(1) Beam Bending -Review - MITweb.mit.edu/2.31/www/fall01/beam.pdf · M ρ M Beam Bending...

5
ρ M M Beam Bending -Review --Plane sections remain plane. x y ρ : radius of curvature; k = 1/ρ :curvature; M: moment Compatibility : εxx= - y/ρ Independent of material behavior Equilibrium: M = -σxx y dA Independent of material behavior y neutral axis εxx tension compression M y σxx (1) A

Transcript of (1) Beam Bending -Review - MITweb.mit.edu/2.31/www/fall01/beam.pdf · M ρ M Beam Bending...

Page 1: (1) Beam Bending -Review - MITweb.mit.edu/2.31/www/fall01/beam.pdf · M ρ M Beam Bending -Review--Plane sections remain plane. x y ρ : radius of curvature; k = 1/ρ :curvature;

ρM M

Beam Bending -Review

--Plane sections remain plane.

x

y

ρ : radius of curvature; k = 1/ρ :curvature; M: moment

Compatibility : εxx= - y/ρ Independent of material behavior

Equilibrium: M = -σxx y dA Independent of material behavior

y

neutralaxis εxx

tension

compression

M

y

σxx

(1)

A

Page 2: (1) Beam Bending -Review - MITweb.mit.edu/2.31/www/fall01/beam.pdf · M ρ M Beam Bending -Review--Plane sections remain plane. x y ρ : radius of curvature; k = 1/ρ :curvature;

M = -σxx y dA = E /ρ y dA

y

neutralaxis

tension

compression

Elastic beam bending

elastic material behavior : σxx =E εxxE

σ

A

σxx =E εxx = -E (y/ρ)

A

2

I : second moment of area

M=EI / ρ

σxx=-M y/I

linear stress distribution

EI

1

1/ρ

Μ

linear moment-curvature relationship

σxx

I = y dAA

2 for rectangular beams

for I-beams

B

H

B

hH

b/2 b/2

I = BH /12

I = (BH -bh )/12

3

3 3

(2)

Page 3: (1) Beam Bending -Review - MITweb.mit.edu/2.31/www/fall01/beam.pdf · M ρ M Beam Bending -Review--Plane sections remain plane. x y ρ : radius of curvature; k = 1/ρ :curvature;

Elastic -plastic beam bending

elastic-perfectly plastic material behavior

E

1

ε

σ

EI

11/ρ

M

σy

M

p

e

M<Me : elastic regime: |σ| <σy at all points

y

M>Me : elastic-plastic regime: |σ|=σy at outer fibers of beam

σxx

y

σxx

σy

M ->Mp :fully plastic regime:|σ|=σy at all fibers of beam

y

σxx

σy

nonlinear Moment-curvature relationship

In the elastic regime σxx=-M y /I -> | σmax | =M ymax /I

Yielding initiates at the outer fibers of the beam when | σmax |= σy. This corresponds to a bending moment Me :

Me = (σy I )/ymax

for rectangular beams : Me = (σy BH )/6

(3)

2

Page 4: (1) Beam Bending -Review - MITweb.mit.edu/2.31/www/fall01/beam.pdf · M ρ M Beam Bending -Review--Plane sections remain plane. x y ρ : radius of curvature; k = 1/ρ :curvature;

Elastic -plastic beam bending

y

For M>Me the beam is in the elastic-plastic regime: the core of the beam (between y=- c and y=c)

is in the elastic regime, while the outer fibers are in the plastic regime (σ=σy).

εxx = -y/ρ

y

σxx

σy

for rectangular beams : Mp = (σy BH ) / 4 = 1.5 Me2

ε

σσy

εy = σy/E

elastic-perfectly plasticmaterial behavior

εy

−εy

c

-c

y

σxx

σy

−σy

c

-c

for -c<y<c ε=σ/E

For |y| = c , ε=-σy/E --> -y/ρ = −c/ρ=-σy/E--> the extension of the elastic region is given by:

The moment-curvature relationship is then given by:

For a rectangular beam :

c= ρ (σy/E)

M = σy (3H -4c ) B/1222

For very large curvatures c-->0 and the moment approaches the

limit moment Mp, where the entire section is in the plastic regime

A

2

-c

c

-ymax

-c

c

ymax

M = -σxx y dA = E /ρ y dA + -σy y dA + -σy y dA

M p = -σy y dAA

(4)

Page 5: (1) Beam Bending -Review - MITweb.mit.edu/2.31/www/fall01/beam.pdf · M ρ M Beam Bending -Review--Plane sections remain plane. x y ρ : radius of curvature; k = 1/ρ :curvature;

Elastic -plastic beam bending . Unloading /springback

material behavior: elastic unloadingE

1

ε

σ

y

σxx

y

σxx

σy

E

1∆σ

∆ε

∆σ = E ∆ε

The beam unloads elastically

∆(1/ρ)=∆M / EI =-M loaded /EI

(1/ρ)unloaded =(1/ρ)loaded-M loaded /EIEI

1

1/ρ

EI

1

M

(1/ρ)(1/ρ)loadedunloaded

M loaded

∆M

∆(1/ρ)

Stress distribution upon unloading

y

σxx

σy

stress distribution in theloaded configuration σloaded

Change in stressupon unloading

∆σ=(Mloaded y)/I

y

σxx

Residual stressdistribution σresidual M =0

(5)