Resolucion de un circuito rlc en matlab

Post on 16-Jun-2015

3.623 views 0 download

description

Resolucion de una EDO de segundo grado aplicado a un circuito RLC

Transcript of Resolucion de un circuito rlc en matlab

UNIVERSIDA PÓLITECNICA SALESIANA

Ingeniería Electrónica

Ecuaciones DiferencialesResolución de un circuito RLC

David BasantesIsrael CampañaVinicio MasabandaJuan Ordoñez

PROBLEMAEncuentre la carga al tiempo t=0.92s en el circuito LCR donde L=1.52H, R=3Ὠ, C=0.20f y E(t)=15sen (t) + 5eᶺ(t) VLa carga y la corriente son nulas.

Procedimiento 1.-Buscamos la fórmula para resolver el

circuito RCL.*L(d²q/dt²) + R(dq/dt) + 1/C(q)= E(t)

2.-Reemplazamos los datos.1.51(d²q/dt²) + 3(dq/dt) + 1/0.20(q)= 15sen (t) + 5eᶺ(t)

3.-Igualamos a cero la parte homogénea1.51(d²q/dt²) + 3(dq/dt) + 1/0.20(q)= 0

4.-Reconocer el grado de la EDO y remplazar en la fórmula general.1.51m² + 3m + 5 = 0Dónde: a=1.51 ; b=3; c=5

5.- Reconocemos α y β y lo aplicamos a la fórmula y reemplazamosα= -0.99 y β=1.52Y= eᶺ(αt) [A cos(βt) + B sen(βt)]qh= eᶺ(-0.99t) [A cos(1.52t) + B sen(1.52t)]

6.- Separamos qh en q1 y q2 q1= eᶺ (-0.99t) cos(1.52t)q2= eᶺ (-0.99t) sen(1.52t)

7.- Escribimos el Wronskiano y calculamos W1 Y W2.

q1= eᶺ (-0.99t) cos(1.52t)q´1= -0.99eᶺ (-0.99t)*cos(1,52) – 1.52 eᶺ (-0.99t)* sen(1.52t)q2= eᶺ (-0.99t)* sen(1.52t)q´2= -0.99eᶺ (-0.99t) *sen(1.52t) + 1.52 eᶺ (-0.99t) *cos(1.52t)

W= [ eᶺ (-0.99t) cos(1.52t)][ -0.99eᶺ (-0.99t) sen(1.52t) + 1.52 eᶺ (-0.99t) cos(1.52t)]

–[ eᶺ (-0.99t) sen(1.52t)][ -0.99eᶺ (-0.99t)cos(1,52) – 1.52 eᶺ (-0.99t) sen(1.52t)]W= eᶺ (-1.98t)[-0.99 cos(1.52t)* sen(1.52t) + 1.52cos²(1.52t)] - eᶺ (-1.98t) [-0.99 sen(1.52t)* cos(1.52t) - 1.52sen²(1.52t)]W= eᶺ (-1.98t){-0.99 cos(1.52t)* sen(1.52t) + 1.52cos²(1.52t) – {-0.99 sen(1.52t)* cos(1.52t)- 1.52sen²(1.52t)}W= eᶺ (-1.98t)(-0.99 cos(1.52t)* sen(1.52t) + 1.52cos²(1.52t) + 0.99 sen(1.52t)* cos(1.52t) + 1.52sen²(1.52t)}W= eᶺ (-1.98t)(1.52cos²(1.52t) + 1.52sen²(1.52t))W= eᶺ (-1.98t)[ 1.52(cos²(1.52t) + sen²(1.52t)]W= eᶺ (-1.98t)*(1.52)

Donde: f(t)= 15sen (t) + 5eᶺ(t)

W1= 0 - [15sen (t) + 5eᶺ(t)][ eᶺ (-0.99t) sen(1.52t)]W1= -[ 15sen (t). eᶺ (-0.99t) sen(1.52t)) + (5eᶺ(t). eᶺ (-0.99t) sen(1.52t)]W1= -15 eᶺ (-0.99t).sen (t). sen(1.52t) - 5 eᶺ (0.01t) sen(1.52t)W1= - sen(1.52t) [15 eᶺ (-0.99t) sen (t) + 5 eᶺ (0.01t)]

W2= [ eᶺ (-0.99t) cos(1.52t)][ 15sen (t) + 5eᶺ(t)] – 0W2= [(eᶺ (-0.99t) cos(1.52t)( 15sen (t)) + (eᶺ (-0.99t)

cos(1.52t). 5eᶺ(t)]W2= [15 eᶺ (-0.99t) cos(1.52t). sen (t) + 5eᶺ(0.01t)

cos(1.52t)W2= cos(1.52t).[ 15 eᶺ (-0.99t) sen (t) +

5eᶺ(0.01t)]

