20181215 yamamoto light - Kyoto U

23
4'9, , 1, (!, .(0) /#, %(35+) 2018/12/15 "48-27<:)&$*@=BD@?AC>0 3.8m 86;6-2 &$SEICA[S econd-generation E xoplanet I mager with C oronagraphic A o] SEICA

Transcript of 20181215 yamamoto light - Kyoto U

�4'���9,�

��� , �1, (�!�, ���.(�0 �)/�#, % ( 35�+� �)

2018/12/15 "48��-27<:)�&$�*@=BD@?AC>�0

� ��3.8m86;6�-2��

����&$SEICA[Second-generation Exoplanet Imager with Coronagraphic Ao]

SEICA

SEICA: �$N �

u���-#���6!���

→0”.2—0”.3310-5�-6

u�*�%6B=CFAD[FPGA��, PDI WFS, SPLINE, G=CEL>=]

12

TABLE 4Nominal HR 8799 bcde Photometry Considered Here

Filter z J H Ks [3.3] L′ [4.05] M ′

λ (µm) 1.03 1.25 1.633 2.146 3.3 3.776 4.051 4.68

Planetb 18.24 ± 0.29 16.52 ± 0.14 15.08 ± 0.13 14.05 ± 0.08 13.22 ± 0.11 12.60 ± 0.10 11.84 ± 0.18 13.07 ± 0.30c > 16.48 14.65 ± 0.17 14.18 ± 0.17 13.13 ± 0.08 12.22 ± 0.11 11.74 ± 0.08 10.99 ± 0.08 12.05 ± 0.14d >15.03 15.26 ± 0.43 14.23 ± 0.22 13.11 ± 0.12 12.02 ± 0.11 11.58 ± 0.09 10.89 ± 0.14 11.67 ± 0.35e – > 13.2 13.88 ± 0.22 12.89 ± 0.26 12.02 ± 0.21 11.57 ± 0.12 10.74 ± 0.20 > 10.09

Note. — The (nominal) HR 8799 bcde photometry considered here. The z band photometry come from Currie et al. (2011a), J bandphotometry for HR 8799 bcd come from Marois et al. (2008a) while upper limits come from Oppenheimer et al. (2013), the H band and[3.3] photometry come from Skemer et al. (2012), the Ks band photometry come from Marois et al. (2008a) for HR 8799 bcd and fromCurrie et al. (2011a) for HR 8799 e, the L′ and [4.05] photometry come from this work and the M ′ photometry come from Galicher et al.(2011).

TABLE 5Statistical Tests Comparing HR 8799 bcde photometry

Photometry b and c b and d b and e c and d c and e d and e

Nominal (0.98 [0.42], 0.99+) (0.32 [0.39], 0.99+ ) (0.14 [0.36], 0.99+) (0.59 [0.92],0.66) (0.02 [0.82], 0.66) (0.27 [0.91], 0.31)Keck 2005 H band (0.98 [0.42], 0.99+) (0.42 [0.38], 0.99+) (0.14 [0.36], 0.99+) (0.64 [0.90],0.77) (0.01 [0.83], 0.59) (0.19 [0.96], 0.11)P1640 J and H band (0.10 [0.43], 0.99+) (0.58 [0.38], 0.99+) (0.74 [0.35], 0.99+) (0.35 [0.87],0.77) (0.64 [0.80], 0.92) (0.27 [0.92], 0.28)

Note. — Confidence limits at which two pairs of planets’ (scaled) photometry differ as determined from the goodness-of-fit statistic given the number of degrees of freedom – Ndata

- 2 for scaled photometry, Ndata -1 for non-scaled photometry – and the χ2 value. For HR 8799 bcd comparisons, Ndata = 7 while comparisons with HR 8799 e have Ndata = 5. Thedifferent rows indicate the nominal case, using photometry listed in Table 4, the Currie et al. (2012b) H-band photometry, and the Oppenheimer et al. (2013) J and H photometry.The two entries (enclosed by parentheses) list the correlation from scaling the planets’ fluxes with respect to one another (left entry) and the nominal correlation (no scaling of thespectra) (right entry). A value closer to one means that the photometry significantly differ (e.g. 0.95 = the planets’ photometry differ at the 2-σ/95% confidence limit). The “[]” values

enclose the scaling factor applied to the second planet in each listed pair that minimizes χ2.

