ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic...

32
ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018 ΔΙΑΛΕΞΗ 11: Dynamic CMOS Circuits ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ ([email protected] ) (ack: Prof. Mary Jane Irwin and Vijay Narayanan) [Προσαρμογή από “Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.”]

Transcript of ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic...

Page 1: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ 307ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ

ΚΥΚΛΩΜΑΤΑΕαρινό Εξάμηνο 2018

ΔΙΑΛΕΞΗ 11: Dynamic

CMOS Circuits

ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ ([email protected])(ack: Prof. Mary Jane Irwin and Vijay Narayanan)

[Προσαρμογή από “Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.”]

Page 2: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .2 © Θεοχαρίδης, ΗΜΥ, 2018

Dynamic CMOSl In static circuits at every point in time (except when

switching) the output is connected to either GND or VDD via a low resistance path.¤ fan-in of N requires 2N devices

l Dynamic circuits rely on the temporary storage of signal values on the capacitance of high impedance nodes.¤ requires only N + 2 transistors¤ takes a sequence of precharge and conditional evaluation

phases to realize logic functions

Page 3: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .4 © Θεοχαρίδης, ΗΜΥ, 2018

Dynamic Gate

In1

In2 PDNIn3

Me

Mp

CLK

CLKOut

CL

Out

CLK

CLK

A

BC

Mp

Me

Two phase operationPrecharge (CLK = 0)Evaluate (CLK = 1)

on

off

1off

on

!((A&B)|C)

Page 4: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .5 © Θεοχαρίδης, ΗΜΥ, 2018

Conditions on Outputl Once the output of a dynamic gate is discharged, it cannot

be charged again until the next precharge operation.l Inputs to the gate can make at most one transition during

evaluation.

l Output can be in the high impedance state during and after evaluation (PDN off), state is stored on CL

Page 5: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .6 © Θεοχαρίδης, ΗΜΥ, 2018

Properties of Dynamic Gatesl Logic function is implemented by the PDN only

¤ number of transistors is N + 2 (versus 2N for static complementary CMOS)

¤ should be smaller in area than static complementary CMOS

l Full swing outputs (VOL = GND and VOH = VDD)

l Nonratioed - sizing of the devices is not important for proper functioning (only for performance)

l Faster switching speeds¤ reduced load capacitance due to lower number of transistors per

gate (Cint) so a reduced logical effort

¤ reduced load capacitance due to smaller fan-out (Cext)

¤ no Isc, so all the current provided by PDN goes into discharging CL

¤ Ignoring the influence of precharge time on the switching speed of the gate, tpLH = 0 but the presence of the evaluation transistor slows down the tpHL

Page 6: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .7 © Θεοχαρίδης, ΗΜΥ, 2018

Properties of Dynamic Gates, con’tl Power dissipation should be better

¤ consumes only dynamic power – no short circuit power consumption since the pull-up path is not on when evaluating

¤ lower CL- both Cint (since there are fewer transistors connected to the drain output) and Cext (since there the output load is one per connected gate, not two)

¤ by construction can have at most one transition per cycle – no glitching

l But power dissipation can be significantly higher due to¤ higher transition probabilities¤ extra load on CLK

l PDN starts to work as soon as the input signals exceed VTn, so set VM, VIH and VIL all equal to VTn¤ low noise margin (NML)

l Needs a precharge clock

Page 7: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .8 © Θεοχαρίδης, ΗΜΥ, 2018

Dynamic Behavior

-0.5

0.5

1.5

2.5

0 0.5 1

CLK

CLK

In1

In2

In3

In4

Out

In &CLK Out

Time, ns

Volta

ge

#Trns VOH VOL VM NMH NML tpHL tpLH tp

6 2.5V 0V VTn 2.5-VTn VTn 110ps 0ns 83ps

Evaluate

Precharge

Page 8: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .9 © Θεοχαρίδης, ΗΜΥ, 2018

Gate Parameters are Time Independentl The amount by which the output voltage drops is a strong

function of the input voltage and the available evaluation time.¤ Noise needed to corrupt the signal has to be larger if the

evaluation time is short – i.e., the switching threshold is truly time independent.

