2010 Crystal Structure and Formation Energy of ε-carbide Using … · Crystal Structure and...

23
Crystal Structure and Formation Energy of ε-carbide Using First Principles Calculations Computational Metallurgy Laboratory Graduate Institute of Ferrous Technology Pohang University of Science and Technology 2010 Jae Hoon Jang, In Gee Kim, Dong Woo Suh and H. K. D. H. Bhadeshia

Transcript of 2010 Crystal Structure and Formation Energy of ε-carbide Using … · Crystal Structure and...

Page 1: 2010 Crystal Structure and Formation Energy of ε-carbide Using … · Crystal Structure and Formation Energy of ε-carbide Using First Principles Calculations Computational Metallurgy

Crystal Structure and FormationEnergy of ε-carbide Using First

Principles Calculations

Computational Metallurgy LaboratoryGraduate Institute of Ferrous Technology

Pohang University of Science and Technology

2010

Jae Hoon Jang, In Gee Kim, Dong Woo Suh andH. K. D. H. Bhadeshia

Page 2: 2010 Crystal Structure and Formation Energy of ε-carbide Using … · Crystal Structure and Formation Energy of ε-carbide Using First Principles Calculations Computational Metallurgy

IntroductionIntroduction

• Martensite (α’) ε-carbide η-carbide χ-carbide Cementite (θ)

• Silicon promotes the formation of ε-carbide below 520 K. Fe2.4C Fe2C Fe2.5C Fe3C

S. S. Nayak et.al, Materials Science and Engineering A. 498, pp.442-456(2008)

900℃, 100s

200℃, 20s

250℃, 30 s

Ms = 302(1.0 wt%Si), 293 (1.7 wt%Si)

1.0wt% Si : No ε-carbide 1.7wt% Si : ε-carbide

• ε-carbide forms without redistribution of Si.S. J. Barnard, G. D. W. Smith, Proceedings of the solid-solid phase transformation., pp.881(1981)

• No initial partitioning of Si between ε, θ and martensiteS. S. Babu, K. Hono, T. Sakurai, Metal Mater. Trans. 25A (1994) p. 499

Page 3: 2010 Crystal Structure and Formation Energy of ε-carbide Using … · Crystal Structure and Formation Energy of ε-carbide Using First Principles Calculations Computational Metallurgy

FLAPW methodFLAPW methodE. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 28, 864 (1981) and references therein.M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B 26, 4571 (1982).

Wave Function Expansion ! "+=

maxGk

KGkGk rKr

|| , ),()(, #$ vcv

vYruBruAe

lmvlm

vlm

i

lmll sphere MT,alInterstiti,

),()]()([),(

)(

!

!

"#

"$%

&+='

(+

rr

rkrGk

G

)*)

&

Muffin-Tin (MT)Sphere Region

InterstitialRegion

Page 4: 2010 Crystal Structure and Formation Energy of ε-carbide Using … · Crystal Structure and Formation Energy of ε-carbide Using First Principles Calculations Computational Metallurgy

Calculation ParametersCalculation Parameters

• All-electron Full-potential LAPW method

• Generalized Gradient Approximation for Exchange-Correlation Potential

• Plane-Wave Cutoff : 21 Ry

• Star-Function Cutoff : 340 Ry

• k-points : 88 – Fe2.4C, 365 – (Fe11M)C5

• Muffin-tin Sphere : Fe, Si, Al , Mn (2.04 a.u.), C (1.30 a.u.)

