01-elettromagnetismo

33
Richiami di teoria dell’elettromagnetismo www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 22-1-2008) 2 Equazioni fondamentali Forma integrale Forma locale Equazioni di Maxwell Equazioni di divergenza ρ = V S ˆ dV dt d dS c n J dS dt d dl = Γ S ˆ ˆ n B t E + = Γ S S ˆ ˆ ˆ dS dS dt d dl n J n D t H ρ = V S ˆ dV dS c n D 0 ˆ S = dS n B 0 = B c ρ = D J D H + = × t t = × Β E t c ρ = J Equazione di continuità

description

dispensa elettrotecnica

Transcript of 01-elettromagnetismo

Page 1: 01-elettromagnetismo

Richiami di teoria dell’elettromagnetismo

www.die.ing.unibo.it/pers/mastri/didattica.htm

(versione del 22-1-2008)

2

Equazioni fondamentali

Forma integraleForma locale

Equazioni diMaxwell

Equazioni didivergenza

∫∫ ρ−=⋅VS

ˆ dVdt

ddS cnJ

dSdt

ddl ∫∫ ⋅−=⋅

Γ S

ˆˆ nBtE

∫∫∫ ⋅+⋅=⋅Γ SS

ˆˆˆ dSdSdt

ddl nJnDtH

∫∫ ρ=⋅VS

ˆ dVdS cnD

0ˆS

=⋅∫ dSnB0=⋅∇ B

cρ=⋅∇ D

JD

H +∂∂

=×∇t

t∂∂

−=×∇Β

E

tc

∂ρ∂

−=⋅∇ JEquazione dicontinuità

Page 2: 01-elettromagnetismo

3

Carica elettrica

● I fenomeni elettromagnetici sono i fenomeni fisici riconducibili alle cariche elettriche

● La carica elettrica è una proprietà fondamentale della materia rappresentabile come una grandezza scalare(unità di misura coulomb, C)

● L’esperienza mostra che esistono due tipi di cariche

tra cariche dello stesso tipo si esercitano forze repulsive

tra cariche di tipo diverso si esercitano forze attrattive

● Convenzionalmente si attribuiscono valori positivi alle cariche di un tipo e negativi alle cariche dell’altro tipo

4

Densità di carica

● Se si considerano fenomeni osservabili su scala macroscopica si può prescindere dalla natura granulare della carica e assumere che la carica si a distribuita con continuità nello spazio

Densità volumetrica di carica (C/m3)

● In alcuni casi si hanno distribuzioni di carica che si sviluppano prevalentemente in una o due dimensioni

Densità superficiale di carica (C/m2)

Densità lineare di carica (C/m)

V

qV

c ΔΔ

=ρ→Δ 0

lim

S

qS

c ΔΔ

=σ→Δ 0

lim

l

ql

c ΔΔ

=λ→Δ 0

lim

Δq = carica contenuta nel volume ΔV

Δq = carica associata alla superficie ΔS

Δq = carica associata al segmento Δl

Page 3: 01-elettromagnetismo

5

Cariche libere e cariche di polarizzazione

● Cariche libere: cariche che possono compiere spostamenti macroscopici e dare luogo a separazioni macroscopiche di carica

● Cariche di polarizzazione: cariche legate alla struttura atomica o molecolare che possono compiere solo spostamenti microscopici (conseguenti a deformazione o orientamento di atomi o molecole)

● In seguito quando si parlerà di cariche senza altre specificazioni si farà riferimento alle cariche libere

6

Corrente elettrica

● Si considera una superficie orientata S

● ΔQ = carica che attraversa la superficie S in senso concorde con la normale nell’intervallo di tempo Δt

Contributo positivo (ΔQ+)cariche positive dirette in sensoconcorde con la normalecariche negative dirette in sensodiscorde con la normale

Contributo negativo (−ΔQ−)cariche positive dirette in sensodiscorde con la normalecariche negative dirette in sensoconcorde con la normale

−+ Δ−Δ=Δ QQQ

Page 4: 01-elettromagnetismo

7

Corrente elettrica

● Corrente elettrica = quantità di carica che attraversa la superficie in senso concorde con la normale nell’unità di tempo(unità di misura ampere, A)

● La corrente i(t) è la derivata della funzione Q(t) che rappresenta la quantità di carica transitata attraverso S a partire da un certo istante iniziale fino all’istante t

● Q(t) non si identifica necessariamente con la carica presente in qualche regione dello spazio all’istante t

è possibile che le stesse cariche (muovendosi lungo percorsi chiusi) forniscano più contributi a Q(t)

dt

d

tt

t

QQlim)i(

0=

ΔΔ

=→Δ

8

Densità di corrente

● Si consideri una distribuzione di carica con densità ρc in moto con velocità v

● Nell’intervallo di tempo dt le cariche percorrono la distanza vdt

Attraversa la superficie dS le carica contenuta nel volume

cioè

La corrente attraverso dS è

dove

rappresenta la densità di corrente (A/m2)

dtnv ˆ⋅

v

dtv

dS

dSdtdV nv ˆ⋅=

dSdSdt

dd c nJnv ˆˆ

Qi ⋅=⋅ρ==

vJ cρ=

dSdtd c nv ˆQ ⋅ρ=

Page 5: 01-elettromagnetismo

9

Densità di corrente

● Più in generale, se le cariche non si muovono tutte con la stessa velocità e sono presenti sia cariche positive che negative (con densità ρ+ e ρ −), l’espressione della di corrente è