TABLE 6Atmospheric Models

Figure Panel Planet Teff (K) log(g) Cloud Type Chemistry Reference

8 top-left HR 8799 b 900 4.0 A60 equilibrium 1,2middle-left ” 850 4.0 AE30 equilibrium 3bottom-left ” 850 4.3 AE60 100×CO, 0.01×CH4 4top-right HR 8799 d 1000 4.0 A60 equilibrium 1,2

middle-right ” 975 4.0 AE60 equilibrium 3bottom-right ” 1000 4.0 AE60 100×CO, 0.01×CH4 4

9 top-left HR 8799 b 900 4.0 0.85×A60, 0.15×E60 equilibrium 5bottom-left HR 8799 c 1000 4.0 0.7×A60, 0.3×E60 equilibrium 5top-right HR 8799 d 1000 4.0 0.9×A60, 0.1×AE60 equilibrium 5

bottom-right HR 8799 e 1000 4.0 0.75×A60, 0.25×E60 equilibrium 5

Note. — References: 1) Burrows et al. (2006), 2) Currie et al. (2011a), 3) Madhusudhan et al. (2011), 4) Skemer et al.(2012), 5) this work.

Fig. 1.— Keck/NIRC2 L′ images of HR 8799 from 2012 data (left) and archival 2010 data (right) reduced using A-LOCI. HR 8799 bcdeare all easily identifiable.

HR8799 (Currie+2014)

b 7MJ1’’.7

c 10MJ1’’.1

e 9MJ0’’.4

d 10MJ0’’.7

��46���7

18210-5

+

H31/20195FL

0.001

0.01

0.1

1

10

0.01 0.1 1 100.01 0.1 1.0 10

��)+

(��)+

)

0.001

0.01

0.1

1.0

10

.( ("()

Gaia6'�/�

�'�3�&�6��9'�

→:HJ;@K?O<IM

�00

0��

0��

00

,�

���

��

1’(60’’)

`r�w~tw(R

T� �

r�yq~{

$2h10-`W (→10kHz)-LO (→2000N�) -L (→50nm)

hV?��%a�Qg

�B�8e

�md:_

0Y\

�B�8

�8�;e�md/�

T7bmd:_

T7bmd/� �/ a�>

~`r�w~twSPhA9~[.��h(RhC"M]Ø Gemini/GPIØ VLT/SPHEREØ Keck/NIRC2

[-��h5&f(R]² cil/SCExAO [K�]² 1GI

}twr�yq~{

10-4�[email protected]’’

}tw-r�yq~{

u t|vp�y��qu `�+� �(E6)u F�[P*�(!2)

r�yq~{u y��q#=V�

4^T� �

u FPGA �%SPu @�)#=�u�s

�Z

�<X

3�/�J�,�

[email protected]

1GIe]Ccl(R

�D(S)zn��qt~oxjk

�T� �'Q���

SEICA: �=�: ��uExAO: Woofer AO

– �B)���: ���.(T^dQ>10cm, A<10m/s)

– AO�B:���B(@633nm)=>KX[`dK\bE

– �!43: 43�

uExAO: Tweeter AO

– "@NbJ: &���$3WFS (�5�eSHWFS?+�

– FPGA��10f (�56B(FZ]7:)(TMT�*/8)

uIaRH]T: SPLINE

– U^MY/JSd_ : ,�c (�5#, )�6B�

– �!2�?�f43� (TMT�*/8)

uWLPUaNL: LVOG_R^bH��

– (�56B%�?�: '�,���, �56B�

;9�CDSR�0.1-�

Tip/Tilt: 10mas pointing Woofer: �� [1kHz]��� [λ/4]

�-�� !��"#�

Tweeter: �� [6.5kHz]�� [λ/20]�����: 242

T/TWoofer DM 88 actuators

T/T sensor

DM1

CPU1

λ:0.4-0.5µm

Frame rate: 100HzLimiting magnitude: 16mag

λ:0.5-0.7µm

SHWFS

Frame rate: 1kHzLimiting magnitude: 12mag

CPU2

λ:0.7-0.9µm

Frame rate: 6kHzLimiting magnitude: 7mag

FPGA

DM2 DM3BS1 BS2 BS3BS2

u� ��: �: λ/20, �: 5—10kHz, ���: 492 elements

No AO after Woofer AO after Tweeter AO

λ:0.4—0.5μm λ:0.5—0.7μm λ:0.7—0.9μm

SEICA: ������FromTel.→

Tweeter DM492 actuators

PhaseSensor

Corona-graph

Spectro-graph

λ:1.0μm--

Strehl ratio 0.02 0.3 0.9

0’’.5

A3 T.Y.