• Mixing Method : Broyden

E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 28, 864 (1981) and references therein.M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B 26, 4571 (1982).Perdew, J. P., Burke, K., Ernzerhof, M., Phys. Rev. Let. 77,3865 (1996)

Page 5: 2010 Crystal Structure and Formation Energy of ε-carbide Using … · Crystal Structure and Formation Energy of ε-carbide Using First Principles Calculations Computational Metallurgy

Epsilon CarbideEpsilon Carbide

Formula Unit

Structure

Space group

a

c

c/a

Fe2.4C(Fe2C~Fe3C)

hexagonal

P6322 or P63/mmc

4.767 Å

4.354 Å

0.913

S. Nakagura, J. Phys. Soc. Jpn, 14 (1959) 186.

A

A

A A

A

A

AA

A

A

A

A

B

BB

B B B

BBB

C2

C2

C2

C3

C3

C3 C1

C1

C1

C1

C1

C1

C1

ah

a

a

B

B

B

Page 6: 2010 Crystal Structure and Formation Energy of ε-carbide Using … · Crystal Structure and Formation Energy of ε-carbide Using First Principles Calculations Computational Metallurgy

FeFe33C and FeC and Fe22C (C (εε-carbide-carbide))

a

c

c/a

x

4.661 Å (−2.3%)

4.294 Å (−1.4%)

0.9213

0.3190

a

c

c/a

x

4.785 Å (+0.3%)

4.321 Å (−0.8%)

0.903

0.3302

kJ/mol09.58

)C(2)Fe(6)CFe( 26 =!"!"

=#EEEE kJ/mol00.7

9)C(3)Fe(6)CFe( 36 =

!"!"=#

EEEE

Page 7: 2010 Crystal Structure and Formation Energy of ε-carbide Using … · Crystal Structure and Formation Energy of ε-carbide Using First Principles Calculations Computational Metallurgy

FeFe2.42.4C (C (εε-carbide-carbide))

a

c

4.740 Å (−0.6%)

8.631 Å (−0.9%)

kJ/mol24.617

)C(5)Fe(12)CFe( 512 =!"!"

=#EEEE

Page 8: 2010 Crystal Structure and Formation Energy of ε-carbide Using … · Crystal Structure and Formation Energy of ε-carbide Using First Principles Calculations Computational Metallurgy

ResultsResults

System

Measured, ε

Fe3C

Fe2.4C

Fe2C

a (Å)

4.767

4.661(−2.3%)

4.740(−0.6%)

4.785(+0.3%)

c (Å)

8.708

8.588 (−1.4%)

8.631(−0.9%)

8.642(−0.8%)

ch/ah

1.582

1.596

1.577

1.564

Fe3C Fe2.4C Fe2C

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

Latti

ce C

hang

e(%

) a c

Page 9: 2010 Crystal Structure and Formation Energy of ε-carbide Using … · Crystal Structure and Formation Energy of ε-carbide Using First Principles Calculations Computational Metallurgy

SiSi, Al and , Al and Mn Mn SubstitutionSubstitution

a

c

4.7303Å (−0.2%)

8.5901 Å (−0.5%)

kJ/mol08.9=!E

a

c

4.742Å (+0.0%)

8.685 Å (+0.6%)a

c

4.738 Å (−0.1%)

8.664 Å (+0.4%)

kJ/mol98.4=!E kJ/mol40.4=!E

Si Al

Mn

Page 10: 2010 Crystal Structure and Formation Energy of ε-carbide Using … · Crystal Structure and Formation Energy of ε-carbide Using First Principles Calculations Computational Metallurgy

ResultsResults

System

Measured, ε

Calculated, ε

Si substituted

Al substituted

Mn substituted

a (Å)

4.767

4.740

4.730(−0.2%)

4.742(+0.0%)

4.738(−0.1%)

c (Å)

8.708

8.631

8.590(−0.5%)

8.685(+0.6%)

8.664(+0.4%)

ch/ah

1.582

1.577

1.573

1.586

1.584

pure Si Al Mn

-0.4

-0.2

0.0

0.2

0.4

0.6

Latti

ce C

hang

e(%

)

a c

Page 11: 2010 Crystal Structure and Formation Energy of ε-carbide Using … · Crystal Structure and Formation Energy of ε-carbide Using First Principles Calculations Computational Metallurgy