● La densità di corrente J è un vettore la cui componente lungo la normale ad una superficie orientata S rappresenta la correnteper unità di superficie che fluisce attraverso S

La corrente attraverso una superficie S è uguale al flusso del vettore J attraverso S

−−++ ρ+ρ= vvJ

∫ ⋅=S

dSnJ ˆi

dS

d iˆ =⋅nJ

medie velocità=−+ vv ,

10

Forza di Lorentz

● Una carica puntiforme q in moto con velocità v in una regione sede di un campo elettromagnetico è soggetta ad una forza

● Questa relazione può essere assunta come definizione delle due funzioni vettoriali del punto e del tempo dette

campo elettrico E (unità di misura volt/metro, V/m)

induzione magnetica B (unità di misura tesla, T)

● Se si ha una distribuzione di carica con densità ρc in moto con velocità v, la forza per unità di volume f è

)( BvEF ×+= q Forza di Lorentz

BJEBvEf ×+ρ=×+ρ= cc )(

Page 6: 01-elettromagnetismo

11

Campo elettrico

● Si dice che una regione è sede di un campo elettrico se una carica di prova Δq puntiforme posta in quiete in un punto P della regione è soggetta ad una forza Fe proporzionale al valore della carica

● Il vettore campo elettrico nel punto P è definito come

Il passaggio al limite indica che la carica di prova deve esseresufficientemente piccola da non perturbare il campo presente nella regione considerata

qe

q Δ=

→Δ

FE

0lim

12

Induzione magnetica

● Si dice che una regione è sede di un campo magnetico se una carica di prova Δq puntiforme in moto con velocità istantanea v in tale regione è soggetta (oltre alla eventuale forza Fe dovuta al campo elettrico) ad una forza

● Il vettore induzione magnetica B ha

direzione coincidente con la direzione della velocità in corrispondenza della quale la forza Fm è nulla

verso tale che v B e Fm formino una terna destra

modulo dato da

dove Fmmax indica il valore massimo del modulo di Fm(che si ottiene quando v è ortogonale a B)

BvF ×Δ= qm

vq

FB m

q Δ=

→Δ

max

0lim

Page 7: 01-elettromagnetismo

13

Dipolo elettrico

● Si considerano due cariche puntiformi uguali e opposte ±q poste a distanza d

● Si considera, quindi, la situazione limite:

● Il sistema che si ottiene con questo passaggio al limite è detto dipolo elettrico

● Il dipolo elettrico è caratterizzato mediante una grandezza vettoriale detta momento di dipolo elettrico (C·m)

= versore diretto dalla carica negativa alla carica positiva

0) (0

≠→⇒⎭⎬⎫

→∞→

finitopqdd

q

ddp ˆˆ qdp ==

14

Dipolo magnetico

● Si considera una spira piana di forma arbitraria percorsa da unacorrente i

● S = area della superficie piana delimitata dalla spira● Si considera, quindi, la situazione limite:

● Il sistema che di ottiene con questo passaggio al limite è detto dipolo magnetico

● Il dipolo magnetico è caratterizzato mediante una grandezza vettoriale detta momento di dipolo magnetico (A·m2)

= versore normale alla superficie(correlato al verso della corrente come indicato in figura)

0) (i0

i≠→⇒

⎭⎬⎫

→∞→

finitomSS

nnm ˆiˆ Sm ==n̂

Page 8: 01-elettromagnetismo

15

Polarizzazione elettrica

● L’azione di un campo elettrico sulla materia può essere descritta dicendo che ogni elemento di volume dV diviene sede di un momento di dipolo elettrico dp

● Lo stato della materia polarizzata può essere descritto, punto per punto, mediante il vettore polarizzazione elettrica (C/m2)

● Si può dimostrare che la distribuzione di dipoli elettrici equivale ad una distribuzione volumetrica di carica con densità

● Se il campo elettrico varia nel tempo si ha una variazione di P che equivale alla presenza di una densità di corrente di polarizzazione elettrica

dV

dpP =

P⋅−∇=ρ p

tpe ∂∂

=P

J

densità di carica di polarizzazione

16

Magnetizzazione

● L’azione di un campo di magnetico sulla materia può essere descritta dicendo che ogni elemento di volume dV diviene sede di un momento di dipolo magnetico dm

● Lo stato della materia magnetizzata può essere descritto, punto per punto, mediante il vettore magnetizzazione (A/m)

● Si può dimostrare che la distribuzione di dipoli magnetici equivale alla presenza nella materia di una densità di corrente di polarizzazione magnetica

dV

dmM =

MJ ×∇=pm

Page 9: 01-elettromagnetismo

17

Vettori induzione elettrica e campo magnetico

● Si definisce induzione elettrica (C/m2) il vettore

La costante ε0 (≅ 8.854·10-12 F/m) è detta permittivitàelettrica (o costante dielettrica) del vuoto

● Si definisce campo magnetico (A/m) il vettore

La costante μ0 (= 4π ·10-7 ≅ 1.256·10-6 H/m) è detta permeabilità magnetica del vuoto

