SCH 511 - University of Nairobi Personal Websites · PDF fileSCH 511 Dr. Solomon Derese 107...

Post on 15-Feb-2018

242 views 1 download

Transcript of SCH 511 - University of Nairobi Personal Websites · PDF fileSCH 511 Dr. Solomon Derese 107...

SCH 511

Dr. Solomon Derese 106

SCH 511

Dr. Solomon Derese 107

Polyketo thioesters

Aromatic compounds or otherPolyketide derived metabolites

Acetyl SEcondensing

n-2SACP

O O O

SACP

O

O

O

Hn

S

OEcondensing

Malonyl SACPPKS

SCH 511

Dr. Solomon Derese 108

The biosynthesis of fatty acids and polyketides isbasically the same except that the β-keto group isgenerally not completely reduced out in thebiosynthesis of polyketide derive compounds.

SACP

OO

This gives rise to huge structural diversity basedaround a 1,3-oxygenation pattern and cyclization togive aromatic compounds.

SCH 511

Dr. Solomon Derese 109

O

CoAS

SH SH

ACPCE

Polyketide Synthase (PKS)‘molecular machine’

S SH

ACPCE

O

AT

ACPCE

O

CoAS O

O

MT

SO S O

O

O

H+

SH S

ACPCE

O

REDUCTION

1) KR2) DH3) ER

O

SH S

ACPCE

O

O

DecarboxylativeClaisencondensation

SH

ACPCE

TRANSLOCATION

O S

O

SH

ACPCE

O S

n

nO

O

OHn

TEOOO

Biosynthesis of Polyketides

AT= Acetyl transferaseMT= Malonyl transferaseCE= Condensing enzyme

ACP= Acyl Carrier ProteinKR= Keto ReductaseER= Enoyl Reductase

DH= dehydrataseTE= thioesterase

±Differencebetween FA and PKbiosynthesis

SCH 511

Dr. Solomon Derese 110

Unlike fatty acids, polyketides are NOTBiosynthesised by humans – only by plants,microorganisms (bacteria) & fungi.The biosynthesis of polyketides is catalyzed by theenzyme PolyKetide Synthase (PKS).

S

O O

Econdensing

O S

O O

ACPH

O S

O O

ACPH

O O

S

O

ACP

O O O O

SACP

Such compounds which possess a chain ofalternating ketone and methylene groups are calledpolyketides.

SCH 511

Dr. Solomon Derese 111

EXAMPLES OF POLYKETIDE DERIVED SECONDARY METABOLITES

OH O OHOH

O

CONH2

OH

NCH3

H

H3C

HH3C OH

O

OO

O OOHO

O

OH

HO

Emodin

O

OOHPlumbagin

Eugenone

O

O

OH

HO

OOH

Rebelomycine

OHHO

O

O

H

Orsellinic acid

Tetracycline (Antibiotic)

SCH 511

Dr. Solomon Derese 112

n-2SACP

O O O1,3-Diketo polymer

The poly-β-keto ester is very reactive, andthere are various possibilities forintramolecular Claisen or Knoevenagelcondensation reactions.

SCH 511

Dr. Solomon Derese 113

Methylenes flanked by two carbonylsare activated, allowing formation ofcarbanions/enolates and subsequentreaction with ketone or ester carbonylgroups, with a natural tendency to formstrain-free six membered rings.

SCH 511

Dr. Solomon Derese 114

O O

R R'

HO O

H

R R'Keto TautomerEnol tautomer Enol tautomer

H-Bonding

Favored structure

The Chemistry of 1,3-DicarbonylsKeto-Enol Tautomerism

There are two important condensation reactions of1,3-Dicarbonyls which are relevant to polyketidechemistry; Knoevenagel and Claisen condensationreactions.

SCH 511

Dr. Solomon Derese 115

The Knoevenagel Condensation reaction

O OH

R OEt

O O

R OEt1,3-Dicarbonyl compund

OR2

R1

Aldehyde/Ketone

O OH

R OEt

R2R1 O

Proton transfer

O O

R OEt

R2R1 OH

HO O

R OEt

R2R1A new C-C

double bond

SCH 511

Dr. Solomon Derese 116

A condensation reaction between 1,3-dicarbonyl compounds andaldehydes/ketones resulting in the formationof a new carbon-carbon double bond with aloss of water is called the KnoevenagelCondenation reaction.

SCH 511

Dr. Solomon Derese 117

The Claisen Condensation reactionO O

H

R OEt

O O

R OEt1,3-Dicarbonyl compund

OEtO

R1

Ester

O OH

R OEt

OR1

- H+

O O

R OEt

OR1

The condensation reaction of 1,3-dicarbonyls withesters is called Claisen condensation reaction.

SCH 511

Dr. Solomon Derese 118

O O

R OEt

O

EtO R1

Ester

H H

O O

R OEt

OR1

In principle, a thioester could replace an estergiving the same product but with loss of thiol(RSH) rather than an alcohol. This is importantin biosynthesis as nature often works withthioesters.