ResultsResults

∆E (kJ/mol)

pure-carbide

Si substituted

Al substituted

Mn substituted

ε-carbide

6.24

9.08(+2.84)

4.98(−1.26)

4.40(−1.84)

cementite

5.38

7.70(+2.32)

4.53(−0.85)

5.07(−0.31)

pure Si Al Mn0

2

4

6

8

10

Fo

rmat

ion

En

erg

y (k

J/m

ol)

epsilon cementite

Page 12: 2010 Crystal Structure and Formation Energy of ε-carbide Using … · Crystal Structure and Formation Energy of ε-carbide Using First Principles Calculations Computational Metallurgy

A

A

A A

A

A

AA

A

A

A

A

B

BB

B B B

BBB

C2

C2

C2

C3

C3

C3 C1

C1

C1

C1

C1

C1

C1

ah

a

a

B

B

B

Orientation Relationship Orientation Relationship

[1210]ε

(0001)ε

Martensite with 1 wt% Ca = 2.85 Åc = 2.98 Å

H. K. D. H. Bhadeshia, Bainite (1992)

(101)α’ ||(1011) ε (211)α’ ||(1010) ε [011]α’ ||[0001] ε (111)α’ ||(1210) ε

(011) α

A

A

A

B

BB

B

[111]α

A

A

−9.2%

−4.7%

Page 13: 2010 Crystal Structure and Formation Energy of ε-carbide Using … · Crystal Structure and Formation Energy of ε-carbide Using First Principles Calculations Computational Metallurgy

SummarySummary

• First Principles Calculation can be applied forhypothetical crystal structure.• Si addition increases the formation energy of θ and ε-carbide.• The formation energy calculation : ε-carbide θ• The role of silicon in transition of carbide : Reducingthe misfit• Manganese addition : stable ε-carbide

Page 14: 2010 Crystal Structure and Formation Energy of ε-carbide Using … · Crystal Structure and Formation Energy of ε-carbide Using First Principles Calculations Computational Metallurgy

Thank You !!

Page 15: 2010 Crystal Structure and Formation Energy of ε-carbide Using … · Crystal Structure and Formation Energy of ε-carbide Using First Principles Calculations Computational Metallurgy

Equilibrium CalculationEquilibrium Calculation

with silicon

without silicon

θ, ε-carbideCarbon

µequi

µpara

Page 16: 2010 Crystal Structure and Formation Energy of ε-carbide Using … · Crystal Structure and Formation Energy of ε-carbide Using First Principles Calculations Computational Metallurgy

Appendix A - DFTAppendix A - DFT

[ ] ( ) ( ) >+|<+!= " ## | dext eeVTnVnE rrr

[ ] ( ) [ ] ( ) [ ]µ

!!

!!

!!

=+++=nnEV

nnTV

nnE

C xcext rr

[ ] [ ] ( ) µ!!

!!

=+= reffvnnT

nnE ( ) ( ) ( ) [ ]

nnEVVv C

!! xc

exteff ++= rrr

( ) ( ) ( )rrr iiiv !"! =#$

%&'

( +)* eff2

21 ( ) ( )!

=

=N

iin

1

2rr "

• Hohenberg-Kohn Theorem : The ground state property is a functional ofelectron density.

[ ] [ ] GSGSGS EnEEnE =! ,

• Kohn-Sham Equation : Introducing the non-interacting fictitious particle.

