The Effective Thermoelectric Properties of Composite Materials · 2014. 3. 13. · 20 . 30 . 40 ....

Post on 13-Nov-2020

5 views 0 download

Transcript of The Effective Thermoelectric Properties of Composite Materials · 2014. 3. 13. · 20 . 30 . 40 ....

Multifunctional Materials Lab

The Effective Thermoelectric Properties of Composite Materials

Yang Yang and Jiangyu Li Department of Mechanical Engineering

University of Washington

3rd Thermoelectrics Applications Workshop 2012

Multifunctional Materials Lab

Thermoelectric Figure of Merit

Snyder and Toberer (2008)

phe

TZκκσα+

=2

HCCTE TTZT

ZT/111

++−+

=ηη

Multifunctional Materials Lab

Nanostructured Thermoelectrics

Li et al (2010)

Multifunctional Materials Lab

Intrisic Heterogeneity

Pichanusakorn and Prabhakar Bandaru (2010)

Multifunctional Materials Lab

Thermoelectric Composites

Can the effective thermoelectric figure of merit of a composite material be higher than all its constituents, excluding the effects of size and interface? and how can we take advantages of the size and interfacial effects of composite materials to further enhance their thermoelectric figure of merit?

Multifunctional Materials Lab

Effective Figure of Merit

Bergman et al (1991, 1999): The effective figure of merit of a composite can never exceed the largest value of figure of merit in any of its component, in the absence of size and interface effects.

Multifunctional Materials Lab

Current State of Art

Graeme Milton (2002): There is a lot of confusion, particularly in the composite materials community, as to appropriate form of the thermoelectric equations.

0

10

20

30

40

50

60

70

80

90

100

TE Composite

Homogenization

Multifunctional Materials Lab

Governing Equations

σ φ σα− = ∇ + ∇TJ2( )σα φ σα κ α κ= − ∇ − + ∇ = − ∇Q T T T T TJ J

φ= +U QJ J J

0∇⋅ =UJ0∇⋅ =J

φ∇ ⋅ = −∇ ⋅QJ J

Transport Equations

Field Equations

Multifunctional Materials Lab

Homogeneous Thermoelectric

2 2

2 σκ= −

d T Jdx

2 2

2

φ ασκ

=d Jdx

22

1 22JT x c x cσκ

= − + +

2 22

1 0 3[ ( ) ]2 2α αφ ασκ σκ σ

= − + + − +J J Jx T T x c

0 1 0 1( ) ( )ασ σ φ φ= − + −J T T

All the coefficients are assumed to be temperature independent

Multifunctional Materials Lab

One-dimensional Analysis

Bi2Te3

Multifunctional Materials Lab

Heterogeneous Thermoelectric

22

22

,02

, 12

σ κ

σ κ

− + + ≤ <= − + + < ≤

A AA A

B BB B

J x a x b x fT

J x a x b f x

22

22

( ) ,02

( ) , 12

α ασ κ σ

φα ασ κ σ

− + + ≤ <

= − + + < ≤

AA A A

A A A

BB B B

B B B

J Jx a x c x f

J Jx a x c f x

All the coefficients are assumed to be temperature independent

Multifunctional Materials Lab

One-dimensional Analysis

Bi2Te3-LAST

Multifunctional Materials Lab

Equivalency Principle

Under identical boundary conditions of temperature and electric potential, the composite and homogenized medium would have: (1) identical current density and (2) identical energy flux.

Yang et al (2012)

Multifunctional Materials Lab

Enhanced Effective Figure of Merit

Bi2Te3-LAST

Due to nonlinearity, the effective properties depend on boundary conditions

Multifunctional Materials Lab

Q 0 LT T>

Q

0T

LT LTlR

Q

p n

Conversion Efficiency Analysis

TE material

Q

Super conductor

0 LT T>

Q

0T

LT LTlR

Q κ α φ= − ∇ + +UJ T TJ J

0 0==∑U xE SJ

2

0

lL

I RHE

=

Multifunctional Materials Lab

Enhanced Conversion Efficiency

Z of constituent phases is fixed, but individual coefficients are allowed to vary

Multifunctional Materials Lab

Enhanced Conversion Efficiency

Snyder (2004) Bian and Shakouri (2006)

Multifunctional Materials Lab

Thermoelectric Composite

Multifunctional Materials Lab

One-dimensional Asymptotic Analysis

η

L

ξη

=x

ξ1

x

K

BK

AKx: slow or macroscopic variable

ξ: fast or microscopic variable

20 1 2( , ) ( , ) ( , ) ( , ) ...ξ ξ η ξ η ξ= + + +T x T x T x T x

20 1 2( , ) ( , ) ( , ) ( , ) ...φ ξ φ ξ ηφ ξ η φ ξ= + + +x x x x

Multifunctional Materials Lab

0( ) 0κξ ξ

∂∂=

∂ ∂T2η−

1η− 0 0 0φσ σαξ ξ

∂ ∂+ =

∂ ∂T

0 0 010( ) ( ) φκ α κ κ

ξ ξ ξ ξ∂ ∂ ∂∂∂ ∂

+ − + + =∂ ∂ ∂ ∂ ∂ ∂

T T TJT Jx x

0 01 1φ φσ σ σα σαξ ξ

∂ ∂∂ ∂− = + + +

∂ ∂ ∂ ∂T TJ

x x

0 1 1 20 1

0 1

( ) ( )

( )

α κ κ α κ κξ ξ ξ

φ φξ

∂ ∂ ∂ ∂∂ ∂− + + + − + +

∂ ∂ ∂ ∂ ∂ ∂∂ ∂

= +∂ ∂

T T T TJT JTx x x

Jx

Asymptotic Analysis

Multifunctional Materials Lab

Homogenized Equations

20 1 2( , ) ( , ) ( , ) ( , ) ...ξ ξ η ξ η ξ= + + +T x T x T x T x 2

0 1 2( , ) ( , ) ( , ) ( , ) ...φ ξ φ ξ ηφ ξ η φ ξ= + + +x x x x

2 22 2 20

02

1 1 1( ) 0α ακ κ κ σ κ

− < > − < >< > + < >< > =d T J T Jdx

22

2

1 0σκ

+ =d T Jdx

2 22 10 0

2

23 1 2 2

0

1( )

1 1( ) 0

φ α ακ κ κ

α α α ακ κ κ κ σ κ

+ < > − < > < >

− < >< > − < > < > − < >< > =

d dTJdx dx

J T J

22

2 0φ ασκ

− =d Jdx

Homogenized

Homogeneous

Homogenized and homogeneous materials satisfy different type of governing equations!

Multifunctional Materials Lab

Homogenized Solution

Multifunctional Materials Lab

Concluding Remarks

Rigorous asymptotic analysis has been developed to predict the effective thermoelectric behaviors of composite materials, and preliminary results suggest that conversion efficiency higher than that of constituents is possible in composites