RF Systems I - cas.web.cern.ch delay of 𝜏 becomes ... So I and Q are the Cartesian coordinates in...

Post on 30-Mar-2018

219 views 1 download

Transcript of RF Systems I - cas.web.cern.ch delay of 𝜏 becomes ... So I and Q are the Cartesian coordinates in...

RF Systems I Erk Jensen, CERN BE-RF

Introduction to Accelerator Physics, Prague, Czech Republic, 31 Aug – 12 Sept 2014

Definitions & basic concepts dB

t-domain vs. Ο‰-domain

phasors

8th Sept, 2014 CAS Prague - EJ: RF Systems I 2

Decibel (dB)

β€’ Convenient logarithmic measure of a power ratio.

β€’ A β€œBel” (= 10 dB) is defined as a power ratio of 101. Consequently, 1 dB is a power ratio of 100.1 β‰ˆ 1.259.

β€’ If π‘Ÿπ‘‘π‘ denotes the measure in dB, we have:

π‘Ÿπ‘‘π΅ = 10 dB log𝑃2

𝑃1= 10 dB log

𝐴22

𝐴12 = 20 dB log

𝐴2

𝐴1

‒𝑃2

𝑃1=

𝐴22

𝐴12 = 10π‘Ÿπ‘‘π‘ 10 dB

𝐴2

𝐴1= 10π‘Ÿπ‘‘π‘ 20 dB

β€’ Related: dBm (relative to 1 mW), dBc (relative to carrier) 8th Sept, 2014 CAS Prague - EJ: RF Systems I 3

π‘Ÿπ‘‘π΅ βˆ’30 dB βˆ’20 dB βˆ’10 dB βˆ’6 dB βˆ’3 dB 0 dB 3 dB 6 dB 10 dB 20 dB 30 dB

𝑃2

𝑃1 0.001 0.01 0.1 0.25 .50 1 2 3.98 10 100 1000

𝐴2

𝐴1 0.0316 0.1 0.316 0.50 .71 1 1.41 2 3.16 10 31.6

Time domain – frequency domain (1)

β€’ An arbitrary signal g(t) can be expressed in πœ”-domain using the Fourier transform (FT).

𝑔 𝑑 β‹— 𝐺 πœ” =1

2πœ‹ 𝑔 𝑑 β…‡β…‰πœ”π‘‘

∞

βˆ’βˆž

𝑑𝑑

β€’ The inverse transform (IFT) is also referred to as Fourier Integral.

𝐺 πœ” β‹– 𝑔 𝑑 =1

2πœ‹ 𝐺 πœ” β…‡βˆ’β…‰πœ”π‘‘

∞

βˆ’βˆž

π‘‘πœ”

β€’ The advantage of the πœ”-domain description is that linear time-invariant (LTI) systems are much easier described.

β€’ The mathematics of the FT requires the extension of the definition of a function to allow for infinite values and non-converging integrals.

β€’ The FT of the signal can be understood at looking at β€œwhat frequency components it’s composed of”.

8th Sept, 2014 CAS Prague - EJ: RF Systems I 4

Time domain – frequency domain (2)

β€’ For 𝑇-periodic signals, the FT becomes the Fourier-Series, π‘‘πœ” becomes 2πœ‹ 𝑇 , ∫ becomes βˆ‘.

β€’ The cousin of the FT is the Laplace transform, which uses a complex variable (often 𝑠) instead of β…‰πœ”; it has generally a better convergence behaviour.

β€’ Numerical implementations of the FT require discretisation in 𝑑 (sampling) and in πœ”. There exist very effective algorithms (FFT).

β€’ In digital signal processing, one often uses the related z-Transform, which uses the variable 𝑧 = β…‡β…‰πœ”πœ, where 𝜏 is the sampling period. A delay of π‘˜πœ becomes π‘§βˆ’π‘˜.