The Claisen Condensationreaction

SCH 511

Dr. Solomon Derese 119

Polyketide CyclisationsFormation of Unsaturated Products

Polyketide can cyclize to obtainvarious classes of natural productsthrough condensation reactions ofthe Knoevenagel and Claisen types.

SCH 511

Dr. Solomon Derese 120

S

OEcondensing

SACP

O

O

O

H3

O O O O

SEnz

SCH 511

Dr. Solomon Derese 121

The polyketo ester formed from four acetate units(one acetate starter group and three malonatechain extension units) is capable of being folded inat least two ways, A and B.

A B

O O O O

SEnz

O

O

O O

SEnz

OO

O SEnz

O

SCH 511

Dr. Solomon Derese 122

O

O

O O

SEnz

AO

OH

O

OOH

H

O

OH

O

O

Knoevenagelreaction

Dehydration favored by formationof conjugated system

O

OH

OH

HO Enolization

Orsellinic acid

Enolization favored by formation of aromatic ring.

SCH 511

Dr. Solomon Derese 123

OO

O SEnz

O

B

OO

OO

SEnz

Claisenreaction

OO

O O

Re-formation of carbonylpossible by expulsion ofleaving group

EnolizationOOH

HO OH

Phloracetophenone

SCH 511

Dr. Solomon Derese 124

A distinctive feature of an aromatic ring systemderived through the acetate pathway is that severalof the carbonyl oxygens of the poly-β-keto systemare retained in the final product. These end up onalternate carbons around the ring system.

Of course, one or more might be used in forming acarbon–carbon bond, as in orsellinic acid.

Nevertheless, this oxygenation on alternate carbonatoms, a meta oxygenation pattern, is usuallyeasily recognizable, and points to the biosyntheticorigin of the molecule.

SCH 511

Dr. Solomon Derese 125

SEnz

O O O O O O O

O

O

O

O

O

OS

O

Enz

HO

O

OH

OHO

Alternariol

O

O

O

OSEnz

O

HO

O

OH

OHOEnzS

H

SCH 511

Dr. Solomon Derese 126

The biosynthesis of compound Alternariolinvolves two Knoevenagel-typecondensations and in the last step shown,an ester linkage is formed between aphenolic hydroxy group and the thioestergroup. Such cyclic esters are called lactones.

SCH 511

Dr. Solomon Derese 127

SEnz

O O O O O O O

O

O

O

O

O

OS

O

Enz

O

O

O

OSEnz

O

HO

O

OH

OHOEnzS

H

HO

O

OH

OHOAlternariol

SCH 511

Dr. Solomon Derese 128

Secondary Structural ModificationsDuring Polyketide Cyclisations

The structural variety of polyketide-derived naturalproducts is increased enormously by secondarystructural modifications.

We have already seen such an example in thebiosynthesis of alternariol in which an ester linkagehas been created. The formation of these esterlinkages can be considered as secondarymodifications after cyclization of the polyketideshas occurred.

SCH 511

Dr. Solomon Derese 129

I. MethylationII. DecarboxylationIII. ReductionIV. Oxidation

There are many types of secondarymodification which can occur to polyketide-derived natural products. Four commonmodifications which we will consider are:

SCH 511

Dr. Solomon Derese 130

I. Alkylation

O and C-methylation reaction can occur inbiological systems using S-Adenosinemethionine(SAM).

Methylation

S

Ad

CH3

RS-AdenosineMethionine (SAM).

SCH 511

Dr. Solomon Derese 131

OH

O-P director

OH

CH3

C-Methylation

S

Ad

CH3

R

OH

S

Ad

CH3

R

C-Methylation

O

O-Methylation

S

Ad

CH3

R

SCH 511

Dr. Solomon Derese 132

Example

OOO

O

O

SEnz

O O

OMe

OMe

MeO

Eugenone

3 SAMClaisen

O O

OH

OH

HO

OO OOH OOH

CH3

SCH3R2

R1

OO

CH3

SCH 511

Dr. Solomon Derese 133

II. Decarboxylation

OH

O

O

R

R

b-Keto carboxylic acid

Decarboxylation is very common in biosyntheticand organic reactions.

b-Keto carboxylic acid decarboxylates readily.

OH

R

R O

R

R

ab

SCH 511

Dr. Solomon Derese 134

OHHO

OH

O

OHO

O

O

H

o-Hydroxy carboxylc acidCO2

OHHO

SCH 511

Dr. Solomon Derese 135

III. Reduction

Ketone reduction followed by dehydration is oftenused as a method for introducing a double bondand we have already met examples of this processin the biosynthesis of unsaturated fatty acids.

O

:H- (from NADPH)

Ketone

OH+ OH

H H Cis

Reduction and Dehydration

SCH 511

Dr. Solomon Derese 136

Example

SCH 511

Dr. Solomon Derese 137

IV. Oxidationa. One common biosynthetic oxidation is the

conversion of a methyl group which is directlyattached to a benzene ring into its correspondingcarboxylic acid i.e. Ar-CH3 > ArCO2H.

CH2OH

H

O

OH

O

[O]

[O]

[O]

SCH 511

Dr. Solomon Derese 138

The oxidation of a methyl groupwhich is attached to an aromaticneed not necessarily proceed to thecarboxylic acid level of oxidation; analcohol could be formed i.e. Ar-CH3 >ArCH2OH, even an alhehyde (ArCHO).

