SG2 SuperCable Talk (Final)

Post on 22-Nov-2021

5 views 0 download

Transcript of SG2 SuperCable Talk (Final)

The SuperCable:Dual Delivery of Chemical and Electric Power

Paul M. GrantEPRI Science Fellow (retired)

IBM Research Staff Member EmeritusPrincipal, W2AGZ Technologies

w2agz@pacbell.netwww.w2agz.com

2004 SuperGrid 225 - 27 October 2004, Urbana, Il

Technical Plenary Session – Levis Faculty Center -- UIUCMonday, 25 October 2004, 9:30 AM

The Discoveries

Leiden, 1914

Onset TC = 40 K !

La-Ba-Cu-O

Onset TC = 40 K !

La-Ba-Cu-O

Zürich, 1986

+ +

+ +•e-

+ +

+ +•e-

Superconductivity 101Cooper Problem

2∆

single particles

pairs

eikr1

e-ikr2

H(k) + H(-k) + V(k)

V(k) = -V0 0 k f dk eik(r1 - r2)

ψ(r1-r2) = φ(r1-r2)χ(s1,s2)

2∆ ∼ e-2/N(Ef)V0

Fermion-Boson Feynman Diagram

q

k1

k'1

k2

k'2

)/1exp( 14.1 λθ −= DCT

(Niobium) K 5.9,28.0

,K 275

=∴==

C

D

Tλθ

)/1exp( 14.1 λθ −= DCT

(Niobium) K 5.9,28.0

,K 275

=∴==

C

D

Tλθ

•-•eeee

GLAG

G d rm

i e A i e A a b[ ] [*

( * ) *( * ) * * *]φ φ φ φφ φφ φφ≈ − ∇ + ∇ + + +∫ 3 12

12

− ∇ − + − =

∇× ∇× + ∇ − ∇ + =

==

=

( ) ( )( ) ( )

(| | )( / )

/

* *

i f f fi f f f f f

a b fA

L

κ

φπξ

κ λ ξ

A

A A

A

2 2

2 12

2

12

0

1 00

The Flavors of Superconductivity

1/4π

HC1H

-M

Meissner

HC1

Normal

TCTemperature

Mag

netic

Fie

ld

λ < ξType I

Abrikosov Vortex Lattice

DipoleForceDipoleForce

H

The Flavors of Superconductivity

1/4π

HC1H

-M

Meissner

HC1

Normal

TCTemperature

Mag

netic

Fie

ld

HC2

HC2

Mixed

λ > ξType II

Abrikosov Vortex Lattice

DipoleForceDipoleForce

J

H

FF

The Flavors of Superconductivity

1/4π

HC1H

-M

Meissner

HC1

Normal

TCTemperature

Mag

netic

Fie

ld

HC2

HC2

Mixed

λ > ξType II

NOTPERFECT

CONDUCTOR!

Abrikosov Vortex Lattice

DipoleForceDipoleForce

J

H

FF

“Pinned”

IrreversibilityLineIrreversibilityLine

Meissner

HC1

Normal

TCTemperature

Mag

netic

Fie

ld

HC2

Mixed

The Flavors of Superconductivity

R = 0

R ≠ 0

Meissner

HC1

Normal

TCTemperature

Mag

netic

Fie

ld

HC2

Mixed

No More Ohm’s Law

Typical E vs J Power Law

0.0E+00

5.0E-06

1.0E-05

1.5E-05

2.0E-05

0 25000 50000 75000

J (A/cm^2)

E (V

/cm

)

E = aJn

n = 15

T = 77 KHTS Gen 1

E = 1 µV/cm

ac Hysteresis

1/4π

HC1H

-M

HC2

H

M

H

M

TC vs Year: 1991 - 2001

1900 1920 1940 1960 1980 20000

50

100

150

200Te

mpe

ratu

re, T

C (K

)

Year

Low-TC

Hig

h-T C

164 K

MgB2

Oxide Powder Mechanically Alloyed Precursor1. Powder

Preparation

HTSC Wire Can Be Made!