8th Sept, 2014 CAS Prague - EJ: RF Systems I 5

Time domain – frequency domain (3) β€’ Time domain β€’ Frequency domain

8th Sept, 2014 CAS Prague - EJ: RF Systems I 6

𝑓 βˆ’π‘“

𝜏

2 1 𝜏

𝜎 1

𝜎

𝑇 1

𝑇

1

𝑓

𝑛

𝑇± 𝑓

1

𝑓

𝑇

1

𝜎

𝑓 βˆ’π‘“

𝜎

1

𝑓

sampled oscillation sampled oscillation

modulated oscillation modulated oscillation

1

𝑓

𝜏 βˆ’π‘“

1 𝜏

𝑓

Fixed frequency oscillation (steady state, CW) Definition of phasors

β€’ General: 𝐴 cos πœ”π‘‘ βˆ’ πœ‘ = 𝐴 cos πœ”π‘‘ cos πœ‘ + 𝐴 sin πœ”π‘‘ sin πœ‘

β€’ This can be interpreted as the projection on the real axis of a rotation in the complex plane.

β„œ 𝐴 cos πœ‘ + β…‰ sin πœ‘ β…‡β…‰πœ”π‘‘

β€’ The complex amplitude 𝐴 is called β€œphasor”;

𝐴 = 𝐴 cos πœ‘ + β…‰ sin πœ‘

8th Sept, 2014 CAS Prague - EJ: RF Systems I 7

real part

imag

inar

y p

art Ο‰

Calculus with phasors

β€’Why this seeming β€œcomplication”?: Because things become easier!

β€’ Using 𝑑

𝑑𝑑≑ β…‰πœ”, one may now forget about the rotation with

πœ” and the projection on the real axis, and do the complete analysis making use of complex algebra!

𝐼 = 𝑉1

𝑅+ β…‰πœ”πΆ βˆ’

β…‰

πœ”πΏ

8th Sept, 2014 CAS Prague - EJ: RF Systems I 8

Example:

Slowly varying amplitudes

β€’ For band-limited signals, one may conveniently use β€œslowly varying” phasors and a fixed frequency RF oscillation.

β€’ So-called in-phase (I) and quadrature (Q) β€œbaseband envelopes” of a modulated RF carrier are the real and imaginary part of a slowly varying phasor.

8th Sept, 2014 CAS Prague - EJ: RF Systems I 9

On Modulation AM

PM

I-Q

8th Sept, 2014 CAS Prague - EJ: RF Systems I 10

Amplitude modulation

1 + π‘š cos πœ‘ βˆ™ cos πœ”π‘π‘‘ = β„œ 1 +π‘š

2β…‡β…‰πœ‘ +

π‘š

2β…‡βˆ’β…‰πœ‘ β…‡β…‰πœ”π‘π‘‘

8th Sept, 2014 CAS Prague - EJ: RF Systems I 11

50 100 150 200 250 300

1.5

1.0

0.5

0.5

1.0

1.5

green: carrier black: sidebands at Β±π‘“π‘š blue: sum

example: πœ‘ = πœ”π‘šπ‘‘ = 0.05 πœ”π‘π‘‘π‘š = 0.5

π‘š: modulation index or modulation depth

Phase modulation

β„œ β…‡β…‰ πœ”π‘π‘‘+𝑀 sin πœ‘ = β„œ 𝐽𝑛 𝑀 β…‡β…‰ π‘›πœ‘+πœ”π‘π‘‘

∞

𝑛=βˆ’βˆž

8th Sept, 2014 CAS Prague - EJ: RF Systems I 12

50 100 150 200 250 300

1.0

0.5

0.5

1.0

Green: 𝑛 = 0 (carrier) black: 𝑛 = 1 sidebands red: 𝑛 = 2 sidebands blue: sum

where

𝑀: modulation index (= max. phase deviation)

example: πœ‘ = πœ”π‘šπ‘‘ = 0.05 πœ”π‘π‘‘π‘€ = 4

𝑀 = 1

Spectrum of phase modulation

8th Sept, 2014 CAS Prague - EJ: RF Systems I

13

4 2 0 2 41.0

0.5

0.0

0.5

1.0

4 2 0 2 41.0

0.5

0.0

0.5

1.0

4 2 0 2 41.0

0.5

0.0

0.5

1.0

4 2 0 2 41.0

0.5

0.0

0.5

1.0

4 2 0 2 41.0

0.5

0.0

0.5

1.0Phase modulation with 𝑀 = πœ‹: red: real phase modulation blue: sum of sidebands 𝑛 ≀ 3

M=1

M=4

M=3

M=2

Plotted: spectral lines for sinusoidal PM at π‘“π‘š Abscissa: 𝑓 βˆ’ 𝑓𝑐 π‘“π‘š

M=0 (no modulation)