Nel vuoto valgono le relazioni

PED +ε= 0

ED 0ε=

HB 0μ=

)(00

MHBMB

H +μ=⇒−μ

=

18

Equazioni fondamentali

JD

H +∂∂

=×∇t

t∂∂

−=×∇Β

E

tc

∂ρ∂

−=⋅∇ J

0=⋅∇ B

cρ=⋅∇ D

Leggi secondarie

Leggi primarie

(Assunte come postulati)

(Derivano dalleleggi primarie)

Page 10: 01-elettromagnetismo

19

Legge di conservazione della carica elettrica

● Forma locale

● Forma integrale

V = regione delimitata da una superficie chiusa SVersore normale a S orientato verso l’esternoi = corrente uscente dalla superficie S

● La corrente uscente da una superficie chiusa è uguale alla diminuzione nell’unità di tempo della carica elettrica contenuta all’interno della superficie stessa.

La carica elettrica non può essere né creata né distrutta ma può essere solo spostata.

tc

∂ρ∂

−=⋅∇ J

dt

dQdV

dt

d

i

dS c −=ρ−=⋅ ∫∫VS

ˆ

43421

nJ

20

Legge di Ampere-Maxwell

● Forma locale

● Forma integrale

Γ = curva chiusaS = generica superficie avente Γ come contornoVersore tangente a Γ e normale a S orientati come indicato in figurais = corrente di spostamento concatenata con Sic = corrente di conduzione concatenata con SiT = corrente totale concatenata con S

● La circuitazione del vettore campo magnetico lungo una linea chiu-sa è uguale alla corrente totale concatenata con la linea stessa.

JD

H +∂∂

=×∇t

T

cs

i

i

dS

i

dSdt

ddl =⋅+⋅=⋅ ∫∫∫

Γ 4342143421 SS

ˆˆˆ nJnDtH

Page 11: 01-elettromagnetismo

21

Legge di Faraday-Neumann-Lenz

● Forma locale

● Forma integrale

Γ = curva chiusaS = generica superficie avente Γ come contornoVersore tangente a Γ e normale a S orientati come indicato in figurae = forza elettromotrice (f.e.m.) indotta

● La forza elettromotrice indotta in una linea chiusa è uguale all’opposto della derivata del flusso di induzione magnetica concatenato con la linea stessa.

t∂∂

−=×∇Β

E

dSdt

d

e

dl ∫∫ ⋅−=⋅Γ S

ˆˆ nBtE43421

22

Legge di Faraday-Neumann-Lenz

● A causa del segno del termine a secondo membro, la f.e.m. indotta èsempre tale da opporsi alla causa che la ha generata (legge di Lenz)

● Esempio:

Si considera il caso in cui la linea Γ coincide con un conduttore

In presenza di f.e.m. indotta, nel conduttorecircola corrente

Un incremento del flusso di B dà origine a una corrente indotta che risulta positiva sesi assume il verso di riferimento indicato infigura

Questa corrente genera un campo magne-tico H’, diretto in modo tale da produrre unflusso di induzione magnetica negativo attraverso S

Page 12: 01-elettromagnetismo

23

Legge di Gauss

● Si applica l’operatore divergenza al primo e al secondo membro dell’equazione di Ampere-Maxwell

● La divergenza di un rotore è nulla, quindi

● Utilizzando l’equazione di continuità si ottiene

● Se si ipotizza, come suggerisce l’esperienza, la possibilità di realizzare in una generica regione dello spazio la condizione D = 0 e ρc = 0, si deduce che la costante deve essere nulla

( ) ⎟⎠⎞

⎜⎝⎛ +

∂∂

⋅∇=×∇⋅∇ JD

Ht

0=⋅∇+∂

⋅∂∇J

D

t

( ) costt cc =ρ−⋅∇⇒=ρ−⋅∇

∂∂

DD 0

cρ=⋅∇ D

24

Legge di Gauss

● Forma locale

● Forma integrale

V = regione delimitata da una superficie chiusa SVersore normale a S orientato verso l’esterno

● Il flusso uscente da una superficie chiusa del vettore induzioneelettrica è uguale alla carica elettrica contenuta all’interno della superficie stessa.

cρ=⋅∇ D

QdVdS c =ρ=⋅ ∫∫VS

n̂D

Page 13: 01-elettromagnetismo

25

Legge della solenoidalità dell’induzione magnetica

● Si applica l’operatore divergenza a primo e secondo membro dell’equazione di Faraday

● Dato che la divergenza di un rotore è nulla

● Se si ipotizza, come suggerisce l’esperienza, la possibilità di realizzare in una generica regione dello spazio la condizione B = 0, si deduce che la costante deve essere nulla

( ) ⎟⎠⎞

⎜⎝⎛

∂∂

⋅−∇=×∇⋅∇t

ΒE

( ) costt

=⋅∇⇒=⋅∇∂∂

BB 0

0=⋅∇ B

26

Legge della solenoidalità dell’induzione magnetica

● Forma locale

● Forma integrale

V = regione delimitata da una superficie chiusa SVersore normale a S orientato verso l’esterno

● Il flusso attraverso una superficie chiusa del vettore induzionemagnetica è nullo.