A. Extrusion

B. Wire DrawC. RollingDeformation

& Processing3.

Oxidation -Heat Treat

4.

Billet Packing& Sealing

2.

But it’s 70% silver!

Finished Cable

Reading Assignment1. Garwin and Matisoo, 1967 (100 GW on Nb3Sn)2. Bartlit, Edeskuty and Hammel, 1972 (LH2, LNG and

1 GW on LTSC)3. Haney and Hammond, 1977 (Slush LH2 and Nb3Ge)4. Schoenung, Hassenzahl and Grant, 1997 (5 GW on

HTSC, 1000 km)5. Grant, 2002 (SuperCity, Nukes+LH2+HTSC)6. Proceedings, SuperGrid Workshop, 2002

These articles, and much more, can be found at www.w2agz.com, sub-pages SuperGrid/Bibliography

1967: SC Cable Proposed!

100 GW dc, 1000 km !

“Hydricity” SuperCables

+v I-v

I

H2 H2

Circuit #1 +v I-v

I

H2 H2

Circuit #2

Multiple circuitscan be laid in single trench

HV Insulation

“Super-Insulation”

Flowing LiquidHydrogen

Superconductor“Conductor”

DO

DH

Al

Al “core” of diameter DCwound with

HTSC tape tsthick

HV Insulation

“Super-Insulation”

Flowing LiquidHydrogen

Superconductor“Conductor”

DO

DH

Al

Al “core” of diameter DCwound with

HTSC tape tsthick

SuperCable

Al

Al “core” of diameter DCwound with

HTSC tape tsthick

Al

Al “core” of diameter DCwound with

HTSC tape tsthick

Al

Al “core” of diameter DCwound with

HTSC tape tsthick

Al

Al “core” of diameter DCwound with

HTSC tape tsthick

Power FlowsPSC = 2|V|IASC, where

PSC = Electric power flowV = Voltage to neutral (ground)I = SupercurrentASC = Cross-sectional area of superconducting annulus

Electricity

PH2 = 2(QρvA)H2, where

PH2 = Chemical power flow Q = Gibbs H2 oxidation energy (2.46 eV per mol H2)ρ = H2 Density v = H2 Flow Rate A = Cross-sectional area of H2 cryotube

Hydrogen

HV Insulation

“Super-Insulation”

Flowing LiquidHydrogen

Superconductor“Conductor”

DO

DH

Al

Al “core” of diameter DCwound with

HTSC tape tsthick

HV Insulation

“Super-Insulation”

Flowing LiquidHydrogen

Superconductor“Conductor”

DO

DH

Al

Al “core” of diameter DCwound with

HTSC tape tsthick

Power Flows: 5 GWe/10 GWth

0.383.025,000100,0005,000

tS (cm)DC (cm)HTS JC(A/cm2)

Current (A)

Power (MWe)

Electrical Power Transmission (+/- 25 kV)

0.383.025,000100,0005,000

tS (cm)DC (cm)HTS JC(A/cm2)

Current (A)

Power (MWe)

Electrical Power Transmission (+/- 25 kV)

45.34.76405,000

DH-actual (cm)

H2 Flow (m/s)

DH-effective (cm)

Power (MWth)

Chemical Power Transmission (H2 at 20 K, per "pole")

45.34.76405,000

DH-actual (cm)

H2 Flow (m/s)

DH-effective (cm)

Power (MWth)

Chemical Power Transmission (H2 at 20 K, per "pole")

Radiation LossesWR = 0.5εσ (T4

amb – T4SC), where

WR = Power radiated in as watts/unit areaσ = 5.67×10-12 W/cm2K4

Tamb = 300 KTSC = 20 Kε = 0.05 per inner and outer tube surfaceDH = 45.3 cm

WR = 16.3 W/m

Superinsulation: WRf = WR/(n-1), where

n = number of layers = 10

Net Heat In-Leak Due to Radiation = 1.8 W/m

Fluid Friction LossesWloss = M Ploss / ρ ,

Where M = mass flow per unit lengthPloss = pressure loss per unit lengthρ = fluid density