オプトクラフト

図番

名称

用紙サイズ

尺度

作図

日付1 / 5

1200

400

400 800

CP0063-TM171214-01

望遠鏡からの入射光線

SEICA + SPLINE全体光路図

SPLINEの構成次第で下方に大型化する

2017.12.15

Tip/Tilt

WooferDM

Tweeter DM

SPLINE

Dichroic Mirror1

Dichroic Mirror2

T/T WFS(300—500um)

Woofer WFS(500—700um)

Dichroic Mirror3

Tweeter WFS(700—900um) Science Cam

telescopeSEICA: optical designusize: 1.2x1.4m

uAO+������

u5 �����

u3 ���

u3 ����������

u3 WFS

T/T WFS: �����W WFS: SHWFST WFS: ���WFS

�����

uWoofer AO–�����: ��

uTweeter AO–�����: SHWFS���� ����/���

Woofer AO: ;I:J�:: "!

u AO�32�4$46��1u @JBDEJ/��&0-u +�2�)8EJ69>?.5�(B7G<6 ���

���

#*�Woofer�WFS�

400

SHW

FS'�

L1(f=400, D=40)

22.5

22.5

2.06

L2(f=22.5, D=9)MLAA>=136um(f=2.06)

3060

30

L3(f=30, D=9)

L4(f=30, D=9)

sCMOS[�C?ORCA flash4.0]6.5um, 2048x2048

���φ20

�(B7G<��

FHJ

���

%��1"!�, �3

�������

9

�: ������ : Edmund: Sigma���: MISUMI

810mm

235mm

��

10

������→

����

オプトクラフト

図番

名称

用紙サイズ

尺度

作図

日付- / - 2018.12.10.A4 T.Y.

EICA - 定盤への固定ネジ

CP0063-TM181210-01

望遠鏡焦点=光学定盤上の基準

50 200 75

150 325 350

150 1

00

450

25

25

75

25

固定穴 9箇所

固定穴 5箇所

オプトクラフト

図番

名称

用紙サイズ

尺度

作図

日付- / - 2018.12.10.A4 T.Y.

EICA - 定盤への固定ネジ

CP0063-TM181210-01

望遠鏡焦点=光学定盤上の基準

50 200 75

150 325 350

150 1

00

450

25

25

75

25

固定穴 9箇所

固定穴 5箇所

�������1

�������2�������3

��: �"%�&)�#(!)�

13

����)�→

���'&(�

�)� $)

��10%↓

������"%�&)�#(���(���)

�: ��'/

14

#��"/��

%��-,.�

!/#&*/���90%���10%

���→

�(+$,/�).��������������

WooferWFS����uH30.12–����–����-��@�����

uH31.1�–����–�$�!– ���–&'(*,&)+"�$�%� ��#

Tweeter AO用 SHWFSの開発

京都大学 M1 津久井遼

背景

・Tweeter AO の開発にあたり、FPGAによる制御実験が必要-室内でAOループを回して補償能力を評価

・Tweeter AO用PDI WFS(新方式)は原理実証中→制御実験の初期段階ではSHWFSで代用

・SHWFSの利点/欠点〇 光学系が(比較的)単純,高い信頼性

× 計測負荷大

(Tweeter AOの目標6.5kHz ↔ SHWFS 0.4kHz)× 高精度の計測には高いS/Nが必要(暗い天体に対して不利)

PDI WFS実験用SHWFS

装置の概要

マイクロレンズアレイ

可変形鏡

リファレンス光により参照点を設定200 mm

CMOSカメラ (ORCA-flash4.0)

リレーレンズ

リレーレンズ

リファレンス光によるspot

・spotのサイズ(FWHM)が設計と異なる-設計(Zemax):1.7 - 1.8 pix-実際(iraf) : > 2.4 pix

・重心検出の精度には問題ない

・ミス,素子の不良などを

反映している可能性

→ 念のため原因を調査

12

重心検出/波面誤差シミュレーション

・ノイズ(読み出しノイズ,ポアソンノイズ)がある状況でspotの重心位置の検出にどれだけ誤差が生じるか?

・この誤差が積み重なったとき、波面形状の測定に

どれだけ誤差が生じるか?▲検出器上での

spotのイメージ

要求仕様60nm(= λ/20 @ 1.2 um)

波面の測定誤差

(1次元,

RMS)

[um

]

FWHM = 1.7 pix

FWHM = 2.4 pix

まとめと今後の課題

・Tweeter AO用SHWFSのspotの肥大が発覚

・重心検出の精度には問題ない

・原因はMLAの形状にあると考えられる

・今後やること

-入射する平面波の波面を傾けた際のspotの移動を確認- DMとの組み合わせ

SEICA: �=�: ��uExAO: Woofer AO– �B)���: ���.(T^dQ>10cm, A<10m/s)

– AO�B:���B(@633nm)=>KX[`dK\bE– �!43: 43�→ 2�

uExAO: Tweeter AO– "@NbJ: &���$3WFS (�5�eSHWFS?+�– FPGA��10f (�56B(FZ]7:)(TMT�*/8)

uIaRH]T: SPLINE– U^MY/JSd_ : ,�c (�5#, )�6B�– �!2�?�f43� (TMT�*/8)

uWLPUaNL: LVOG_R^bH��– (�56B%?�: '�,���, �56B�

;9�CDSR�0.1-�

!�#

uWoofer��������uWoofer�������=>� uWoofer���&()+-&*,uTweeter',%-2����–�� SHWFS���DM��"�$����

uTweeter�� FPGA���