0=⋅∇ B

0ˆS

=⋅∫ dSnB

Page 14: 01-elettromagnetismo

27

Significato del vettore D

● Legge di Gauss nel vuoto

● In presenza di materia, si può utilizzare l’espressione valida nel vuoto se si tiene conto anche della carica di polarizzazione (generalmente incognita)

● Si esprime la carica di polarizzazione in funzione di P

● Introducendo il vettore D, si ottiene un’espressione di validitàgenerale della legge di Gauss in cui compare solo la densità di carica libera ρc

( ) cρ=ε⋅∇ E0

( ) pc ρ+ρ=ε⋅∇ E0

( ) PE ⋅∇−ρ=ε⋅∇ c0

( ) cρ=⋅∇=+ε⋅∇ DPE0

28

Significato del vettore H

● Legge di Ampere - Maxwell nel vuoto

● Nella materia, per utilizzare la stessa espressione occorre tenere conto anche delle correnti di polarizzazione (generalmente incognite)

● Si esprimono le correnti di polarizzazione in funzione di P e M

● Introducendo i vettori H e D si ottiene un’espressione di validitàgenerale della legge di Ampere - Maxwell in cui compare solo J

( )J

B+

∂ε∂

=⎟⎟⎠

⎞⎜⎜⎝

⎛μ

×∇t

E0

0

pmpetJJJ

EB+++

∂ε∂

=⎟⎟⎠

⎞⎜⎜⎝

⎛μ

×∇)( 0

0

MP

JEB

×∇+∂∂

++∂ε∂

=⎟⎟⎠

⎞⎜⎜⎝

⎛μ

×∇tt

)( 0

0

( )J

DHJ

PEM

B+

∂∂

=×∇⇒+∂

+ε∂=⎟⎟

⎞⎜⎜⎝

⎛−

μ×∇

tt0

0

Page 15: 01-elettromagnetismo

29

Equazione di continuità e cariche di polarizzazione

● Tenendo conto delle cariche e delle correnti di polarizzazione, l’equazione di continuità assume la forma

● Si esprimono le cariche e le correnti di polarizzazione in funzione di P e M

Anche in presenza di cariche e correnti di polarizzazione vale la relazione

( ) ( )t

pcpmpe ∂

ρ+ρ∂−=++⋅∇ JJJ

( ) ( ) ( )ttt

c

∂⋅∇∂

+∂ρ∂

−=

=

×∇⋅∇+∂

⋅∇∂+⋅∇

PM

PJ

434210

tc

∂ρ∂

−=⋅∇ J

30

Equazioni di legame materiale

● In generale J, P e M (e quindi anche D e B) dipendono sia da Eche da H

● Le equazioni che legano D, B e J a E e H dipendono dalle proprietà del mezzo in cui ha sede il campo elettromagnetico e sono dette equazioni di legame materiale o relazioni costitutive

● Nella maggior parte dei materiali di interesse praticola dipendenza di P da H è trascurabile D = D(E)la dipendenza di M da E è trascurabile B = B(H)la dipendenza di J da H è trascurabile J = J(E)

● Le relazioni costitutive possono dipendere, inoltre, da altre grandezze fisiche che definiscono lo stato del materiale (es. temperatura, pressione, ecc. )

Page 16: 01-elettromagnetismo

31

Equazioni di legame materiale

● Materiali omogenei: Le relazioni costitutive D(E), B(H) e J(E) non dipendono dal punto considerato

● Materiali isotropi: Le relazioni costitutive D(E), B(H) e J(E) non dipendono dalle direzioni dei vettori

● Materiali lineari: Le relazioni costitutive sono espresse da equazioni lineari del tipo

in cui [ε], [μ] e [σ] rappresentano delle matrici

● Materiali lineari isotropi: Le relazioni costitutive si riducono a relazioni di proporzionalità

in cui ε, μ e σ sono costanti scalari

EJHBED ][][][ σ=μ=ε=

EJHBED σ=μ=ε=

32

Costante dielettrica

● In un materiale lineare isotropo P e D sono proporzionali a E

χe = suscettività elettrica del mezzo

εr = 1 + χe = costante dielettrica relativa del mezzo

ε = ε0εr = permittività o costante dielettrica del mezzo (F/m)

( ) EEEPED

EP

ε=εε=χ+ε=+ε=⇓

χε=

re

e

000

0

1

Page 17: 01-elettromagnetismo

33

Costanti dielettriche relative di alcuni materiali

1.0006Aria (1 atm)5.7 ÷ 6.5Mica

1.6 ÷ 2.4Polietilene5.7 ÷ 7Bachelite

2.1Teflon9.5Allumina

2 ÷ 2.5Carta4 ÷ 10Vetro

2.7 ÷ 2.9Porcellana12Silicio

2 ÷ 3Ebanite16Germanio

2.4 ÷ 3Polistirene28Alcool etilico

3Gomma80Acqua distillata

4.3 ÷ 5Quarzo86 ÷ 173Ossido di titanio

3.7 ÷ 5.5Nylon103 ÷ 104Titanato di bario

εrεr

(Valori a 20 °C)

34

Permeabilità magnetica

● In un materiale lineare isotropo M e B sono proporzionali a H

χm = suscettività magnetica del mezzo

μr = 1 + χm = permeabilità magnetica relativa del mezzo

μ = μ0μr = permeabilità magnetica del mezzo (H/m)