2.0

∆P (atm/10 km)

3.24.7645.30.0152.08 x 106H (20K)

PowerLoss (W/m)

v (m/s) DH (cm)ε(mm)ReFluid

Heat RemovaldT/dx = WT/(ρvCPA)H2, where

dT/dx = Temp rise along cable, K/mWT = Thermal in-leak per unit Lengthρ = H2 Density v = H2 Flow RateCP = H2 Heat Capacity A = Cross-sectional area of H2 cryotube

K/10kmSuperCable Losses (W/M)

10-27113.21.8

dT/dxTotalConductiveac LossesFrictionRadiative

SuperCable H2 Storage

32201.6TVA Raccoon Mountain

20201Alabama CAES

881Scaled ETM SMES

Energy (GWh)Storage (hrs)Power (GW)

Some Storage Factoids

One Raccoon Mountain = 13,800 cubic meters of LH2

LH2 in 45 cm diameter, 12 mile bipolar SuperCable= Raccoon Mountain

Relative Density of H2 as a Function of Pressure at 77 K wrt LH2 at 1 atm

0

0.2

0.4

0.6

0.8

1

1.2

0 2000 4000 6000 8000 10000Pressure (psia)

Rho

(H2)

/Rho

(LH2

)

Vapor

Supercritical

50% LH2

100% LH2

H2 Gas at 77 K and 1850 psia has 50% of the energy content of liquid H2and 100% at 6800 psia

HV Insulation

“Super-Insulation”

FlowingHigh PressureHydrogen Gas

Superconductor“Conductor”

DO

DH

Al

Al “core” of diameter DCwound with

HTSC tape tsthick

Flowing liquid N2 cryogen in flexible tube, diameter DN

HV Insulation

“Super-Insulation”

FlowingHigh PressureHydrogen Gas

Superconductor“Conductor”

DO

DH

Al

Al “core” of diameter DCwound with

HTSC tape tsthick

Flowing liquid N2 cryogen in flexible tube, diameter DN

“Hybrid” SuperCable

Electrical Issues• Voltage – current tradeoffs

– “Cold” vs “Warm” Dielectric• AC interface (phases)

– Generate dc? Multipole, low rpm units (aka hydro)• Ripple suppression

– Filters• Cryogenics

– Pulse Tubes– “Cryobreaks”

• Mag Field Forces• Splices (R = 0?)• Charge/Discharge cycles (Faults!)• Power Electronics

– GTOs vs IGBTs– 12” wafer platforms– Cryo-Bipolars

Construction Issues• Pipe Lengths & Diameters (Transportation)• Coax vs RTD• Rigid vs Flexible?• On-Site Manufacturing

– Conductor winding (3-4 pipe lengths)– Vacuum: permanently sealed or actively pumped?

• Joints – Superconducting– Welds– Thermal Expansion (bellows)

Jumpstarting the SuperGrid• Do it with SuperCables• Focus on the next two decades• Get started with superconducting dc

cable interties & back-to-backs using existing ROWs

• As “hydrogen economy” expands, parallel/replace existing gas transmission lines with SuperCables

• Start digging

Electricity Generation - June 2004

Coal49%

Oil2%Hydro

7%

Nukes20%

Gas18%

Renewable2%

Al-Can Gas Pipeline

Proposals

Mackenzie Valley Pipeline

1300 km

18 GW-thermal

Electrical Insulation

“Super-Insulation”

Superconductor

LNG @ 105 K1 atm (14.7 psia)

Liquid Nitrogen @ 77 K

Thermal Barrier to LNG

LNG SuperCable

SuperCable Prototype Project

H2 e–

H2 Storage SMES

Cryo I/C Station

500 m Prototype

“Appropriate National Laboratory”2005-09

Regional System Interconnections