UQ for high dimensional problems - SINTEF · UQ for high dimensional problems with a view towards...

Post on 14-Jun-2020

3 views 0 download

Transcript of UQ for high dimensional problems - SINTEF · UQ for high dimensional problems with a view towards...

UQ for high dimensional problems

with a view towards hyperbolic conservation laws

Kjetil Olsen Lye

ETH Zurich

Recap from last time

Convergence of Monte Carlo

E((E(X )− 1

M

M∑k=1

Xk)2)1/2 =Var(X )1/2

M1/2.

New notation for today:

‖f ‖L2(Ω) := E(f 2)1/2 for f ∈ L2(Ω).

∥∥∥∥∥E(X )− 1

M

M∑k=1

Xk

∥∥∥∥∥L2(Ω)

=Var(X )1/2

M1/2

1

Convergence of Monte Carlo

E((E(X )− 1

M

M∑k=1

Xk)2)1/2 =Var(X )1/2

M1/2.

New notation for today:

‖f ‖L2(Ω) := E(f 2)1/2 for f ∈ L2(Ω).

∥∥∥∥∥E(X )− 1

M

M∑k=1

Xk

∥∥∥∥∥L2(Ω)

=Var(X )1/2

M1/2

1

Convergence of Monte Carlo

E((E(X )− 1

M

M∑k=1

Xk)2)1/2 =Var(X )1/2

M1/2.

New notation for today:

‖f ‖L2(Ω) := E(f 2)1/2 for f ∈ L2(Ω).

∥∥∥∥∥E(X )− 1

M

M∑k=1

Xk

∥∥∥∥∥L2(Ω)

=Var(X )1/2

M1/2

1

Model problem

d

dtu(ω; t) = F (u(ω; t))

u(ω; 0) = u0(ω)

u10 , . . . , u

M0 i.i.d. samples of u0.

Let u∆t,Tk (ω) = F∆t,T (uk0 ), where F is some numerical scheme

Approximate:

E(u(·;T )) ≈ 1

M

M∑k=1

u∆t,Tk (ω)

2

Model problem

d

dtu(ω; t) = F (u(ω; t))

u(ω; 0) = u0(ω)

u10 , . . . , u

M0 i.i.d. samples of u0.

Let u∆t,Tk (ω) = F∆t,T (uk0 ), where F is some numerical scheme

Approximate:

E(u(·;T )) ≈ 1

M

M∑k=1

u∆t,Tk (ω)

2

Model problem

d

dtu(ω; t) = F (u(ω; t))

u(ω; 0) = u0(ω)

u10 , . . . , u

M0 i.i.d. samples of u0.

Let u∆t,Tk (ω) = F∆t,T (uk0 ), where F is some numerical scheme

Approximate:

E(u(·;T )) ≈ 1

M

M∑k=1

u∆t,Tk (ω)

2

Model problem

d

dtu(ω; t) = F (u(ω; t))

u(ω; 0) = u0(ω)

u10 , . . . , u

M0 i.i.d. samples of u0.

Let u∆t,Tk (ω) = F∆t,T (uk0 ), where F is some numerical scheme

Approximate:

E(u(·;T )) ≈ 1

M

M∑k=1

u∆t,Tk (ω)

2

Error estimation

Error estimation

Triangle inequality

∥∥∥∥∥E(u(·;T ))− 1

M

M∑k=1

u∆t,Tk

∥∥∥∥∥L2(Ω)

6

=:ε1︷ ︸︸ ︷∥∥∥E(u(·;T ))− E(u∆t,Tk

)∥∥∥L2(Ω)

+

∥∥∥∥∥E(u∆t,Tk )− 1

M

M∑k=1

u∆t,Tk

∥∥∥∥∥L2(Ω)︸ ︷︷ ︸

=:ε2

3

Error estimation

Triangle inequality

∥∥∥∥∥E(u(·;T ))− 1

M

M∑k=1

u∆t,Tk

∥∥∥∥∥L2(Ω)

6

=:ε1︷ ︸︸ ︷∥∥∥E(u(·;T ))− E(u∆t,Tk

)∥∥∥L2(Ω)

+

∥∥∥∥∥E(u∆t,Tk )− 1

M

M∑k=1

u∆t,Tk

∥∥∥∥∥L2(Ω)︸ ︷︷ ︸

=:ε2

Assume∗ |u(ω;T )− u∆t,Tk (ω)| 6 C∆ts for all ω, then:

ε1 =∥∥∥E(u(·;T )− u∆t,T

k (·))∥∥∥

L2(Ω)6 ‖u(·;T )− u∆t,T

k ‖L2(Ω) 6 C∆ts .