( ) ( ) HHHMHB

HM

μ=μμ=χ+μ=+μ=⇓χ=

rm

m

000 1

Page 18: 01-elettromagnetismo

35

Diamagnetismo

● Materiali diamagnetici: in ogni atomo i momenti magnetici degli elettroni si compensano

gli atomi non hanno momento magnetico proprio

● In presenza di un campo magnetico, al moto degli elettroni si sovrappone un moto di rotazione intorno alla direzione del campo(precessione di Larmor)

Si ha un momento di dipolo magnetico indotto che tende ad opporsi al campo che lo ha generato

suscettività magnetica χm < 0(valori tipici dell’ordine di −10−5)

permeabilità magnetica relativa μR = (1+χm) < 1 (valori tipici leggermente inferiori a 1)

● χm e μR risultano indipendenti dalla temperatura

36

Paramagnetismo

● Materiali paramagnetici:atomi e molecole possiedono un momento magnetico proprionon si hanno interazioni significative tra i dipoli magnetici

● Un campo magnetico esterno, oltre all’effetto diamagnetico, produce un allineamento parziale dei dipoli magnetici

● Quest’ultimo effetto è prevalente e dà origine ad una magnetizzazione proporzionale al campo esterno

suscettività magnetica χm > 0 (valori tipici dell’ordine di 10−4÷10−5)permeabilità magnetica relativa μR = (1+χm) > 1

● Lo stato di magnetizzazione è il risultato dell’equilibrio tra l’azione del campo che tende ad orientare i dipoli magnetici e l’azione contraria dell’agitazione termica

χm e μR diminuiscono all’aumentare della temperatura T

T

Cm =χ Legge di Curie(C = costante)

Page 19: 01-elettromagnetismo

37

Esempi di materiali diamagnetici e paramagnetici

4 ⋅10-7Aria (1 atm)−5 ⋅10-9Azoto (1 atm)

1.9 ⋅10-6Ossigeno (1 atm)−9.1 ⋅10-6Acqua

7.2⋅10-6Sodio−1.0 ⋅10-5Rame

1.2⋅10-5Magnesio−1.4 ⋅10-5Cloruro di sodio

1.4⋅10-5Litio−1.6 ⋅10-5Grafite

2.2⋅10-5Alluminio−1.8 ⋅10-5Piombo

5.1⋅10-5Cesio−2.1 ⋅10-5Diamante

6.8⋅10-5Tungsteno−2.6 ⋅10-5Argento

2.6⋅10-4Platino−2.9 ⋅10-5Mercurio

4⋅10-4Uranio−1.7 ⋅10-4Bismuto

χmMateriali paramagneticiχmMateriali diamagnetici

(Valori a 20 °C)

38

Ferromagnetismo

● Materiali ferromagnetici:atomi e molecole possiedono un momento magnetico propriosi hanno forti interazioni interne tra i dipoli magnetici

● Si ottengono forti livelli di magnetizzazione anche con campi magnetici relativamente deboli

● La relazione tra B e H è non lineare e non biunivoca (lo stato di magnetizzazione non dipende solo dal campo magnetico applicato, ma anche dagli stati di magnetizzazione precedenti)

● E’ possibile avere una magnetizzazione non nulla anche in assenza di campi esterni

● Il comportamento dipende dalla temperatura. Esiste un valore critico TCdella temperatura (temperatura di Curie) oltre il quale il comportamento del materiale è di tipo paramagnetico e la suscettività decresce con la temperatura secondo la legge

Cm TT

C

−=χ Legge di Curie-Weiss(C = costante)

Page 20: 01-elettromagnetismo

39

Ferromagnetismo

● In un materiale ferromagnetico, per un effetto di tipo quantistico, i momenti di dipolo magnetico tendono ad allinearsi spontaneamente

● Un cristallo di materiale ferromagnetico risulta costituito di regioni (domini di Weiss) di dimensioni dell’ordine di 10-6-10-3 m, all’interno delle quali gli atomi hanno i momenti di dipolo magnetico allineati tra loro

● In un materiale allo stato nativo i momenti dei domini sono disposti in modo aleatorio (quindi a livello macroscopico la magnetizzazione ènulla)

● In presenza di un campo magnetico esterno H i domini si allineano con il campo dando origine ad un’intensa magnetizzazione

● All’aumentare di H si raggiunge una condizione di saturazione quando tutti i domini sono allineati

● Un ulteriore incremento di H produce un incremento di B uguale a quello che si otterrebbe nel vuoto: ΔB = μ0ΔH

40

Curva di prima magnetizzazione

● A partire dallo stato H = 0, B = 0,inizialmente si osserva un trattocaratterizzato da valori elevati del rapporto

● Quindi si raggiunge la saturazionee l’andamento diviene rettilineo conpendenza

)()( 0 HHH

Brμμ=μ=

0μ=dH

dB

Page 21: 01-elettromagnetismo

41

Isteresi magnetica

● I domini di Weiss tendono a rimanere allineati anche se il campo esterno viene rimosso

Riportando H a zero B non si annulla ma si porta ad un valore BR(induzione residua)

● Per annullare B occorre applicare un campo magnetico inverso −HC (campo magnetico coercitivo)

