Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /ฮป ......

Post on 16-Jul-2020

0 views 0 download

Transcript of Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /ฮป ......

Nanoscale antennas

Said R. K. Rodriguez24/04/2018

The problem with nanoscale optics

ฮ•๐‘–๐‘–(๐‘˜๐‘˜๐‘˜๐‘˜โˆ’๐œ”๐œ”๐œ”๐œ”)

~1-10 nm

~400-800 nm

How to interface light emitters & receiverswith plane waves?

Antenna

Tx/Rx

An antenna is a device that converts free-space radiation into localized energy, and vice versa

Radiation

Novotny & van Hulst, Nat.Photon. 5, 83 (2011).

What is an antenna?

Antenna

Tx/Rx

An antenna is a device that converts free-space radiation into localized energy, and vice versa

Radiation

What is an antenna?

At radio frequencies, E = 0 inside the metal โ€“ perfect metal

Novotny & van Hulst, Nat.Photon. 5, 83 (2011).

Antenna

Tx/Rx

An antenna is a device that converts free-space radiation into localized energy, and vice versa

Radiation

What is an antenna?

At optical frequencies, E โ‰  0 inside the metal.

Consequence: radio-freq. antenna designs cannot be directly scaled

Novotny & van Hulst, Nat.Photon. 5, 83 (2011).

200 400 600 800 1000 1200 1400 1600 1800-150

-100

-50

0

50

Measured data: ฮต' ฮต"

Drude model: ฮต' ฮต"

Modified Drude model: ฮต'

ฮต"

ฮต

Wavelength (nm)

ฮต'

Dielectric constant for Ag

Finite ฮตโ€™ leads to field penetration

Plasmons in the bulk oscillate at ฯ‰p determined by the free electron density and effective mass

Plasmons confined to surfaces that can interact with light to form propagating โ€œsurface plasmon polaritons (SPP)โ€

Localized surface plasmons in nanoparticles

+ + +

- - -

+ - +

k 0

2

ฮตฯ‰

mNedrude

p =

From plasmons to plasmonics

2/1

"'

+

=+=dm

dmxxx c

ikkkฮตฮต

ฮตฮตฯ‰

optical resonance frequency depends on shape & size; k is irrelevant

transmissionreflection

Colors of gold nanoparticles Stained glass @ Notre Dame de Paris

Lycargus cup, 4thC AD 1260

Observables

Extinction cross section [m2]

Power removed from beamIncident intensity

Extinction = scattering + absorption

removed from the beam re-radiated into all angles lost as heat in the scatterer

Linear response to applied field

Small object kd <<1 - incident field is approximately constant

Volume polarization (weak index so E=Ein)

Total dipole moment

Larger particles & ฮต : larger dipole moments

Electrostatic sphere

Consider a sphere in a static field E0 ฮตmฮต

z

rฮธ

a( )( )ar

ar>=โˆ†ฮฆ<=โˆ†ฮฆ

00

2

1

Laplace equation:

( ) ( ) zEarrr

arr

m 0221

21 โˆ’=ฮฆ=โˆ‚ฮฆโˆ‚

=โˆ‚ฮฆโˆ‚

=ฮฆ=ฮฆโˆžโ†’

lim,, ฮตฮต

Boundary conditions set by 0)()( =ฮฆโˆ‡โ‹…โˆ’โˆ‡=โ‹…โˆ‡=โ‹…โˆ‡ ฮตฮต ED

Solution

1 0 0 0

32 0 0 02 2

0

3cos cos cos2 2

cos coscos cos2 4

m m

m m

m

m m

E r E r E r

pE r a E E rr r

ฮต ฮต ฮตฮธ ฮธ ฮธฮต ฮต ฮต ฮต

ฮต ฮต ฮธ ฮธฮธ ฮธฮต ฮต ฯ€ฮต ฮต

โˆ’ฮฆ = โˆ’ + = โˆ’ + +

โˆ’ฮฆ = โˆ’ + = โˆ’ + +

E0 ฮตm

ฮตz

rฮธ

a[ see J. D. Jackson, Classical Electrodynamics, Ch. 4]

30 0 with 4

2m

SI SI mm

p E a ฮต ฮตฮฑ ฮฑ ฯ€ฮต ฮตฮต ฮต

โˆ’= = +

rr

Inside sphere: homogeneous fieldOutside sphere: background field plus field of a dipole with