∗Can be replaced by L2 assumption, can be shown for a large class of

schemes/ODEs/RFs

3

Error estimation

Triangle inequality

∥∥∥∥∥E(u(·;T ))− 1

M

M∑k=1

u∆t,Tk

∥∥∥∥∥L2(Ω)

6

=:ε16C∆ts︷ ︸︸ ︷∥∥∥E(u(·;T ))− E(u∆t,Tk

)∥∥∥L2(Ω)

+

∥∥∥∥∥E(u∆t,Tk )− 1

M

M∑k=1

u∆t,Tk

∥∥∥∥∥L2(Ω)︸ ︷︷ ︸

=:ε2

Assume∗ |u(ω;T )− u∆t,Tk (ω)| 6 C∆ts for all ω, then:

ε1 =∥∥∥E(u(·;T )− u∆t,T

k (·))∥∥∥

L2(Ω)6 ‖u(·;T )− u∆t,T

k ‖L2(Ω) 6 C∆ts .

∗Can be replaced by L2 assumption, can be shown for a large class of

schemes/ODEs/RFs

3

Error estimation

Triangle inequality

∥∥∥∥∥E(u(·;T ))− 1

M

M∑k=1

u∆t,Tk

∥∥∥∥∥L2(Ω)

6

=:ε16C∆ts︷ ︸︸ ︷∥∥∥E(u(·;T ))− E(u∆t,Tk

)∥∥∥L2(Ω)

+

∥∥∥∥∥E(u∆t,Tk )− 1

M

M∑k=1

u∆t,Tk

∥∥∥∥∥L2(Ω)︸ ︷︷ ︸

=:ε26Var(u∆t,T ))1/2

M1/2

ε2 6Var(u∆t,T )1/2

M1/2.

3

Error estimation

Triangle inequality

∥∥∥∥∥E(u(·;T ))− 1

M

M∑k=1

u∆t,Tk

∥∥∥∥∥L2(Ω)

6

=:ε16C∆ts︷ ︸︸ ︷∥∥∥E(u(·;T ))− E(u∆t,Tk

)∥∥∥L2(Ω)

+

∥∥∥∥∥E(u∆t,Tk )− 1

M

M∑k=1

u∆t,Tk

∥∥∥∥∥L2(Ω)︸ ︷︷ ︸

=:ε26Var(u∆t,T ))1/2

M1/2

Hence,∥∥∥∥∥E(u(·;T ))− 1

M

M∑k=1

u∆t,Tk

∥∥∥∥∥L2(Ω)

6 C∆ts +Var(u∆t,T )1/2

M1/2.

3

Equilibrating the error

∥∥∥∥∥E(u(·;T ))− 1

M

M∑k=1

u∆t,Tk

∥∥∥∥∥L2(Ω)

6 C∆ts +Var(u∆t,T )1/2

M1/2.

Want

C∆ts ≈ Var(u∆t,T )1/2

M1/2.

So choose

M = O(∆t−2s).

4

Equilibrating the error

∥∥∥∥∥E(u(·;T ))− 1

M

M∑k=1

u∆t,Tk

∥∥∥∥∥L2(Ω)

6 C∆ts +Var(u∆t,T )1/2

M1/2.

Want

C∆ts ≈ Var(u∆t,T )1/2

M1/2.

So choose

M = O(∆t−2s).

4

Multilevel Monte Carlo

Multilevel telescoping sum

Numerical approximation u∆

5

Multilevel telescoping sum

t0 t1 t2 t3 t4 t5 t6 t7 t8

t0 t1 t2 t3 t4

t0 t1 t2

Numerical approximation u∆

5

Multilevel telescoping sum

t0 t1 t2 t3 t4 t5 t6 t7 t8

u∆2 ` = 1

t0 t1 t2 t3 t4

u∆1 ` = 1

t0 t1 t2

u∆0 ` = 0

Numerical approximation u∆

5

Multilevel telescoping sum

t0 t1 t2 t3 t4 t5 t6 t7 t8

u∆2 ` = 1

t0 t1 t2 t3 t4

u∆1 ` = 1

t0 t1 t2

u∆0 ` = 0

Numerical approximation u∆

u∆1 = (u∆1 − u∆0 ) + u∆0

5

Multilevel telescoping sum

t0 t1 t2 t3 t4 t5 t6 t7 t8

u∆2 ` = 1

t0 t1 t2 t3 t4

u∆1 ` = 1

t0 t1 t2

u∆0 ` = 0

Numerical approximation u∆

u∆1 = (u∆1 − u∆0 ) + u∆0

Similarly,

u∆2 = (u∆2 − u∆1 )