● Se H viene fatto variare ciclicamente tra due valori ±HM

l’andamento di B è rappresentato da una curva chiusa detta ciclo di isteresi

42

Ciclo di isteresi

Page 22: 01-elettromagnetismo

43

Materiali ferromagnetici

● I materiali ferromagnetici si distinguono in

Materiali dolci elevati valori di permeabilità e basso valore del campo coercitivo

Materiali duri elevati valori di induzione residua e campo coercitivo

Materialeduro

Materialedolce

44

Caratteristiche di alcuni materiali ferromagnetici

1.20.61.5⋅105Mumetal (Ni, Cu 5%, Cr 2%)

0.40.63⋅105Supermalloy (Ni, Fe 15%, Mo 5%, Mn 0.5%)

40.65⋅104Permalloy (Ni, Fe 22%)

400.87000Ferro-silicio 4%

5001.4600Ghisa

801.25000Ferro commerciale

41.22⋅105Ferro puro

1300.331100Nichel

10000.31175Cobalto

HC (A/m)BR (T)μrmaxMateriali dolci

(Valori a 20 °C)

Page 23: 01-elettromagnetismo

45

Caratteristiche di alcuni materiali ferromagnetici

440000.54 Cunife (Cu, Ni 20%, Fe 20%)

1700000.43Ferrite di bario (BaFe12O19)

8800001.23Neodimio-ferro-boro (Nd2Fe14B)

6400000.87Samario-cobalto (SmCo5)

1200001.05Alnico 9 (Fe, Al 7%, Ni 15%, Co 35%, Cu 4%, Ti 5%)

424001.25Alnico 5 (Fe, Al 8%, Ni 14%, Co 24%, Cu 3%)

56001.05Acciaio al tungsteno (Fe, C 0.7%, W 5%)

HC (A/m)BR (T)Materiali duri

(Valori a 20 °C)

46

Legge di Ohm

● Per una vasta classe di materiali il legame tra la densità di corrente e il campo elettrico è lineare e isotropo ed è espresso dalla legge di Ohm (in forma locale)

σ = conducibilità (Siemens/metro, S/m)ρ = 1/σ = resistività (Ohm⋅metro, Ω⋅m)

● Buoni conduttori ρ dell’ordine di 10-7÷10-8 Ω⋅m

● Conduttore ideale ρ = 0, σ→∞● Isolanti ρ dell’ordine di 107÷1018 Ω⋅m

● Isolante ideale ρ→∞ , σ = 0

JEEJ ρ=σ=

Page 24: 01-elettromagnetismo

47

Resistività di alcuni materiali

1018Quarzo fuso3⋅10-5÷6⋅10-4Grafite

1016Ebanite9.6⋅10-7Mercurio

1012 ÷1014Gomma3.8⋅10-7÷5⋅10-7Manganina (Cu-Ni-Mn)

1012 ÷1014Mica4.9⋅10-7Costantana (Cu-Ni)

1010 ÷1014Vetro2.1⋅10-7Piombo

1013Polietilene1.2⋅10-7Stagno

109 ÷1013Porcellana1.0⋅10-7Ferro

109 ÷1010Bachelite5.6⋅10-8Tungsteno

107 ÷1010Carta2.8⋅10-8Alluminio

ρ (Ω⋅m)Isolanti2.36⋅10-8Oro

2.3⋅103Silicio1.73⋅10-8Rame

0.47Germanio 1.59⋅10-8Argento

ρ (Ω⋅m)Semiconduttoriρ (Ω⋅m)Conduttori

(Valori a 20 °C)

48

Dipendenza della resistività dalla temperatura

● La resistività e la conducibilità sono in generale funzioni della temperatura

● Per variazioni di temperatura di ampiezza limitata (dell’ordine delle decine di gradi) la dipendenza può essere considerata praticamente lineare

ρ0 = resistività valutata alla temperatura di riferimento T0

θ = T − T0 = variazione di temperatura rispetto a T0

α = coefficiente di temperatura

)1()( 0 αθ+ρ=θρ

Page 25: 01-elettromagnetismo

49

Campo elettrico impresso

● Oltre alle forze elettromagnetiche, sulle cariche possono agire anche forze di natura non elettrica (ad es. meccanica o chimica)

● In questo caso la forza per unità di carica viene detta campo elettrico impresso, Ei

● Ei è dimensionalmente omogeneo a un campo elettrico, ma a rigore non è un campo elettrico (non agisce sulle cariche in quanto tali, ma sul loro supporto materiale)

● In presenza di campi impressi la legge di Ohm assume la forma

da cui si ottiene anche

avendo posto: Ji = −σEi (densità di corrente impressa)

)( iEEJ +σ=

)( iJJE +ρ=

50

Effetto Joule

● Si considera una densità di carica ρc in moto con velocità v in un mezzo di conducibilità σ

densità di corrente J = ρcv

● In presenza di un campo elettrico E e di un campo impresso Ei, la forza per unità di volume che agisce sulla carica è

● La legge di Ohm indica che se la forza dovuta a E ed Ei ècostante, la velocità delle cariche è costante

sulle cariche devono agire delle forze frenanti (analoghe a forze di attrito viscoso)

dissipazione di energia

)( ic EEf +ρ=

Page 26: 01-elettromagnetismo

51

Effetto Joule

● Il lavoro per unità di volume compiuto nell’intervallo dt dalle forze del campo elettrico e del campo impresso vale