Spectrum of a beam with synchrotron oscillation, 𝑀 = 1 = 57 Β°

8th Sept, 2014 CAS Prague - EJ: RF Systems I

14

carrier synchrotron sidelines

f

Vector (I-Q) modulation

8th Sept, 2014 CAS Prague - EJ: RF Systems I

15

More generally, a modulation can have both amplitude and phase modulating components. They can be described as the in-phase (I) and quadrature (Q) components in a chosen reference, cos πœ”π‘Ÿπ‘‘ . In complex notation, the modulated RF is:

β„œ 𝐼 𝑑 + β…‰ 𝑄 𝑑 β…‡β…‰ πœ”π‘Ÿπ‘‘ =

β„œ 𝐼 𝑑 + β…‰ 𝑄 𝑑 cos πœ”π‘Ÿπ‘‘ + β…‰ sin πœ”π‘Ÿπ‘‘ =

𝐼 𝑑 cos πœ”π‘Ÿπ‘‘ βˆ’ 𝑄 𝑑 sin πœ”π‘Ÿπ‘‘

So I and Q are the Cartesian coordinates in the complex β€œPhasor” plane, where amplitude and phase are the corresponding polar coordinates.

𝐼 𝑑 = 𝐴 𝑑 cos πœ‘ 𝑄 𝑑 = 𝐴 𝑑 sin πœ‘

I-Q modulation: green: I component red: Q component blue: vector-sum

1 2 3 4 5 6

1.5

1.0

0.5

0.5

1.0

1.5

Vector modulator/demodulator

8th Sept, 2014 CAS Prague - EJ: RF Systems I 16

mixer

0Β°

90Β° combiner splitter

3-dB hybrid

low-pass

low-pass

tI

tI

tQ tQ

1 2 3 4 5 6

1.5

1.0

0.5

0.5

1.0

1.5

1 2 3 4 5 6

1.5

1.0

0.5

0.5

1.0

1.5

1 2 3 4 5 6

1.5

1.0

0.5

0.5

1.0

1.5

1 2 3 4 5 6

1.5

1.0

0.5

0.5

1.0

1.5

1 2 3 4 5 6

2

1

1

2

3-dB hybrid 0Β°

90Β°

πœ”π‘Ÿ πœ”π‘Ÿ βˆ‘

mixer

mixer

mixer

Digital Signal Processing Just some basics

8th Sept, 2014 CAS Prague - EJ: RF Systems I 17

Sampling and quantization β€’ Digital Signal Processing is very powerful – note recent progress in digital

audio, video and communication!

β€’ Concepts and modules developed for a huge market; highly sophisticated modules available β€œoff the shelf”.

β€’ The β€œslowly varying” phasors are ideal to be sampled and quantized as needed for digital signal processing.

β€’ Sampling (at 1 πœπ‘  ) and quantization (𝑛 bit data words – here 4 bit):

8th Sept, 2014 CAS Prague - EJ: RF Systems I 18

1 2 3 4 5 6

1.5

1.0

0.5

0.5

1.0

1.5

The β€œbaseband” is limited to half the sampling rate!

ADC

DAC Original signal Sampled/digitized

Anti-aliasing filter Spectrum

The β€œbaseband” is limited to half the sampling rate!

Digital filters (1) β€’ Once in the digital realm, signal processing becomes β€œcomputing”!

β€’ In a β€œfinite impulse response” (FIR) filter, you directly program the coefficients of the impulse response.

8th Sept, 2014 CAS Prague - EJ: RF Systems I 19

sf1

Transfer function: π‘Ž0 + π‘Ž1𝑧

βˆ’1 + π‘Ž2π‘§βˆ’2 + π‘Ž3π‘§βˆ’3 + π‘Ž4π‘§βˆ’4

𝑧 = β…‡β…‰πœ”πœπ‘ 

Digital filters (2)

β€’ An β€œinfinite impulse response” (IIR) filter has built-in recursion, e.g. like

8th Sept, 2014 CAS Prague - EJ: RF Systems I 20

Transfer function: 𝑏0 + 𝑏1π‘§βˆ’1 + 𝑏2π‘§βˆ’2

1 + π‘Ž1π‘§βˆ’1 + π‘Ž2π‘§βˆ’2

Example: 𝑏0

1 + π‘π‘˜π‘§βˆ’π‘˜

0 1 2 3 4 5

2

4

6

8

10

… is a comb filter.

2πœ‹π‘˜

πœπ‘ 

Digital LLRF building blocks – examples

β€’General D-LLRF board: β€’ modular!