+ (u∆1 − u∆0 ) + u∆0

5

Multilevel telescoping sum

t0 t1 t2 t3 t4 t5 t6 t7 t8

u∆2 ` = 1

t0 t1 t2 t3 t4

u∆1 ` = 1

t0 t1 t2

u∆0 ` = 0

Numerical approximation u∆

u∆1 = (u∆1 − u∆0 ) + u∆0

Similarly,

u∆2 = (u∆2 − u∆1 )

+ (u∆1 − u∆0 ) + u∆0

In general,

u∆L =L∑

l=1

(u∆`−u∆`−1 )+u∆0

5

Multilevel Monte Carlo [Giles, 2008; Heinrich 2001]

t0 t1 t2 t3 t4 t5 t6 t7 t8

u∆2 ` = 2

t0 t1 t2 t3 t4

u∆1 ` = 1

t0 t1 t2

u∆0 ` = 0

Random variable u∆(ω)

6

Multilevel Monte Carlo [Giles, 2008; Heinrich 2001]

t0 t1 t2 t3 t4 t5 t6 t7 t8

u∆2 ` = 2

t0 t1 t2 t3 t4

u∆1 ` = 1

t0 t1 t2

u∆0 ` = 0

Random variable u∆(ω)

E(u∆1 ) = E(u∆1−u∆0 )+E(u∆0 )

6

Multilevel Monte Carlo [Giles, 2008; Heinrich 2001]

t0 t1 t2 t3 t4 t5 t6 t7 t8

u∆2 ` = 2

t0 t1 t2 t3 t4

u∆1 ` = 1

t0 t1 t2

u∆0 ` = 0

Random variable u∆(ω)

E(u∆1 ) = E(u∆1−u∆0 )+E(u∆0 )

Similarly,

E(u∆2 ) = E(u∆2 − u∆1 )

+ E(u∆1 − u∆0 ) + E(u∆0 )

6

Multilevel Monte Carlo [Giles, 2008; Heinrich 2001]

t0 t1 t2 t3 t4 t5 t6 t7 t8

u∆2 ` = 2

t0 t1 t2 t3 t4

u∆1 ` = 1

t0 t1 t2

u∆0 ` = 0

Random variable u∆(ω)

E(u∆1 ) = E(u∆1−u∆0 )+E(u∆0 )

Similarly,

E(u∆2 ) = E(u∆2 − u∆1 )

+ E(u∆1 − u∆0 ) + E(u∆0 )

In general,

E(u∆L) =L∑

l=1

E(u∆`−u∆`−1 )+E(u∆0 )

6

Variance reduction

E(u∆1 ) = E(u∆1 − u∆0 ) + E(u∆0 )

7

Variance reduction

E(u∆1 ) = E(u∆1 − u∆0 ) + E(u∆0 )

≈ 1

M1

M1∑k=1

(u∆1

k − u∆0

k

)︸ ︷︷ ︸

≈E(u∆1−u∆0 )

+1

M0

M0∑k=1

u∆0

k︸ ︷︷ ︸≈E(u∆0 )

7

Variance reduction

E(u∆1 ) = E(u∆1 − u∆0 ) + E(u∆0 )

≈ 1

M1

M1∑k=1

(u∆1

k − u∆0

k

)︸ ︷︷ ︸

≈E(u∆1−u∆0 )

+1

M0

M0∑k=1

u∆0

k︸ ︷︷ ︸≈E(u∆0 )

=: E2(u)

Error

‖E2(u)− E(u)‖L2(Ω) 6 ‖E(u)− E(u∆1 )‖L2(Ω) +∥∥E2(u)− E(u∆1 )

∥∥L2(Ω)

.

7

Error analysis continued

So

∥∥E2(u)− E(u∆1 )∥∥L2(Ω)

6

∥∥∥∥∥ 1

M1

M1∑k=1

(u∆1

k − u∆0

k

)− E(u∆1 − u∆0 )

∥∥∥∥∥L2(Ω)

+

∥∥∥∥∥E(u∆0 )− 1

M0

M0∑k=1

u∆0

k

∥∥∥∥∥L2(Ω)

8

Error analysis continued

So

∥∥E2(u)− E(u∆1 )∥∥L2(Ω)

6

∥∥∥∥∥ 1

M1

M1∑k=1

(u∆1

k − u∆0

k

)− E(u∆1 − u∆0 )

∥∥∥∥∥L2(Ω)

+

∥∥∥∥∥E(u∆0 )− 1

M0

M0∑k=1

u∆0

k

∥∥∥∥∥L2(Ω)

6Var(u∆1 − u∆0 )1/2

M1/21

+Var(u∆0 )1/2

M1/20

8

Choosing the number of samples

Assume:

• Convergence

|u∆1 (ω)− u(ω)| 6 C∆s for all ω ∈ Ω

• Mesh refinement

∆` = 2`∆0 for all ` > 0.