In the ball:

Outside:

Metal sphere

Drude model for a metal: Lorentzian `plasmon resonanceโ€™

โ€ข Resonance at ฮต(ฯ‰0) = -2 ฮตmโ€ข Response scales with the volume Vโ€ข ฮฑ exceeds V by factor 5 to 10โ€ข Shape shifts condition ฮต = -2 ฮตmโ€ข ฮณ still needs to include radiation damping

๐‘๐‘ = 4๐œ‹๐œ‹๐œ€๐œ€0๐›ผ๐›ผ๐ธ๐ธ0 ๐›ผ๐›ผ = ๐‘Ž๐‘Ž3 ๐œ€๐œ€ โˆ’ ๐œ€๐œ€๐‘š๐‘š

๐œ€๐œ€ + 2๐œ€๐œ€๐‘š๐‘š 0

๐›ผ๐›ผ = ๐‘Ž๐‘Ž3 ๐œ”๐œ”02

๐œ”๐œ”02 โˆ’ ๐œ”๐œ”2 + ๐‘–๐‘–๐œ”๐œ”๐‘–๐‘– 0

๐œ€๐œ€ = 1 โˆ’๐œ”๐œ”๐‘๐‘

2

๐œ”๐œ”(๐œ”๐œ” + ๐‘–๐‘–๐‘–๐‘–๐œ”๐œ”)means

Revisiting polarizabilityClassical model of harmonically bound electron describes atom, and scatterer alike, as an oscillating dipole

20 0

2 20

3 ( ) ( )i t i tSI

Vt e ei

ฯ‰ ฯ‰ฮต ฯ‰ ฮฑ ฯ‰ฯ‰ ฯ‰ ฯ‰ฮณ

= =โˆ’ โˆ’

p E E

Lorentzian resonance

Extinction: how much power is taken from the beam ?

Cycle average work done by E on p

in ImdpW Edt

ฮฑโˆ โ‹… โˆ

Revisiting polarizabilityExtinction: how much power is taken from the beam (in SI units) ?

0 0

1 1Re[ ] Re[ ] Re[ ] Re[ ]T Ti t

i t i t i td eW e dt e i e dtT dt T

ฯ‰ฯ‰ ฯ‰ ฯ‰ฯ‰ฮฑ= โ‹… = โ‹…โˆซ โˆซ

pE E E

* * *

0

1 ( ) ( )4

Ti t i t i t i tW e e i e i e dt

Tฯ‰ ฯ‰ ฯ‰ ฯ‰ฯ‰ฮฑ ฯ‰ฮฑโˆ’ โˆ’= + โ‹… โˆ’โˆซ E E E E

* 2 2

0

1 ( | | | | ) oscill.terms ( 2 )4

T

W i i dtT

ฯ‰ฮฑ ฯ‰ฮฑ ฯ‰= โˆ’ + + ยฑโˆซ E E

2Im | |2

W ฯ‰ ฮฑ= E

Revisiting polarizabilityClassical model of harmonically bound electron describes atom, and scatterer alike as an oscillating dipole

20 0

2 20

3 ( ) ( )i t i tSI

Vt e ei

ฯ‰ ฯ‰ฮต ฯ‰ ฮฑ ฯ‰ฯ‰ ฯ‰ ฯ‰ฮณ

= =โˆ’ โˆ’

p E E

Lorentzian resonance

Scattering: how much power does p radiate ?

22

0

2

0 0

22dipole

2

0 0

2 ||4

sinsin||sin W ฮฑฯ€ฮต

ฮธฮธฯ•ฮธฯ•ฯ€ ฯ€ฯ€ ฯ€

โˆ=โˆโ‹…โˆ โˆซ โˆซโˆซ โˆซโˆซ rprdErddA

sphere

nS

Equate extinction to scattering (energy conservation)

Scattering

Rayleigh / Larmor

Extinction

Work done to drive p

โ‰ฅ

Optical theorem

1. Very small particles scatter like r6/ฮป4 (Rayleigh)2. For very small particles absorption wins ~ r3/ฮป3. Big |ฮฑ|2 implies large Im ฮฑ