[ ] ( ) ( ) ( ) ( ) ][ d21

][ d Cext nEnVnTnVnE xc+!++!= "" rrrrrr

Page 17: 2010 Crystal Structure and Formation Energy of ε-carbide Using … · Crystal Structure and Formation Energy of ε-carbide Using First Principles Calculations Computational Metallurgy

First-Principles Calculation First-Principles Calculation

Quantum Mechanics

Atomic Position Schrödinger Equation Electron Density

StructureMolecular

CrystalDensityDefect SurfaceInterface

ThermodynamicInternal Energy

EntropyFree Energy

Formation EnergyPhase TransformPhase diagrams

Mechanical -Compressibility

Elastic constantsBulk modulus

Vibrations

Etc.Electron

IonizationEnergy bandBand gapsMagnetic

Physical Principles

Page 18: 2010 Crystal Structure and Formation Energy of ε-carbide Using … · Crystal Structure and Formation Energy of ε-carbide Using First Principles Calculations Computational Metallurgy

Formation EnergyFormation Energy

0 10 20 30 40 50 60 70 80

-50

0

50

100

150

200

250

300

Form

atio

n en

ergy

(kJ/

mol

)

Concentration (at %)

(Fe,Si)3C (Fe,Al)3C (Fe,Mn)3C

Gxs=ΩX(1−X)

Page 19: 2010 Crystal Structure and Formation Energy of ε-carbide Using … · Crystal Structure and Formation Energy of ε-carbide Using First Principles Calculations Computational Metallurgy

Ternary Phase Diagram at 773KTernary Phase Diagram at 773K

Al

0.2 0.2 0.2

0.8 0.8 0.8Fe Fe Fe

Mn Si Al

θ+γ θ+γ θ+γ

0.20.20.2

0.80.80.8 FeFeFe

Mn Si

θ+γθ+γθ+γγ

Equilibrium

Para-equilibrium

Page 20: 2010 Crystal Structure and Formation Energy of ε-carbide Using … · Crystal Structure and Formation Energy of ε-carbide Using First Principles Calculations Computational Metallurgy

Equilibrium Phase Diagram at 723KEquilibrium Phase Diagram at 723K

γ-θ-ε

θ+ εγ+ θ+ εγ+ θ

γ+ ε

γ

γ2+ ε

γ+γ2+ ε γ+ θ+ εγ+ θ

γ+ ε

γ2+ ε

γ

γ-θ-ε

Page 21: 2010 Crystal Structure and Formation Energy of ε-carbide Using … · Crystal Structure and Formation Energy of ε-carbide Using First Principles Calculations Computational Metallurgy

Gibbs Free Energy of CarbideGibbs Free Energy of Carbide

H(ε)H(θ)

G(ε)G(θ)

H(ε)H(θ)

G(ε)G(θ)

Fe-C System Mn-C System

Page 22: 2010 Crystal Structure and Formation Energy of ε-carbide Using … · Crystal Structure and Formation Energy of ε-carbide Using First Principles Calculations Computational Metallurgy

Gibbs Free Energy of Al-carbideGibbs Free Energy of Al-carbide

H(ε)H(θ)

G(ε)G(θ) H(ε)H(θ)

G(ε) G(θ)

Si-C System Al-C System

Page 23: 2010 Crystal Structure and Formation Energy of ε-carbide Using … · Crystal Structure and Formation Energy of ε-carbide Using First Principles Calculations Computational Metallurgy

Density Functional TheoryDensity Functional Theory

)(Ø)(Ø)]()()(??[ 221 rrrVrVrV ixcCext !! "=+++#

• full-relativistic• scalar-relativistic• non-relativisitic

• non-periodic• periodic• symmetrized• real-space

• all electron, full-potential• all electron, spherical potential• pseudopotential (valence electrons)• jellium approximation

• local density approx. (LDA)• generalized graident approx. (GGA)• non-spinpolarized• spinpolarized, vector-spin density• LDA+U, OEP• hybrid functionals• current functionals

• real-space grid• plane-waves (PW)• non-linear methods - APW: augmented method - KKR-GF• linearized methods - LAPW - ASW - LMTO• linear combination of atomic orbitals (LCAO) - tight-binding - Gauss-O - Slater type-O - numerical O

Blugel, S. Bihlmayer, G., Computational nanoscience: Do it yourself, 31:85-129 (2006)