The Effective Thermoelectric Properties of Composite Materials · 2014. 3. 13. · 20 . 30 . 40 ....

23
Multifunctional Materials Lab The Effective Thermoelectric Properties of Composite Materials Yang Yang and Jiangyu Li Department of Mechanical Engineering University of Washington 3 rd Thermoelectrics Applications Workshop 2012

Transcript of The Effective Thermoelectric Properties of Composite Materials · 2014. 3. 13. · 20 . 30 . 40 ....

Page 1: The Effective Thermoelectric Properties of Composite Materials · 2014. 3. 13. · 20 . 30 . 40 . 50 . 60 . 70 . 80 . 90 . 100 . TE Composite Homogenization . Multifunctional Materials

Multifunctional Materials Lab

The Effective Thermoelectric Properties of Composite Materials

Yang Yang and Jiangyu Li Department of Mechanical Engineering

University of Washington

3rd Thermoelectrics Applications Workshop 2012

Page 2: The Effective Thermoelectric Properties of Composite Materials · 2014. 3. 13. · 20 . 30 . 40 . 50 . 60 . 70 . 80 . 90 . 100 . TE Composite Homogenization . Multifunctional Materials

Multifunctional Materials Lab

Thermoelectric Figure of Merit

Snyder and Toberer (2008)

phe

TZκκσα+

=2

HCCTE TTZT

ZT/111

++−+

=ηη

Page 3: The Effective Thermoelectric Properties of Composite Materials · 2014. 3. 13. · 20 . 30 . 40 . 50 . 60 . 70 . 80 . 90 . 100 . TE Composite Homogenization . Multifunctional Materials

Multifunctional Materials Lab

Nanostructured Thermoelectrics

Li et al (2010)

Page 4: The Effective Thermoelectric Properties of Composite Materials · 2014. 3. 13. · 20 . 30 . 40 . 50 . 60 . 70 . 80 . 90 . 100 . TE Composite Homogenization . Multifunctional Materials

Multifunctional Materials Lab

Intrisic Heterogeneity

Pichanusakorn and Prabhakar Bandaru (2010)

Page 5: The Effective Thermoelectric Properties of Composite Materials · 2014. 3. 13. · 20 . 30 . 40 . 50 . 60 . 70 . 80 . 90 . 100 . TE Composite Homogenization . Multifunctional Materials

Multifunctional Materials Lab

Thermoelectric Composites

Can the effective thermoelectric figure of merit of a composite material be higher than all its constituents, excluding the effects of size and interface? and how can we take advantages of the size and interfacial effects of composite materials to further enhance their thermoelectric figure of merit?

Page 6: The Effective Thermoelectric Properties of Composite Materials · 2014. 3. 13. · 20 . 30 . 40 . 50 . 60 . 70 . 80 . 90 . 100 . TE Composite Homogenization . Multifunctional Materials

Multifunctional Materials Lab

Effective Figure of Merit

Bergman et al (1991, 1999): The effective figure of merit of a composite can never exceed the largest value of figure of merit in any of its component, in the absence of size and interface effects.

Page 7: The Effective Thermoelectric Properties of Composite Materials · 2014. 3. 13. · 20 . 30 . 40 . 50 . 60 . 70 . 80 . 90 . 100 . TE Composite Homogenization . Multifunctional Materials

Multifunctional Materials Lab

Current State of Art

Graeme Milton (2002): There is a lot of confusion, particularly in the composite materials community, as to appropriate form of the thermoelectric equations.

0

10

20

30

40

50

60

70

80

90

100

TE Composite

Homogenization

Page 8: The Effective Thermoelectric Properties of Composite Materials · 2014. 3. 13. · 20 . 30 . 40 . 50 . 60 . 70 . 80 . 90 . 100 . TE Composite Homogenization . Multifunctional Materials

Multifunctional Materials Lab

Governing Equations

σ φ σα− = ∇ + ∇TJ2( )σα φ σα κ α κ= − ∇ − + ∇ = − ∇Q T T T T TJ J

φ= +U QJ J J

0∇⋅ =UJ0∇⋅ =J

φ∇ ⋅ = −∇ ⋅QJ J

Transport Equations

Field Equations

Page 9: The Effective Thermoelectric Properties of Composite Materials · 2014. 3. 13. · 20 . 30 . 40 . 50 . 60 . 70 . 80 . 90 . 100 . TE Composite Homogenization . Multifunctional Materials