-0.5

0.5

1.5

2.5

0 20 40 60 80 100Time (ns)

Volta

ge (V

)

VG

CLK

Vout (VG=0.55)Vout (VG=0.5)

Vout (VG=0.45)

Page 9: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .10 © Θεοχαρίδης, ΗΜΥ, 2018

Power Consumption of Dynamic Gate

In1

In2 PDNIn3

Me

Mp

CLK

CLKOut

CL

Power only dissipated when previous Out = 0

Page 10: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .11 © Θεοχαρίδης, ΗΜΥ, 2018

Dynamic Power Consumption is Data Dependent

A B Out

0 0 1

0 1 0

1 0 0

1 1 0

Dynamic 2-input NOR Gate

Assume signal probabilitiesPA=1 = 1/2PB=1 = 1/2

Then transition probabilityP0®1 = Pout=0 x Pout=1

= 3/4 x 1 = 3/4

Switching activity can be higher in dynamic gates!P0®1 = Pout=0

Page 11: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .12 © Θεοχαρίδης, ΗΜΥ, 2018

Issues in Dynamic Design 1: Charge Leakage

CL

CLK

CLKOut

A=0

Mp

Me

Minimum clock rate of a few kHz

Leakage sources

CLK

VOut

Precharge

Evaluate

1

2

34

Page 12: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .13 © Θεοχαρίδης, ΗΜΥ, 2018

Impact of Charge Leakagel Output settles to an intermediate voltage determined by a

resistive divider of the pull-up and pull-down networks¤ Once the output drops below the switching threshold of the

fan-out logic gate, the output is interpreted as a low voltage.

-0.5

0.5

1.5

2.5

0 20 40

Time (ms)

Vo

ltag

e (V

)

CLK

Out

Page 13: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .14 © Θεοχαρίδης, ΗΜΥ, 2018

A Solution to Charge Leakage

CL

CLK

CLK

Me

Mp

A

B

!Out

Mkp

Same approach as level restorer for pass transistor logic

Keeper

q Keeper compensates for the charge lost due to the pull-down leakage paths.

Page 14: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .15 © Θεοχαρίδης, ΗΜΥ, 2018

Issues in Dynamic Design 2: Charge Sharing

CL

CLK

CLK

Ca

Cb

B=0

AOut

Mp

Me

Charge stored originally on CL is redistributed (shared) over CL and CA leading to static power consumption by downstream gates and possible circuit malfunction.

When DVout = - VDD (Ca / (Ca + CL )) the drop in Vout is large enough to be below the switching threshold of the gate it drives causing a malfunction.

Page 15: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .17 © Θεοχαρίδης, ΗΜΥ, 2018

Charge Sharing ExampleWhat is the worst case voltage drop on y? (Assume all inputs are low during precharge and that all internal nodes are initially at 0V.)

Cy=50fF

CLK

CLK

A !A

B !B B !B

C!C

y = A Å B Å C

Ca=15fF

Cc=15fF

Cb=15fF

Cd=10fF

Loadinverter

a

b

dc

DVout = - VDD ((Ca + Cc)/((Ca + Cc) + Cy))

= - 2.5V*(30/(30+50)) = -0.94V

Page 16: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .18 © Θεοχαρίδης, ΗΜΥ, 2018

Solution to Charge Redistribution

CLK

CLK

Me

Mp

A

B

OutMkp

CLK

Precharge internal nodes using a clock-driven transistor (at the cost of increased area and power)

Page 17: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .19 © Θεοχαρίδης, ΗΜΥ, 2018

Issues in Dynamic Design 3: Backgate Coupling

CL1

CLK

CLK

B=0

A=0

Out1Mp

Me

Out2

CL2

In

Dynamic NAND Static NAND

=1=0

q Susceptible to crosstalk due to 1) high impedance of the output node and 2) capacitive coupling

● Out2 capacitively couples with Out1 through the gate-source and gate-drain capacitances of M4

M1

M2M3

M4

M5M6

Page 18: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .20 © Θεοχαρίδης, ΗΜΥ, 2018

Backgate Coupling Effect

-1

0

1

2

3

0 2 4 6

Volta

ge

Time, ns

CLK

In

Out1

Out2

q Capacitive coupling means Out1 drops significantly so Out2 doesn’t go all the way to ground

Page 19: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .21 © Θεοχαρίδης, ΗΜΥ, 2018

Issues in Dynamic Design 4: Clock Feedthrough

CL

CLK

CLK

B

AOut

Mp

Me

Coupling between Out and CLK input of the precharge device due to the gate-drain capacitance. So voltage of Out can rise above VDD. The fast rising (and falling edges) of the clock couple to Out.

q A special case of capacitive coupling between the clock input of the precharge transistor and the dynamic output node

Page 20: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .22 © Θεοχαρίδης, ΗΜΥ, 2018

Clock Feedthrough

-0.5

0.5

1.5

2.5

0 0.5 1

CLK

CLK

In1

In2

In3

In4

Out

In &CLK

Out

Time, ns

Volta

ge

Clock feedthrough

Clock feedthrough

Page 21: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .23 © Θεοχαρίδης, ΗΜΥ, 2018

Cascading Dynamic Gates

CLK

CLK

Out1In

Mp

Me

Mp

Me

CLK

CLK

Out2

V

t

CLK

In

Out1

Out2 DV

VTn

Only a single 0 ® 1 transition allowed at the inputs during the evaluation period!