FPGA: Field-programmable gate array

DSP: Digital Signal Processor

β€’DDC (Digital Down Converter) β€’ Digital version of the

I-Q demodulator CIC: cascaded integrator-comb

(a special low-pass filter)

8th Sept, 2014 CAS Prague - EJ: RF Systems I

21

RF system & control loops

e.g.: … for a synchrotron:

Cavity control loops

Beam control loops

8th Sept, 2014 CAS Prague - EJ: RF Systems I 22

Minimal RF system (of a synchrotron)

8th Sept, 2014 CAS Prague - EJ: RF Systems I 23

β€’ The frequency has to be controlled to follow the magnetic field such that the beam remains in the centre of the vacuum chamber.

β€’ The voltage has to be controlled to allow for capture at injection, a correct bucket area during acceleration, matching before ejection; phase may have to be controlled for transition crossing and for synchronisation before ejection.

Low-level RF High-Power RF

Fast RF Feed-back loop

8th Sept, 2014 CAS Prague - EJ: RF Systems I 24

β€’ Compares actual RF voltage and phase with desired and corrects. β€’ Rapidity limited by total group delay (path lengths) (some 100 ns). β€’ Unstable if loop gain = 1 with total phase shift 180 Β° – design requires to stay

away from this point (stability margin) β€’ The group delay limits the gainΒ·bandwidth product. β€’ Works also to keep voltage at zero for strong beam loading, i.e. it reduces the

beam impedance.

β…‡βˆ’β…‰πœ”πœ

Fast feedback loop at work

8th Sept, 2014 CAS Prague - EJ: RF Systems I 25

Without feedback, π‘‰π‘Žπ‘π‘ = 𝐼𝐺0 + 𝐼𝐡 βˆ™ 𝑍 πœ” , where

𝑍 πœ” =𝑅 1 + 𝛽

1 + β…‰π‘„πœ”πœ”0

βˆ’πœ”0πœ”

Detect the gap voltage, feed it back to 𝐼𝐺0 such that 𝐼𝐺0 = πΌπ‘‘π‘Ÿπ‘–π‘£π‘’ βˆ’ 𝐺 βˆ™ π‘‰π‘Žπ‘π‘, where 𝐺 is the total loop gain (pick-up, cable, amplifier chain …) Result:

π‘‰π‘Žπ‘π‘ = πΌπ‘‘π‘Ÿπ‘–π‘£π‘’ + 𝐼𝐡 βˆ™π‘ πœ”

1 + 𝐺 βˆ™ 𝑍 πœ”

β€’ Gap voltage is stabilised! β€’ Impedance seen by the beam is reduced by

the loop gain!

Plot on the right: 1+𝛽

𝑅

𝑍 πœ”

1+πΊβˆ™π‘ πœ” vs. πœ”, with

the loop gain varying from 0 dB to 50 dB.

1-turn delay feed-back loop

β€’ The speed of the β€œfast RF feedback” is limited by the group delay – this is typically a significant fraction of the revolution period.

β€’ How to lower the impedance over many harmonics of the revolution frequency?

β€’ Remember: the beam spectrum is limited to relatively narrow bands around the multiples of the revolution frequency!

β€’ Only in these narrow bands the loop gain must be high!

β€’ Install a comb filter! … and extend the group delay to exactly 1 turn – in this case the loop will have the desired effect and remain stable!

8th Sept, 2014 CAS Prague - EJ: RF Systems I 26

0.5 1.0 1.5 2.0

2

4

6

8

10

Field amplitude control loop (AVC)

8th Sept, 2014 CAS Prague - EJ: RF Systems I 27

β€’ Compares the detected cavity voltage to the voltage program. The error signal serves to correct the amplitude

Tuning loop

8th Sept, 2014 CAS Prague - EJ: RF Systems I 28

β€’ Tunes the resonance frequency of the cavity π‘“π‘Ÿ to minimize the mismatch of the PA. β€’ In the presence of beam loading, the optimum π‘“π‘Ÿ may be π‘“π‘Ÿ β‰  𝑓. β€’ In an ion ring accelerator, the tuning range might be > octave! β€’ For fixed 𝑓 systems, tuners are needed to compensate for slow drifts. β€’ Examples for tuners:

β€’ controlled power supply driving ferrite bias (varying Β΅), β€’ stepping motor driven plunger, β€’ motorized variable capacitor, …

Beam phase loop

8th Sept, 2014 CAS Prague - EJ: RF Systems I 29

β€’ Longitudinal motion: 𝑑2 Ξ”πœ™

𝑑𝑑2 + Ω𝑠2 Ξ”πœ™ 2 = 0.