Multifunctional Materials Lab

Homogeneous Thermoelectric

2 2

2 σκ= −

d T Jdx

2 2

2

φ ασκ

=d Jdx

22

1 22JT x c x cσκ

= − + +

2 22

1 0 3[ ( ) ]2 2α αφ ασκ σκ σ

= − + + − +J J Jx T T x c

0 1 0 1( ) ( )ασ σ φ φ= − + −J T T

All the coefficients are assumed to be temperature independent

Page 10: The Effective Thermoelectric Properties of Composite Materials · 2014. 3. 13. · 20 . 30 . 40 . 50 . 60 . 70 . 80 . 90 . 100 . TE Composite Homogenization . Multifunctional Materials

Multifunctional Materials Lab

One-dimensional Analysis

Bi2Te3

Page 11: The Effective Thermoelectric Properties of Composite Materials · 2014. 3. 13. · 20 . 30 . 40 . 50 . 60 . 70 . 80 . 90 . 100 . TE Composite Homogenization . Multifunctional Materials

Multifunctional Materials Lab

Heterogeneous Thermoelectric

22

22

,02

, 12

σ κ

σ κ

− + + ≤ <= − + + < ≤

A AA A

B BB B

J x a x b x fT

J x a x b f x

22

22

( ) ,02

( ) , 12

α ασ κ σ

φα ασ κ σ

− + + ≤ <

= − + + < ≤

AA A A

A A A

BB B B

B B B

J Jx a x c x f

J Jx a x c f x

All the coefficients are assumed to be temperature independent

Page 12: The Effective Thermoelectric Properties of Composite Materials · 2014. 3. 13. · 20 . 30 . 40 . 50 . 60 . 70 . 80 . 90 . 100 . TE Composite Homogenization . Multifunctional Materials

Multifunctional Materials Lab

One-dimensional Analysis

Bi2Te3-LAST

Page 13: The Effective Thermoelectric Properties of Composite Materials · 2014. 3. 13. · 20 . 30 . 40 . 50 . 60 . 70 . 80 . 90 . 100 . TE Composite Homogenization . Multifunctional Materials

Multifunctional Materials Lab

Equivalency Principle

Under identical boundary conditions of temperature and electric potential, the composite and homogenized medium would have: (1) identical current density and (2) identical energy flux.

Yang et al (2012)

Page 14: The Effective Thermoelectric Properties of Composite Materials · 2014. 3. 13. · 20 . 30 . 40 . 50 . 60 . 70 . 80 . 90 . 100 . TE Composite Homogenization . Multifunctional Materials

Multifunctional Materials Lab

Enhanced Effective Figure of Merit

Bi2Te3-LAST

Due to nonlinearity, the effective properties depend on boundary conditions

Page 15: The Effective Thermoelectric Properties of Composite Materials · 2014. 3. 13. · 20 . 30 . 40 . 50 . 60 . 70 . 80 . 90 . 100 . TE Composite Homogenization . Multifunctional Materials

Multifunctional Materials Lab

Q 0 LT T>

Q

0T

LT LTlR

Q

p n

Conversion Efficiency Analysis

TE material

Q

Super conductor

0 LT T>

Q

0T

LT LTlR

Q κ α φ= − ∇ + +UJ T TJ J

0 0==∑U xE SJ

2

0

lL

I RHE

=

Page 16: The Effective Thermoelectric Properties of Composite Materials · 2014. 3. 13. · 20 . 30 . 40 . 50 . 60 . 70 . 80 . 90 . 100 . TE Composite Homogenization . Multifunctional Materials

Multifunctional Materials Lab

Enhanced Conversion Efficiency

Z of constituent phases is fixed, but individual coefficients are allowed to vary

Page 17: The Effective Thermoelectric Properties of Composite Materials · 2014. 3. 13. · 20 . 30 . 40 . 50 . 60 . 70 . 80 . 90 . 100 . TE Composite Homogenization . Multifunctional Materials

Multifunctional Materials Lab

Enhanced Conversion Efficiency

Snyder (2004) Bian and Shakouri (2006)