4๐œ‹๐œ‹๐‘˜๐‘˜ Im ๐›ผ๐›ผ [๐‘š๐‘š2] 8๐œ‹๐œ‹3

๐‘˜๐‘˜4 ๐›ผ๐›ผ 2 [๐‘š๐‘š2]

ScatteringExtinction

โ‰ฅ

Optical theorem

Since

Upper bound on the strongest possible dipole scatterer

Rayleigh / LarmorWork done to drive p

Equate extinction to scattering (energy conservation)

4๐œ‹๐œ‹๐‘˜๐‘˜ Im ๐›ผ๐›ผ [๐‘š๐‘š2] 8๐œ‹๐œ‹3

๐‘˜๐‘˜4 ๐›ผ๐›ผ 2 [๐‘š๐‘š2]

๐›ผ๐›ผ โ‰ค32

๐œ†๐œ†2๐œ‹๐œ‹

3

Im ๐›ผ๐›ผ < ๐›ผ๐›ผ

Extinction โ€“ Interference effect๐‘ƒ๐‘ƒ๐‘’๐‘’๐‘˜๐‘˜๐œ”๐œ” = โˆฌ๐ท๐ท Sext๏ฟฝ๏ฟฝerdA = โˆฌ๐ท๐ท

12

Re Eiร—Hsโˆ— +Es ร—Hiโˆ— ๏ฟฝ๏ฟฝerdA

๐‘„๐‘„๐‘’๐‘’๐‘˜๐‘˜๐œ”๐œ” =๐œŽ๐œŽ๐‘’๐‘’๐‘˜๐‘˜๐œ”๐œ”

๐ด๐ด๐‘๐‘๐‘๐‘๐‘๐‘๐œ”๐œ”Out of resonanceOn resonance

2๐œ‹๐œ‹๐œ‹๐œ‹๐œ†๐œ†

= 0.3

Extinction โ€“ Interference effect๐‘ƒ๐‘ƒ๐‘’๐‘’๐‘˜๐‘˜๐œ”๐œ” = โˆฌ๐ท๐ท Sext๏ฟฝ๏ฟฝerdA = โˆฌ๐ท๐ท

12

Re Eiร—Hsโˆ— +Es ร—Hiโˆ— ๏ฟฝ๏ฟฝerdA

๐‘„๐‘„๐‘’๐‘’๐‘˜๐‘˜๐œ”๐œ” =๐œŽ๐œŽ๐‘’๐‘’๐‘˜๐‘˜๐œ”๐œ”

๐ด๐ด๐‘๐‘๐‘๐‘๐‘๐‘๐œ”๐œ”

ฯƒext = Apart

r=20 nm Ag particle, in n=1.5 (glass)

Extinction โ€“ Interference effect๐‘ƒ๐‘ƒ๐‘’๐‘’๐‘˜๐‘˜๐œ”๐œ” = โˆฌ๐ท๐ท Sext๏ฟฝ๏ฟฝerdA = โˆฌ๐ท๐ท

12

Re Eiร—Hsโˆ— +Es ร—Hiโˆ— ๏ฟฝ๏ฟฝerdA

๐‘„๐‘„๐‘’๐‘’๐‘˜๐‘˜๐œ”๐œ” =๐œŽ๐œŽ๐‘’๐‘’๐‘˜๐‘˜๐œ”๐œ”

๐ด๐ด๐‘๐‘๐‘๐‘๐‘๐‘๐œ”๐œ”

2๐œ‹๐œ‹๐œ‹๐œ‹๐œ†๐œ†

= 0.3

Question: what does the above expression tells us aboutthe detector needed to measure the full extinction?

Summary

โ€ข Antennas convert free-space radiation into localized energy & viceversa

โ€ข At optical frequencies, E-field penetrates into the metal. This leads to surface plasmon resonances

โ€ข Extinction:โ€“ Work done by E on pโ€“ โˆ Im(ฮฑ)โ€“ Interference of incident & scattered field

โ€ข Subwavelength particles can absorb and scatter much more light than is geometrically incident on them. In general, Qext >1 on resonance and Qext <1 off resonance

10 min. break

Approaches to controlling lightResonant nanoparticles Photonic crystals

Surface Plasmon Polaritons

Dipole radiation

๐‘ฌ๐‘ฌ(๐’“๐’“) = ๐œ‡๐œ‡0๐œ”๐œ”2๐บ๐บ(๐’“๐’“) ๏ฟฝ ๐’‘๐’‘1 dipole (vector):