● Questo lavoro deve essere uguale all’energia dissipata per unitàdi volume

● In effetti l’esperienza mostra che in un conduttore di conducibilitàσ, in presenza di una densità di corrente J, nell’intervallo di tempo dt viene prodotta per unità di volume la quantità di calore

{dt

JdtdtdtL icic σ

=

σ=

+⋅=ρ=⋅+ρ=⋅=δ

2

/

)()(43421

J

EE

J

vvEEvf

dtJ

=δ2

Legge di Joule

52

● In molti casi di interesse pratico il mezzo in cui ha sede il campo e.m. può essere suddiviso più in regioni omogenee

● Si vuole esaminare il comportamento dei vettori E H D B e J corrispondenza delle superfici di separazione

● S = superficie di separazione tra due mezzi lineari isotropi omogenei

● P = punto generico sulla superficie S

● = versore normale in P alla superficie

● = versore tangente in P alla superficie giacente in un generico piano passante per la normale

● = versore che forma con i precedenti una terna ortogonale destra

Condizioni di interfaccia

ntk ˆˆˆ ×=

111 ,, σμε

222 ,, σμε

P

S

2

1

Page 27: 01-elettromagnetismo

53

● Si considera la linea chiusa Γ che circonda il punto P formata da

due segmenti infinitesimi dldue segmenti δ, infinitesimi di ordine superiore

Condizioni di interfaccia - vettori E e H

dl

δt̂

111 ,, σμε

222 ,, σμε

ΓS

2

1

54

Condizioni di interfaccia - vettore E

● Si applica a Γ la legge di Faraday

(gli indici 1 e 2 distinguono il campo nel mezzo 1 e nel mezzo 2)

● Il contributi dei lati δ alla circuitazione e il termine a secondo membro sono trascurabili perché infinitesimi di ordine superiore, quindi

● Dato che la precedente relazione vale per ogni piano passante per si ottiene

(E1τ, E2τ = componenti di E tangenti alla superficie S)

( ) 0ˆˆˆ21 =δ⋅

∂∂

−=⋅−⋅ dlt

dl kB

tEtE

tEtE ˆˆ21 ⋅=⋅

ττ = 21 EE

dl

δt̂

111 ,, σμε

222 ,, σμε

ΓS

2

1

Page 28: 01-elettromagnetismo

55

Condizioni di interfaccia - vettore H

● In modo analogo, applicando alla curva Γ la legge di Ampere - Maxwell si ottiene che la componente del campo magnetico tangente alla superficie ècontinua

(H1τ, H2τ = componenti di H tangenti alla superficie S)

( ) 0ˆˆˆ21 =δ⋅⎟

⎠⎞

⎜⎝⎛ +

∂∂

=⋅−⋅ dlt

dl kJD

tHtH

ττ = 21 HH

dl

δt̂

111 ,, σμε

222 ,, σμε

ΓS

2

1

56

Condizioni di interfaccia - vettori B, D e J

● Si considera un superficie cilindrica Σche racchiude il punto P con

area di base infinitesima dSaltezza δ tale che l’area laterale sia infinitesima di ordine superiore

δ

111 ,, σμε

222 ,, σμε n̂

dS

ΣS

2

1

Page 29: 01-elettromagnetismo

57

Condizioni di interfaccia - vettore B

● Si applica la legge della solenoidalitàdell’induzione magnetica

● Il flusso di B attraverso la superficie laterale è trascurabile perchè è un infinitesimo di ordine superiore, quindi

(B1n, B2n = componenti di B normali alla superficie S)

( ) 0ˆˆ 21 =⋅+⋅− dSnBnB

nn BB 2121 ˆˆ =⇒⋅=⋅ nBnB

δ

111 ,, σμε

222 ,, σμε n̂

dS

ΣS

2

1

58

● Si applica la legge di Gauss alla superficie Σ

● Se sulla superficie S non è presente una densità superficiale di carica si ottiene che la componente normale di D ècontinua

(D1n, D2n = componenti di D normali alla superficie S)

● Se invece è presente una densitàsuperficiale di carica si ha discontinuità

Condizioni di interfaccia - vettore D

( ) 0ˆˆ 21 =δρ=⋅+⋅− dSdS cnDnD

nn DD 2121 ˆˆ =⇒⋅=⋅ nDnD

( ) dSdS cσ=⋅+⋅− nDnD ˆˆ 21

cnn DD σ=− 12

δ

111 ,, σμε

222 ,, σμε n̂

dS

ΣS

2

1

Page 30: 01-elettromagnetismo

59

Condizioni di interfaccia - vettore J

● In modo analogo, dall’equazione di continuità si ottengono le condizioni per la componente normale di J

● Se sulla superficie non è presente una densità superficiale di carica variabile nel tempo, la componente normale di Jè continua

● Se è presente una densità superficiale di carica variabile nel tempo si ha discontinuità

δ

111 ,, σμε

222 ,, σμε n̂

dS

Σ( ) 0ˆˆ 21 =δ∂ρ∂

−=⋅+⋅− dSt

dS cnJnJ

nn JJ 2121 ˆˆ =⇒⋅=⋅ nJnJ

( ) dSt

dS c

∂∂

−=⋅+⋅−σ

nJnJ ˆˆ 21

dt

dJJ c

nn

σ=− 21

S

2

1

60

Teorema di Poynting

● Si considera una regione V, delimitata da una superficie chiusa S● Si orienta la normale alla superficie verso l’esterno