SCH 511

Dr. Solomon Derese 139

b. Oxidation benzene into phenol (Ar-H toAr-OH). These reactions are catalysed byenzymes known as monooxygenases (so-called because they introduced oneoxygen atom from oxygen).

SCH 511

Dr. Solomon Derese 140

Quinone

c. A phenol is oxidized to a quinone using theenzyme Dehydrogenase (- H2).

OH

OH

Dehydrogenase

O

O

OH

OH

Dehydrogenase

O

O

Examples

SCH 511

Dr. Solomon Derese 141

O

HO CH2OH

O

Shanorelin

O

SO

Enz

O

O

2 X SAM

O

SO

Enz

O

O

OH

HO

O OH

Knoevenagel

Enolization

Hydroxylation

OH

HO CH2OH

OH

Decarboxylation

Methyl Oxidation

OH

HO CH2OH

Example

Dehydrogenase

SCH 511

Dr. Solomon Derese 142

d. Phenolic oxidative coupling

OH

[O]1

2

3

4

O

12

3

4

Phenoxy raidcal

O

12

3

4

O

12

3

4

O

12

3

4

Phenols are oxidised to their correspondingphenoxy radicals.

The unpaired electron in a phenoxy radical can bedelocalised over the oxygen atom, the carbon atomat the 2-position (ortho) and the carbon atom atthe 4-position (para).

SCH 511

Dr. Solomon Derese 143

Once phenoxy radicals have been generated, theydimerise by pairing the unpaired electron of onephenoxy radical with the unpaired electron of asecond phenoxy radical.

OO

H

H

OHOH

Coupling

Aromatization

C-C Bond

O

O

SCH 511

Dr. Solomon Derese 144

OO

O

OH

OH

O

Aromatization

C-O Bond

SCH 511

Dr. Solomon Derese 145

OO

Aromatization

O O

H

HO OC-O Bond

SCH 511

Dr. Solomon Derese 146

ExampleO O O

O

O O

OSEnz

OH O OH

HO OHOH

OH O

OH

O

MeO

OMe

H

MeOOH

MeO O

O

O

MeO

MeO

Cl

O

O

O

OMe

OH

O•O•

MeO

OMeOOH

OO•

MeO

OMeO

Griseofulvin, A natural productwith fungicidal activity isolatedfrom the mould of Peniciliumgriseofulvum.

SAM

[o]

SAMNADPH Chlorination

SCH 511

Dr. Solomon Derese 147

Biosynthesis of Anthraquinones

R3

OH O OH

R2

R1

ANTHRAQUINONES

SEnz

O O O O O O O O

SCH 511

Dr. Solomon Derese 148

O O O

O

O O OSEnz

O

O

O O O

CO2H

Hypotheticalintermediate I

HO

O O O

CO2H

Hypotheticalintermediate II

HO

O O O

CO2H

Hypotheticalintermediate III

1. Knoevengel1. Knoevengel

1. Knoevengel2. NADPH

2. NADPH

Enolization [O]

HO

OH O OH

CO2H

O

EndocrocinOH O OH

O

ChrysophanolOH O OH

O OH

Islandicin

Enolization[O]

- H2OEnolization[O]-CO2H -CO2H

- H2O

SCH 511

Dr. Solomon Derese 149

SCH 511

Dr. Solomon Derese 150

O O O

O

O O OSEnz

O OH OH O

HO

OSEnz

O

O

SEnz

HO

OH OH O

OH

O

OH

HO

OH OH O

OH

HO

OH OH O

OH

Antrochyrsone

AntrochyrsoneCarboxylic acid

SCH 511

Dr. Solomon Derese 151

Hypericin is being investigated for its antiviralactivities, in particular for its potential activityagainst HIV.

Biosynthesis of Hypericin

Hypericum perforatum(Guttiferae)

SCH 511

Dr. Solomon Derese 152

HO

OH O OH

Emodin anthrone

Tautomerization

HO

OH OH OH

-H

[O]

HO

OH O OH

HO

OH O OH

SCH 511

Dr. Solomon Derese 153

HO

OH O OH

OH

OHOOH

HO

OH O OH

OH

OHOOH

Oxidativecoupling

Emodin dianthrone

HO

OH O OH

OH

OHOOH

[O]

HO

OH O OH

OH

OHOOH

HO

OH O OH

OH

OHOOH

[O][O]

ProtohypericinHypericin

SCH 511

Dr. Solomon Derese

BIOSYNTHESIS OF KNIPHOLONE

Polyketide derived secondary metabolite

Anthraquinone (Chrysophanol)

Acetylphloroglucinol

Phenolic OxidativeCoupling

SCH 511

Dr. Solomon Derese

NADPH- H2O

KnoevengelCondensation

[O]

Chrysophanol

SCH 511

Dr. Solomon Derese

ClaisenCondensation

Aromatization

Acetylphloroglucinol

SAM

SCH 511

Dr. Solomon Derese

SCH 511

Dr. Solomon Derese

Aromatization