8.- Calculamos U1 Y U2U´1= W1/W= (- sen(1.52t) [15 eᶺ (-0.99t) sen (t) + 5 eᶺ (0.01t)])/( eᶺ (-1.98t)*(1.52)U´1= - sen(1.52t)[9.87 eᶺ (0.99t) + 3.29 eᶺ (1.99t)]U´1= - sen(1.52t). 9.87 eᶺ (0.99t) - 3.29 eᶺ (1.99t). sen(1.52t)U1=ʃ -9.87 eᶺ (0.99t) sen(1.52t) - 3.29 eᶺ (1.99t). sen(1.52t)U1= -9.87ʃ eᶺ (0.99t). sen(1.52t) - 3.29ʃ eᶺ (1.99t). sen(1.52t) ʃ eᶺ(a)(u) sen bu.du= eᶺ(a)(u)/(a²+b²).(a sen bu – b cos bu) + CU1= -9.87[(eᶺ (0.99t)/(0.99)²+(1.52)²)* (0.99 sen(1.52t) – 1.52 cos(1.52t))]-3.29 [eᶺ (1.99t)/(1.99)²+(1.52)² (1.99 sen(1.52t) – 1.52 cos(1.52t))]U´2= W2/W = cos(1.52t).[ 15 eᶺ (-0.99t) sen (t) + 5eᶺ(0.01t)]/ ( eᶺ (-1.98t)*(1.52)U´2= cos(1.52t).[9.87 eᶺ (0.99t ) + 3.29 eᶺ (1.99t)]U´2= 9.87 eᶺ (0.99t ) cos(1.52t) + 3.29 eᶺ (1.99t) cos(1.52t)U2= ʃ 9.87 eᶺ (0.99t ) cos(1.52t) + 3.29 eᶺ (1.99t) cos(1.52t)U2= 9.87 ʃ eᶺ (0.99t ) cos(1.52t) + 3.29 ʃ eᶺ (1.99t) cos(1.52t)ʃ eᶺ(a)(u) cos bu.du= eᶺ(a)(u)/(a²+b²).(b sen bu + b cos bu) + CU2= 9.87 [(eᶺ (0.99t)/(0.99)²+(1.52)²)* (1.52 sen(1.52t) + 0.99 cos(1.52t))]+ 3.29 [eᶺ (1.99t)/(1.99)²+(1.52)² (1.52 sen(1.52t) + 1.99 cos(1.52t))]

9.- La solución general de la EDO es:

Y= Yh + YpYp= U1Y1 + U2Y2Yh= eᶺ(-0.99t) [A cos(1.52t) + B sen(1.52t)]

 Yp=-9.87[(eᶺ (0.99t)/(0.99)²+(1.52)²)* (0.99 sen(1.52t) – 1.52 cos(1.52t))]-3.29 [eᶺ (1.99t)/(1.99)²+(1.52)² (1.99 sen(1.52t) – 1.52 cos(1.52t))] * eᶺ (-0.99t) cos(1.52t)+ 9.87 [(eᶺ (0.99t)/(0.99)²+(1.52)²)* (1.52 sen(1.52t) + 0.99 cos(1.52t))]+ 3.29 [eᶺ (1.99t)/(1.99)²+(1.52)² (1.52 sen(1.52t) + 1.99 cos(1.52t))] * eᶺ (-0.99t) sen(1.52t) Y= eᶺ(-0.99t) [A cos(1.52t) + B sen(1.52t)]+ =-9.87[(eᶺ (0.99t)/(0.99)²+(1.52)²)* (0.99 sen(1.52t) – 1.52 cos(1.52t))]-3.29 [eᶺ (1.99t)/(1.99)²+(1.52)² (1.99 sen(1.52t) – 1.52 cos(1.52t))] * eᶺ (-0.99t) cos(1.52t)+ 9.87 [(eᶺ (0.99t)/(0.99)²+(1.52)²)* (1.52 sen(1.52t) + 0.99 cos(1.52t))]+ 3.29 [eᶺ (1.99t)/(1.99)²+(1.52)² (1.52 sen(1.52t) + 1.99 cos(1.52t))] * eᶺ (-0.99t) sen(1.52t)

Solucion del ejerecicio por medio de MATLAB

L a ecuacion que vamos a ingresar en Matlab es la siguiente:

((15*sin(t))+(5*(e^(t)))-(A(1)/0.20)-(3*B(1)))/1.51

1. En matlab creamos un nuevo documento M-file en donde ingresamos lo siguiente:

function B=rlc(t,A)B=zeros(2,1);B(1)=A(2);B(2)= ((15*sin(t))+(5*(exp(t)))-(A(1)/0.20)-

(3*B(1)))/1.51;

2. Ahora vamos a realizar las ordenes que necesitamos para obtener el dibujo del problema

[t,A]=ode45('rlc', [-4 10], [-3 15]);q=A(:,1);i=A(:,2);plot(t,q);Title(‘q vs t')xlabel(‘t(s)')ylabel(‘q(c)')

[x,y] = ode45('función',a,b,inicial) Esta instrucción regresa un conjunto de coordenadas "x" y "y" que representan a la función y=f(x), los valores se calculan a través de métodos Runge-Kuta de cuarto y quinto orden.El nombre "función", define una función que representa a una ecuación diferencial ordinaria, ODE45 proporciona los valores de la ecuación diferencial y'=g(x,y).Los valores "a" y "b" especifican los extremos del intervalo en el cual se desea evaluar a la función y=f(x).El valor inicial y = f(a) especifica el valor de la función en el extremo izquierdo del intervalo [a,b].

GRAFICO RESULTANTE