Page 22: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .24 © Θεοχαρίδης, ΗΜΥ, 2018

Domino Logic

In1

In2 PDNIn3

Me

Mp

CLK

CLK Out1

In4 PDNIn5

Me

Mp

CLK

CLKOut2

Mkp

1 ® 11 ® 0

0 ® 00 ® 1

Page 23: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .25 © Θεοχαρίδης, ΗΜΥ, 2018

Why Domino?

In1

CLK

CLK

Ini PDNInj

IniInj

PDN Ini PDNInj

Ini PDNInj

Like falling dominos!

Page 24: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .27 © Θεοχαρίδης, ΗΜΥ, 2018

Domino Manchester Carry Chain

Ci,0 G0

CLK

CLKP0 P1 P2 P3

G1 G2 G3

Ci,41234

5

6

3 3 3 3 3

1

2

2

3

3

4

4

5

!(G0 + P0 Ci,0) !(G1 + P1G0 + P1P0 Ci,0)

Page 25: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .29 © Θεοχαρίδης, ΗΜΥ, 2018

CLKA3

B3

A2

B2

A1

B1

A0

B0

Out

Domino Comparator

Page 26: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .30 © Θεοχαρίδης, ΗΜΥ, 2018

Properties of Domino Logic

l Only non-inverting logic can be implemented, fixes include¤ can reorganize the logic using Boolean transformations¤ use differential logic (dual rail)¤ use np-CMOS (zipper)

l Very high speed¤ tpHL = 0¤ static inverter can be optimized to match fan-out (separation of

fan-in and fan-out capacitances)

Page 27: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .31 © Θεοχαρίδης, ΗΜΥ, 2018

Differential (Dual Rail) Domino

A

B

Me

Mp

CLK

CLK!Out = !(AB)

!A !B

MkpCLK

Out = AB

Mkp Mp

Due to its high-performance, differential domino is very popular and is used in several commercial

microprocessors!

1 0 1 0

onoff

Page 28: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .32 © Θεοχαρίδης, ΗΜΥ, 2018

np-CMOS (Zipper)

In1

In2 PDNIn3

Me

Mp

CLK

CLK Out1

In4 PUNIn5

Me

Mp!CLK

!CLK

Out2(to PDN)

1 ® 11 ® 0

0 ® 00 ® 1

Only 0 ® 1 transitions allowed at inputs of PDN Only 1 ® 0 transitions allowed at inputs of PUN

to otherPDN’s

to otherPUN’s

Page 29: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .33 © Θεοχαρίδης, ΗΜΥ, 2018

np-CMOS Adder Circuit

B0 C0

C0

C0

!C1

!Sum0B0A0

A0

B0B0 A0

A0

CLK

CLK !CLK

!CLK

C2

Sum1!A1

!A1

!B1!B1!A1!A1!B1

!B1

!C1

!C1

!CLK

!CLK CLK

CLK

1 ® x

0 ® x

0 ® x

1 ® x

0 ® x

0 ® x

1 ® x

1 ® x

Page 30: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .35 © Θεοχαρίδης, ΗΜΥ, 2018

DCVS Logic

In1

In2PDN1

Out

!In1

!In2

PDN2

!Out

PDN1 and PDN2 are mutually exclusive

1 0® 0 on off

off® on on® off

® on® off ® 1

Differential Cascade Voltage Switch Logic

Page 31: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .36 © Θεοχαρίδης, ΗΜΥ, 2018

DCVSL Example

Out!Out

B

A !A

B!B!B

Page 32: ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ... 11-ECE 307… · ¤ consumes only dynamic power –no short circuit power ... ¤ use differential logic (dual rail) ¤ use np-CMOS

ΗΜΥ307 Δ11 Dynamic CMOS Circuits .37 © Θεοχαρίδης, ΗΜΥ, 2018

How to Choose a Logic Stylel Must consider ease of design, robustness (noise immunity),

area, speed, power, system clocking requirements, fan-out, functionality, ease of testing

Style # Trans Ease Ratioed? Delay PowerComp Static 8 1 no 3 1

CPL* 12 + 2 2 no 4 3

domino 6 + 2 4 no 2 2 + clk

DCVSL* 10 3 yes 1 4

4-input NAND

* Dual Rail

q Current trend is towards an increased use of

complementary static CMOS: design support through DA

tools, robust, more amenable to voltage scaling.