• Computational work per sample:

Work(∆) = O(∆−1).

then:

Var(u∆1 − u∆0 ) 6 C∆2s0

hence ∥∥E2(u)− E(u∆1 )∥∥L2(Ω)

6C∆s

0

M1/21

+Var(u∆0 )1/2

M1/20

9

Choosing the number of samples

Assume:

• Convergence

|u∆1 (ω)− u(ω)| 6 C∆s for all ω ∈ Ω

• Mesh refinement

∆` = 2`∆0 for all ` > 0.

• Computational work per sample:

Work(∆) = O(∆−1).

then:

Var(u∆1 − u∆0 ) 6 C∆2s0

hence ∥∥E2(u)− E(u∆1 )∥∥L2(Ω)

6C∆s

0

M1/21

+Var(u∆0 )1/2

M1/20

9

Choosing the number of samples

Assume:

• Convergence

|u∆1 (ω)− u(ω)| 6 C∆s for all ω ∈ Ω

• Mesh refinement

∆` = 2`∆0 for all ` > 0.

• Computational work per sample:

Work(∆) = O(∆−1).

then:

Var(u∆1 − u∆0 ) 6 C∆2s0

hence ∥∥E2(u)− E(u∆1 )∥∥L2(Ω)

6C∆s

0

M1/21

+Var(u∆0 )1/2

M1/20

9

Choosing the number of samples: Part II

∥∥E2(u)− E(u∆1 )∥∥L2(Ω)

6C∆s

0

M1/21

+Var(u∆0 )1/2

M1/20

equilibrate the error

C∆s0

M1/21

≈ Var(u∆0 )1/2

M1/20

≈ C 2s∆2s0

That is

M1 = 4

and

M0 =4

∆2s1

.

10

Choosing the number of samples: Part II

∥∥E2(u)− E(u∆1 )∥∥L2(Ω)

6C∆s

0

M1/21

+Var(u∆0 )1/2

M1/20

equilibrate the error

C∆s0

M1/21

≈ Var(u∆0 )1/2

M1/20

≈ C 2s∆2s0

That is

M1 = 4

and

M0 =4

∆2s1

.

10

Work estimate for the new samples

Work(M0,M1) = M0Work(∆0) + M1Work(∆1)

= M0∆−10 + M1∆−1

1

=4

∆2s0

∆−10 + 4∆−1

1

= 4∆−1−2s0 + 8∆−1

0

Meanwhile, with Monte Carlo:

Work(M) =

=M︷ ︸︸ ︷∆−2s

1 ∆−11 = 22s+1∆−2s−1

0

for small ∆0:

Work(M0,M1) < Work(M).

11

Work estimate for the new samples

Work(M0,M1) = M0Work(∆0) + M1Work(∆1)

= M0∆−10 + M1∆−1

1

=4

∆2s0

∆−10 + 4∆−1

1

= 4∆−1−2s0 + 8∆−1

0

Meanwhile, with Monte Carlo:

Work(M) =

=M︷ ︸︸ ︷∆−2s

1 ∆−11 = 22s+1∆−2s−1

0

for small ∆0:

Work(M0,M1) < Work(M).

11

Work estimate for the new samples

Work(M0,M1) = M0Work(∆0) + M1Work(∆1)

= M0∆−10 + M1∆−1

1

=4

∆2s0

∆−10 + 4∆−1

1

= 4∆−1−2s0 + 8∆−1

0

Meanwhile, with Monte Carlo:

Work(M) =

=M︷ ︸︸ ︷∆−2s

1 ∆−11 = 22s+1∆−2s−1

0

for small ∆0:

Work(M0,M1) < Work(M).

11

Multilevel Monte Carlo [Giles, 2008; Heinrich 2001]

t0 t1 t2 t3 t4 t5 t6 t7 t8

u∆2 ` = 2

t0 t1 t2 t3 t4

u∆1 ` = 1

t0 t1 t2

u∆0 ` = 0

Random variable u∆(ω)

E(u∆L) ≈L∑

`=1

1

M`

M∑k=1

(u∆`

k − u∆`−1

k )

+1

M0

M∑k=1

u∆0

k

12