● Si assume che V sia sede di un mezzo lineare isotropo e di un campo elettrico impresso Ei

● Dalla legge di Ampere-Maxwell, moltiplicando scalarmente per E primo e secondo membro si ottiene

● Dalla legge di Faraday-Neumann, moltiplicando per H, si ottiene

● Si sottrae la seconda equazione dalla prima

⎟⎠⎞

⎜⎝⎛ +

∂∂

⋅=×∇⋅ JD

EHEt

t∂∂

⋅−=×∇⋅Β

HEH

tt ∂∂

⋅+∂∂

⋅+⋅=×∇⋅−×∇⋅Β

HD

EJEEHHE

Page 31: 01-elettromagnetismo

61

Teorema di Poynting

● Utilizzando la relazione vettoriale

la precedente equazione si può porre nella forma

● Utilizzando le relazioni costitutive del mezzo si ricava

● Integrando sul volume V, e facendo uso del teorema della divergenza, si ottiene la relazione di Poynting

( )tt ∂

∂⋅+

∂∂

⋅+⋅=×⋅∇−Β

HD

EJEHE

( ) ⎟⎠⎞

⎜⎝⎛ μ

∂∂

+⎟⎠⎞

⎜⎝⎛ ε

∂∂

+⋅−=×⋅∇− 222

2

1

2

11H

tE

tJi JEHE

dSdVHdVEdt

ddVJdV

SVVVV

i ∫∫∫∫∫ ⋅×+⎟⎟⎠

⎞⎜⎜⎝

⎛μ+ε+

σ=⋅ nHEJE ˆ

1 2212

212

( ) baabba ×∇⋅−×∇⋅=×⋅∇

62

Teorema di Poynting

● La relazione di Poynting esprime un bilancio di potenze

PG = potenza fornita dai campi impressi

PD = potenza dissipata per effetto Joule

WEM = energia elettromagnetica immagazzinata nel volume V(WEM = WE + WM )

PS = potenza uscente attraverso la superficie S

44344214444 34444 214342143421

S

S

EM

VV

D

V

G

V

i

P

dS

W

dVHdVEdt

d

P

dVJ

P

dV ∫∫∫∫∫ ⋅×+⎟⎟⎠

⎞⎜⎜⎝

⎛μ+ε+

σ=⋅ nHEJE ˆ

1 2212

212

∫ ε=V

E dVEW 221 = energia del campo elettrico

dVHWV

M ∫ μ= 221 = energia del campo magnetico

Page 32: 01-elettromagnetismo

63

Teorema di Poynting

● Vettore di Poynting (W/m2)

● Il flusso del vettore di Poynting uscente da una superficie chiusa S è uguale alla potenza elettromagnetica che fluisce dal volume racchiuso da S allo spazio circostante

● Con le convenzioni indicate

è positivo se si ha un flusso dienergia da V verso l’esterno

è negativo si ha un flusso di energia dall’esterno verso V

HES ×=

∫ ⋅=S

S dSP nS ˆ

64

Fenomeni stazionari

● Fenomeni elettromagnetici stazionari: fenomeni nei quali le grandezze elettromagnetiche non variano nel tempo

tutte le derivate rispetto al tempo nelle equazioni fondamentalisono identicamente nulle

● Equazioni fondamentali in condizioni stazionarie

0ˆ0

ˆ

0ˆ0

ˆˆ

0ˆ0

S

VS

S

S

=⋅=⋅∇

ρ=⋅ρ=⋅∇

=⋅=×∇

⋅=⋅=×∇

=⋅=⋅∇

∫∫∫

∫∫∫

Γ

Γ

dS

dVdS

dl

dSdl

dS

cc

nBB

nDD

tEE

nJtHJH

nJJ

Le equazioni relative al campo elettrico e al campo magnetico sono “disaccoppiate”

Page 33: 01-elettromagnetismo

65

Quadro generale dell’elettromagnetismo

● Elettrostaticastudio dei fenomeni stazionari in assenza di moto di caricheJ = 0 ovunque

● Elettromagnetismo stazionariostudio dei fenomeni stazionari in presenza di moto di caricheJ ≠ 0 almeno in qualche regione del sistema considerato

● Elettromagnetismo non stazionariostudio dei fenomeni elettromagnetici non stazionari

● Elettromagnetismo quasi stazionariostudio approssimato di fenomeni nei quali le grandezze elettromagnetiche variano lentamente nel temposi assume che alcune delle derivate rispetto al tempo siano praticamente trascurabilioccorre specificare cosa significa “lentamente” e in base a quale criterio una derivata rispetto al tempo può essere trascurata

66

Quadro generale dell’elettromagnetismo

Elettrostatica 0,0 ==∂

∂J

t

L

Elettromagnetismo stazionario

0,0 ≠=∂

∂J

t

L

Elettromagnetismo quasi stazionario ⎩

⎨⎧≠≅

∂∂

0

0

t

L

Elettromagnetismo non stazionario

0≠∂

∂t

L

Ele

ttro

mag

net

ism

o

Campo elettricostazionario

Campo magneticostazionario

Campo di correntestazionario