Schottky Barrier Heigh oriented process integration 2012

Post on 21-May-2015

311 views 4 download

description

Presented in internal seminar. Used in CMOS IC fabrication to explore next generation of ohmic contact process integration.

Transcript of Schottky Barrier Heigh oriented process integration 2012

Schottky barrier height oriented fabrication process integration

James M.M. Chu, PhDDepartment of Engineering Science

NCKU

Three transportation mechanisms for electrical carriers in MS interface

Types of electrical carrier transportation behaviors vs. dopant

Contact resistivity vs. Schottky barrier height along dopant density

Metal Silicide

N-Type Semiconductor

Metal Silicide

P-Type Semiconductor

N-type semiconductor ΦM > ΦS P-type semiconductor ΦM < ΦS

ΦBnelectron

Bn: SBH for n-MOS

Bp: SBH for p-MOS

EC

EF

EVhole

EC : Si conduction band

EF : Effective Si SBH

Ev : Si valence band

ΦBp

(a) (b)

Figure 2.4 Schottky barrier heights vs. carrier transport (a) nMOS, (b) pMOS [67]

Silicide

Source / Drain

electron

Silicide Si S/DInterface

hole

RCSD

WF Bn

RspreadRs

Bp

WF

(a) (b)

Figure 2.5 (a) Metal silicide as MS contact (b) resistive path of MS contact

Table 2.1 Characteristic of C54-TsSi2, CoSi2 and NiSi for CMOS application [50]

C54-TiSi2 CoSi2 NiSi

Formation Temperature (℃) 600-700 600-700 400-600

Thin film resistivity (μΩ-cm) 13-20 14-20 14-20

Schottky barrier height (n-Si, eV) 0.6 0.64 0.67

Dominant moving species Si Co Ni

Si consumption ratio 2.27 3.64 1.83

Silicide thickness ratio 2.51 3.52 2.34

Melting point (℃) 1500 1326 992

Eutectic point (℃) 1330 1204 964

Thermal stability temperature (℃) < 950 900 700

Epitaxy on Silicon No Yes No

Reduction of SiO2 Yes No No

Phase Thin film resistivity(μΩ-cm)

Melting ortransformation/melting (℃)

Ni 7~10 1455

Ni3Si 80~90 1035/1170

Ni31Si12 90~150 1242

Ni2Si 24~30 1255/1306

Ni3Si2 60~70 830/845

NiSi 10.5~18 992

NiSi2 34~50 981/993

Si Dopant Dependent 1414

Electrical and thermal characters of nickel silicide on different phases

(NixSiy)

Phase Thin film resistivity(μΩ-cm)

Melting ortransformation/melting (℃)

IrSi 500 1707

Ir3Si5 4000 1402

Pt2Si 14-16 1100PtSi 28-35 1229IrSi3 350-580 1260

DySi2-x 250-380 1550

ErSi2-x 30 1620

YbSi2-x 34 1425

Electrical and thermal characters of metal silicide alternatives

Parasitic resistance reductions engineering on NiSi contact silicide

Summary of impurity additive enhanced NiSi thermal stability

PAI for silicide zone definition

Experimental workfunction of metal silicide

Metal additives for silicide work function adjustments

Ideal situation of dopant allocations at silicide/silicon interface

Band edge engineering through dipole layer on (a) nMOS, (b) pMOS

Element ionization energy for Si

Summary of DS effects on silicide-silicon SBH adjustment

Silicide-Si contacts for parasitic resistance reduction

The overlap of options / optimization

Consideration of the impurity material selection

Schematic illustrations of the metal/semiconductor contact

Parasitic resistivity reductions through SBH modulation techniques

Ideal situations of impurity distribution in NiSi-interface-Si

Process technologies for CMOS contact silicide resistivity scaling

Summary

• SBH lowering dominate future scaling of transistor contact resistivity.

• Impurity additive as key for new Ohmic contact engineering.

• Impurity spatial allocation in M-S interface dominate the process design approach.

• Three technology lines for process integration: Wafer substrate, silicide material and interface engineering