1 dipole (scalar): ๐œ“๐œ“1 ๐œ‹๐œ‹ =๐‘’๐‘’๐‘–๐‘–๐‘˜๐‘˜๐‘๐‘

๐œ‹๐œ‹๏ฟฝ ๐‘๐‘

Dipole arrays

๐‘ฌ๐‘ฌ(๐’“๐’“) = ๐œ‡๐œ‡0๐œ”๐œ”2๐บ๐บ(๐’“๐’“) ๏ฟฝ ๐’‘๐’‘1 dipole (vector):

1 dipole (scalar): ๐œ“๐œ“1 ๐œ‹๐œ‹ =๐‘’๐‘’๐‘–๐‘–๐‘˜๐‘˜๐‘๐‘

๐œ‹๐œ‹๏ฟฝ ๐‘๐‘

Dipole array (scalar): ๐œ“๐œ“๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก ๐œ‹๐œ‹ = ๐œ“๐œ“1(๐œ‹๐œ‹) ๏ฟฝ ๐ด๐ด๐ด๐ด

Depends on positions & complex amp. of scatterersFourier transform of geometry (more ahead)

a โ‰ˆ ฮป

Far-field of 2 dipoles

๐œ“๐œ“๐‘ก๐‘ก = ๐œ“๐œ“1 + ๐œ“๐œ“2 = ๐‘๐‘๐‘’๐‘’โˆ’๐‘–๐‘–(๐‘˜๐‘˜๐‘๐‘1โˆ’๐›ฝ๐›ฝ/2)

๐œ‹๐œ‹1cos ๐œƒ๐œƒ1 +

๐‘’๐‘’โˆ’๐‘–๐‘–(๐‘˜๐‘˜๐‘๐‘2+๐›ฝ๐›ฝ/2)

๐œ‹๐œ‹2cos ๐œƒ๐œƒ2

โ—r1

r2

ฮธ1

ฮธ2

ฮฒ = phase difference between dipoles

๐œ“๐œ“๐‘ก๐‘ก ๐œ‹๐œ‹ = ๐‘๐‘๐‘’๐‘’๐‘–๐‘–๐‘˜๐‘˜๐‘๐‘

๐œ‹๐œ‹๏ฟฝ ๐ด๐ด๐ด๐ด

โ—r1

r2

ฮธ1

ฮธ2 ๐ด๐ด๐ด๐ด = cos12

(๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜๐‘ก๐‘ก๐‘˜๐‘˜ ๐œƒ๐œƒ + ๐›ฝ๐›ฝ)

ฮฒ = phase difference between dipoles

Exercise:

Far-field of 2 dipoles

๐œ“๐œ“๐‘ก๐‘ก = ๐œ“๐œ“1 + ๐œ“๐œ“2 = ๐‘๐‘๐‘’๐‘’โˆ’๐‘–๐‘–(๐‘˜๐‘˜๐‘๐‘1โˆ’๐›ฝ๐›ฝ/2)

๐œ‹๐œ‹1cos ๐œƒ๐œƒ1 +

๐‘’๐‘’โˆ’๐‘–๐‘–(๐‘˜๐‘˜๐‘๐‘2+๐›ฝ๐›ฝ/2)

๐œ‹๐œ‹2cos ๐œƒ๐œƒ2

๐œ“๐œ“๐‘ก๐‘ก ๐œ‹๐œ‹ = ๐‘๐‘๐‘’๐‘’๐‘–๐‘–๐‘˜๐‘˜๐‘๐‘

๐œ‹๐œ‹๏ฟฝ ๐ด๐ด๐ด๐ด

โ—r1

r2

ฮธ1

ฮธ2 ๐ด๐ด๐ด๐ด = cos12

(๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜๐‘ก๐‘ก๐‘˜๐‘˜ ๐œƒ๐œƒ + ๐›ฝ๐›ฝ)

ฮฒ = phase difference between dipoles

Exercise:

Note: ฮฒ=ฯ€ & ฮธ=ฯ€/2 โ†’ AF = 0 โˆ€ kd

Far-field of 2 dipoles

๐œ“๐œ“๐‘ก๐‘ก = ๐œ“๐œ“1 + ๐œ“๐œ“2 = ๐‘๐‘๐‘’๐‘’โˆ’๐‘–๐‘–(๐‘˜๐‘˜๐‘๐‘1โˆ’๐›ฝ๐›ฝ/2)

๐œ‹๐œ‹1cos ๐œƒ๐œƒ1 +

๐‘’๐‘’โˆ’๐‘–๐‘–(๐‘˜๐‘˜๐‘๐‘2+๐›ฝ๐›ฝ/2)

๐œ‹๐œ‹2cos ๐œƒ๐œƒ2

Dimer in static approximationDimer in a static approximation

Linear problem

โ€ข Symmetric, but not real matrixโ€ข 1/polarizability on the diagonalโ€ข Interaction on the off-diagonal - this will shift resonances

Hybrid modes

Hybridization (exercise)

Arrays of coupled dipoles

Arrays of coupled dipoles

d= 100 nmax = ay = 450 nmn = 1.5

ax n

1 dipole

array of dipoles

Light cone & diffraction

Light emission from plasmonic arrayNA of objective

kx

ky

S.R.K. Rodriguez et al., Phys. Rev. X 1, 021019 (2011).

LSPR

Extinction of Au nanorod arrays

Bright โ€“ even / Dark - odd

Diffraction / Bloch theorem determines mode dispersionMode symmetry + illumination determines what you excite

S.R.K. Rodriguez et al., Physica B 407, 4081 (2012).

Coupled dipole calculations

Measurements

Shaper resonances by adding nanoparticles

Collective resonances

Uses of resonant nanostructures

Enhanced local fieldsOn resonance, ~ 104 enhanced intensity

Au spheres 5,8,20 nm, gaps of 1-3 nm

100 102 104

|E|2/|Ein|2

Single molecule Fluorescence Enhancement

100 nm

๐ด๐ด๐ธ๐ธ =๐œ‚๐œ‚(๐œ‹๐œ‹0, ๐œ”๐œ”๐‘’๐‘’๐‘š๐‘š)๐œ‚๐œ‚0(๐œ‹๐œ‹0, ๐œ”๐œ”๐‘’๐‘’๐‘š๐‘š)

๐ท๐ท(๐œ‹๐œ‹0, ๐œ”๐œ”๐‘’๐‘’๐‘š๐‘š)๐ท๐ท0(๐œ‹๐œ‹0, ๐œ”๐œ”๐‘’๐‘’๐‘š๐‘š)

๐ธ๐ธ (๐œ‹๐œ‹0, ๐œ”๐œ”๐‘๐‘๐‘Ž๐‘Ž๐‘Ž๐‘Ž) 2

๐ธ๐ธ0(๐œ‹๐œ‹0, ๐œ”๐œ”๐‘๐‘๐‘Ž๐‘Ž๐‘Ž๐‘Ž) 2

A. Kinkhabwala et al., Nat. Phot. 3, 654 (2009)

Yagi-Uda nanoantenna

A. F. Koenderink, Nano Lett. 9, 4228 (2009)

Directional emission from localized sources

100 nm

A. Curto et al., Science 329, 930 (2010)

100 nm

Directional emission from extended sources

emitting layer

G. Lozano et al., Light Sci. Appl. e66 (2013)

100 nm

Directional emission from extended sources

emitting layer emitting layer

SensingSingle protein binding/unbinding Refractive index sensing

n

P. Offermans et al., ACS Nano 5, 5151 (2011)

Biological imaging

Novotny & van Hulst, Nat.Photon. 5, 83 (2011).

Diffraction unlimited resolution

ฮป= 633 nm

Nonlinear effectsGenerating new frequenciesEnhanced mode mapping

P. Ghenuche et. al. Phys. Rev. Lett. 10, 116805 (2008) H. Harutyunyan et. al. Phys. Rev. Lett. 108, 217403 (2012)

Summary

โ€ข Small particles of size < ฮป/10 scatter like dipolesโ€ข Arrays of dipoles can be described by effective polarizabilityโ€ข Nanoantennas can be used to enhance:

โ€“ local fieldsโ€“ absorption & spontaneous emissionโ€“ Sensingโ€“ Biological imagingโ€“ Nonlinearities