β€’ Loop amplifier transfer function designed to damp synchrotron oscillation.

Modified equation: 𝑑2 Ξ”πœ™

𝑑𝑑2 + 𝛼𝑑 Ξ”πœ™

𝑑𝑑+ Ω𝑠

2 Ξ”πœ™ 2 = 0

Other loops

β€’ Radial loop: β€’ Detect average radial position of the beam, β€’ Compare to a programmed radial position, β€’ Error signal controls the frequency.

β€’ Synchronisation loop (e.g. before ejection): β€’ 1st step: Synchronize 𝑓 to an external frequency (will also act

on radial position!). β€’ 2nd step: phase loop brings bunches to correct position.

β€’ …

8th Sept, 2014 CAS Prague - EJ: RF Systems I 30

A real implementation: LHC LLRF

8th Sept, 2014 CAS Prague - EJ: RF Systems I 31

Fields in a waveguide

8th Sept, 2014 CAS Prague - EJ: RF Systems I 32

Wave vector π’Œ:

the direction of π‘˜ is the direction of propagation,

the length of π‘˜ is the phase shift per unit length.

π‘˜ behaves like a vector.

Homogeneous plane wave

8th Sept, 2014 CAS Prague - EJ: RF Systems I

33

z

x

Ey

𝐸 ∝ 𝑒𝑦 cos πœ”π‘‘ βˆ’ π‘˜ βˆ™ π‘Ÿ

𝐡 ∝ 𝑒π‘₯ cos πœ”π‘‘ βˆ’ π‘˜ βˆ™ π‘Ÿ

π‘˜ βˆ™ π‘Ÿ =πœ”

𝑐𝑧 cosπœ‘ + π‘₯ sinπœ‘

π‘˜βŠ₯ =πœ”π‘

𝑐

π‘˜π‘§ =πœ”

𝑐1 βˆ’

πœ”π‘

πœ”

2

π‘˜ =πœ”

𝑐

πœ‘

Wave length, phase velocity

β€’ The components of π‘˜ are related to the wavelength in the direction of that

component as πœ†π‘§ =2πœ‹

π‘˜π‘§ etc. , to the phase velocity as π‘£πœ‘,𝑧 =

πœ”

π‘˜π‘§= π‘“πœ†π‘§.

8th Sept, 2014 CAS Prague - EJ: RF Systems I 34

z

x

Ey

π‘˜βŠ₯ =πœ”π‘

𝑐 π‘˜ =

πœ”

𝑐

π‘˜βŠ₯ =πœ”π‘

𝑐

π‘˜π‘§ =πœ”

𝑐1 βˆ’

πœ”π‘

πœ”

2

π‘˜ =πœ”

𝑐

Superposition of 2 homogeneous plane waves

8th Sept, 2014 CAS Prague - EJ: RF Systems I 35

+ =

Metallic walls may be inserted where without perturbing the fields. Note the standing wave in x-direction!

z

x

Ey

This way one gets a hollow rectangular waveguide!

Rectangular waveguide

CAS Prague - EJ: RF Systems I 36

power flow: 1

2Re 𝐸 Γ— π»βˆ—π‘‘π΄

Fundamental (TE10 or H10) mode in a standard rectangular waveguide.

E.g. forward wave

electric field

magnetic field

power flow

power flow

Waveguide dispersion

8th Sept, 2014 CAS Prague - EJ: RF Systems I 37

What happens with different waveguide dimensions (different width π‘Ž)? The β€œguided wavelength” πœ†π‘” varies

from ∞ at 𝑓𝑐 to πœ† at very high frequencies.

cutoff: 𝑓𝑐 =𝑐

2 π‘Ž

2

1

cz

ck

ck

1

2

3

1: π‘Ž = 52 mm 𝑓

𝑓𝑐= 1.04

𝑓 = 3 GHz

2: π‘Ž = 72.14 mm 𝑓

𝑓𝑐= 1.44

3: π‘Ž = 144.3 mm 𝑓

𝑓𝑐= 2.88

𝑓 𝑓𝑐

π‘˜π‘§

Phase velocity π‘£πœ‘,𝑧

8th Sept, 2014 CAS Prague - EJ: RF Systems I 38

2

1

cz

ck

ck

1

2

3

The phase velocity is the speed with which the crest or a zero-crossing travels in 𝑧-direction. Note in the animations on the right that, at constant 𝑓, it is π‘£πœ‘,𝑧 ∝ πœ†π‘”.