Page 18: The Effective Thermoelectric Properties of Composite Materials · 2014. 3. 13. · 20 . 30 . 40 . 50 . 60 . 70 . 80 . 90 . 100 . TE Composite Homogenization . Multifunctional Materials

Multifunctional Materials Lab

Thermoelectric Composite

Page 19: The Effective Thermoelectric Properties of Composite Materials · 2014. 3. 13. · 20 . 30 . 40 . 50 . 60 . 70 . 80 . 90 . 100 . TE Composite Homogenization . Multifunctional Materials

Multifunctional Materials Lab

One-dimensional Asymptotic Analysis

η

L

ξη

=x

ξ1

x

K

BK

AKx: slow or macroscopic variable

ξ: fast or microscopic variable

20 1 2( , ) ( , ) ( , ) ( , ) ...ξ ξ η ξ η ξ= + + +T x T x T x T x

20 1 2( , ) ( , ) ( , ) ( , ) ...φ ξ φ ξ ηφ ξ η φ ξ= + + +x x x x

Page 20: The Effective Thermoelectric Properties of Composite Materials · 2014. 3. 13. · 20 . 30 . 40 . 50 . 60 . 70 . 80 . 90 . 100 . TE Composite Homogenization . Multifunctional Materials

Multifunctional Materials Lab

0( ) 0κξ ξ

∂∂=

∂ ∂T2η−

1η− 0 0 0φσ σαξ ξ

∂ ∂+ =

∂ ∂T

0 0 010( ) ( ) φκ α κ κ

ξ ξ ξ ξ∂ ∂ ∂∂∂ ∂

+ − + + =∂ ∂ ∂ ∂ ∂ ∂

T T TJT Jx x

0 01 1φ φσ σ σα σαξ ξ

∂ ∂∂ ∂− = + + +

∂ ∂ ∂ ∂T TJ

x x

0 1 1 20 1

0 1

( ) ( )

( )

α κ κ α κ κξ ξ ξ

φ φξ

∂ ∂ ∂ ∂∂ ∂− + + + − + +

∂ ∂ ∂ ∂ ∂ ∂∂ ∂

= +∂ ∂

T T T TJT JTx x x

Jx

Asymptotic Analysis

Page 21: The Effective Thermoelectric Properties of Composite Materials · 2014. 3. 13. · 20 . 30 . 40 . 50 . 60 . 70 . 80 . 90 . 100 . TE Composite Homogenization . Multifunctional Materials

Multifunctional Materials Lab

Homogenized Equations

20 1 2( , ) ( , ) ( , ) ( , ) ...ξ ξ η ξ η ξ= + + +T x T x T x T x 2

0 1 2( , ) ( , ) ( , ) ( , ) ...φ ξ φ ξ ηφ ξ η φ ξ= + + +x x x x

2 22 2 20

02

1 1 1( ) 0α ακ κ κ σ κ

− < > − < >< > + < >< > =d T J T Jdx

22

2

1 0σκ

+ =d T Jdx

2 22 10 0

2

23 1 2 2

0

1( )

1 1( ) 0

φ α ακ κ κ

α α α ακ κ κ κ σ κ

+ < > − < > < >

− < >< > − < > < > − < >< > =

d dTJdx dx

J T J

22

2 0φ ασκ

− =d Jdx

Homogenized

Homogeneous

Homogenized and homogeneous materials satisfy different type of governing equations!

Page 22: The Effective Thermoelectric Properties of Composite Materials · 2014. 3. 13. · 20 . 30 . 40 . 50 . 60 . 70 . 80 . 90 . 100 . TE Composite Homogenization . Multifunctional Materials

Multifunctional Materials Lab

Homogenized Solution

Page 23: The Effective Thermoelectric Properties of Composite Materials · 2014. 3. 13. · 20 . 30 . 40 . 50 . 60 . 70 . 80 . 90 . 100 . TE Composite Homogenization . Multifunctional Materials

Multifunctional Materials Lab

Concluding Remarks

Rigorous asymptotic analysis has been developed to predict the effective thermoelectric behaviors of composite materials, and preliminary results suggest that conversion efficiency higher than that of constituents is possible in composites