

NEON-SODIUM CYCLE

a.) b.)

c.) d.)

e.) f.)

a.) b.)

c.) d.)

e.) f.)

a.) b.)

c.) d.)

e.) f.)

EXPLOSIVE HYDROGEN BURNING IN NOVAE

NEON-SODIUM CYCLE

Tem

pera

ture

T (G

K)

Time t (sec)

a.)

b.)

c.)

d.)

e.)f.)a.) b.)

c.) d.)

e.) f.)

a.) b.)

c.) d.)

e.) f.)

a.) b.)

c.) d.)

e.) f.)

EXPLOSIVE HYDROGEN BURNING IN NOVAE

NEON-SODIUM-CYCLE IN CO-TYPE NOVAE

> strong influence of the 22Ne(p,γ)23Na TNRR on abundance

TNRR x 100TNRR x 0.1

C. Iliadis et al. AJSS, 142 (2002)

(credits to R. Depalo)

EXPLOSIVE HYDROGEN BURNING IN NOVAE

4. HYDROSTATIC HYDROGEN BURNING

4.1 RED GIANT BRANCH STARS4.2. ASYMPTOTIC GIANT BRANCH STARS

> inactive He core, H-burning shell (0.015 GK < T < 0.06 GK)

> CNO and NaNa cycle cause anti-correlation of Na and O abundance of RGB

> transport of products to the envelope e.g. meridional circulation in radiative zone (dependent of TNRR)

RGB STARS

HYDROSTATIC HYDROGEN BURNING

E. Carretta et al. A&A, 505 (2009)

> CO core, inactive He inter-shell and thin H-burning shell

> hot bottom burning (0.06 GK < T < 0.1 GK) at layer of H-burning shell and convective envelope

> thermal pulsing every 10.000 - 100.000 years: He-shell flash (T > 0.2 GK), H-shell extinction

> convective envelope contains H- and He-burning products

AGB STARS (0.8 < Msolar < 8)

HYDROSTATIC HYDROGEN BURNING

5. SUMMARY

> analysis of 5 resonances> determination of new resonance strengths for Eres = 186 keV> determination of large TNRR uncertainty in 0.03 GK < T < 0.3 GK

SUMMARY

22Ne(p,γ)23Na MEASUREMENT AT LUNA II

ASTROPHYSICAL IMPACT

> explosive hydrogen burning in novae> hydrostatic hydrogen burning in AGB and RGB stars

LUN

A en

ergy

rang

e

377±3

353 ?

319±3

309±3

278±3

245±1

206 ?

178±3

152±3

100 ?

68 ?35.4±0.5

28±3

3±3

394±3

369 ?

333±3

323±3

291±3

256±1

215 ?

186±3

159±3

104 ?

71 ?37.0±0.5

29±3

3±3

23Na

8794.1122Ne+p

ECM ELab Ex (keV)9171±3

9147 ?

9113±3

9103±3

9072±3

9038.7±1.0

9000 ?

8972±2

8946±3

8894 ?

8862 ?8829.5±0.5

8822±3

8797±3

0

3/2, 5/2+

5/2, 7/2-

1/2+

1/2+1/2+

3/2+

439.990±0.009 5/2+

2076.011±0.022 7/2+

THANKS FOR YOUR ATTENTION!

MARIE-LUISE MENZEL

credits to

D. Bemmerer (HZDR)R. Depalo (Università di Padova)

F. Cavanna (Università di Genova)Prof. G. Matinez-Pinedo (Universität Darmstadt)