Note that at 𝑓 = 𝑓𝑐 , π‘£πœ‘,𝑧 = ∞!

With 𝑓 β†’ ∞, π‘£πœ‘,𝑧 β†’ 𝑐!

z

z

v

k

,

1

z

z

v

k

,

1

z

z

v

k

,

1

1: π‘Ž = 52 mm 𝑓

𝑓𝑐= 1.04

𝑓 = 3 GHz

2: π‘Ž = 72.14 mm 𝑓

𝑓𝑐= 1.44

3: π‘Ž = 144.3 mm 𝑓

𝑓𝑐= 2.88

cutoff: 𝑓𝑐 =𝑐

2 π‘Ž 𝑓 𝑓𝑐

π‘˜π‘§

Radial waves

β€’ Also radial waves may be interpreted as superpositions of plane waves.

β€’ The superposition of an outward and an inward radial wave can result in the field of a round hollow waveguide.

8th Sept, 2014 CAS Prague - EJ: RF Systems I 39

𝐸𝑧 ∝ 𝐻𝑛2

π‘˜πœŒπœŒ cos π‘›πœ‘ 𝐸𝑧 ∝ 𝐻𝑛1

π‘˜πœŒπœŒ cos π‘›πœ‘ 𝐸𝑧 ∝ 𝐽𝑛 π‘˜πœŒπœŒ cos π‘›πœ‘

Round waveguide modes

8th Sept, 2014 CAS Prague - EJ: RF Systems I 40

TE11 – fundamental

mm/

9.87

GHz a

fc mm/

8.114

GHz a

fc mm/

9.182

GHz a

fc

TM01 – axial field TE01 – low loss

𝐸

𝐻

From waveguide to cavity

8th Sept, 2014 CAS Prague - EJ: RF Systems I 41

Waveguide perturbed by discontinuities (notches)

8th Sept, 2014 CAS Prague - EJ: RF Systems I 42

β€œnotches”

Reflections from notches lead to a superimposed standing wave pattern. β€œTrapped mode”

Signal flow chart

Short-circuited waveguide

8th Sept, 2014 CAS Prague - EJ: RF Systems I 43

TM010 (no axial dependence) TM011 TM012

𝐸

𝐻

Single waveguide mode between two shorts

8th Sept, 2014 CAS Prague - EJ: RF Systems I 44

short circuit

short circuit

Eigenvalue equation for field amplitude π‘Ž:

π‘Ž = π‘Ž β…‡βˆ’β…‰π‘˜π‘§2𝑙 Non-vanishing solutions exist for 2π‘˜π‘§π‘™ = 2 πœ‹π‘š.

With π‘˜π‘§ =πœ”

𝑐1 βˆ’

πœ”

πœ”π‘

2, this becomes 𝑓0

2 = 𝑓𝑐2 + 𝑐

π‘š

2𝑙

2.

Signal flow chart

β…‡βˆ’β…‰π‘˜π‘§π‘™

β…‡βˆ’β…‰π‘˜π‘§π‘™

βˆ’1 βˆ’1

π‘Ž

Simple pillbox cavity

8th Sept, 2014 CAS Prague - EJ: RF Systems I 45

electric field (purely axial) magnetic field (purely azimuthal)

(only 1/2 shown)

TM010-mode

Pillbox with beam pipe

8th Sept, 2014 CAS Prague - EJ: RF Systems I 46

electric field magnetic field

(only 1/4 shown) TM010-mode

One needs a hole for the beam pipe – circular waveguide below cutoff

A more practical pillbox cavity

8th Sept, 2014 CAS Prague - EJ: RF Systems I 47

electric field magnetic field

(only 1/4 shown) TM010-mode

Round of sharp edges (field enhancement!)

Some real β€œpillbox” cavities

8th Sept, 2014 CAS Prague - EJ: RF Systems I 48

CERN PS 200 MHz cavities

End of RF Systems I

8th Sept, 2014 CAS Prague - EJ: RF Systems I 49