Optically Induced Capacitance Changes in Organic ...

Post on 15-May-2022

3 views 0 download

Transcript of Optically Induced Capacitance Changes in Organic ...

Optically Induced Capacitance Changes in Organic

Semiconductor Based Structures

J.W.E. Kneller and T. Kreouzis School of Physics and Astronomy,

Queen Mary University of London, UK

A.S. Andy, C.G. Parini, M. Pigeon and O. Sushko and R.S Donnan

School of Electronic Engineering and Computer Science, Queen Mary University of London, UK

Contents

โ€ข Brief introduction to organic electronics

โ€ข Dielectric constant change ฮ”๐œ€๐‘‡โ„Ž๐‘’๐‘œ๐‘Ÿ๐‘ฆ

โ€ข Time of Flight โ€ข Steady State Photocurrent

โ€ขโˆ†๐œ€๐ธ๐‘ฅ๐‘๐‘’๐‘Ÿ๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘Ž๐‘™ = โˆ†๐œ€(๐œ) โ€ข Impedance Spectroscopy โ€ข GHz - Quasi-Optical Free Space propagation

โ€ขโˆ†๐œ€๐‘‡โ„Ž๐‘’๐‘œ๐‘Ÿ๐‘ฆ ๐‘ฃ๐‘  โˆ†๐œ€๐ธ๐‘ฅ๐‘๐‘’๐‘Ÿ๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘Ž๐‘™

โ€ข Conclusions

โ‡’ โˆ†๐œ€๐‘ƒ๐‘™๐‘Ž๐‘ ๐‘š๐‘Ž = โˆ†๐œ€ ๐œ‡,๐›ฅ๐‘› โ‡’ โˆ†๐œ€๐‘†๐‘๐‘Ž๐‘๐‘’charge = โˆ†๐œ€ ๐œ‡,๐บ โ‡’ โˆ†๐œ€๐‘’โˆ’โ„Ž = โˆ†๐œ€ ๐‘Ÿ๐‘,๐›ฅ๐‘›

โ€ข Two semi-conducting organic materials used,

โ€ข P3HT and PCBM mixed in a 95:5 ratio respectively.

โ€ข When excited, one material donates an electron while the other accepts an electron.

Organic Materials

PCBM, phenyl-C61-butyric-acid methyl ester

P3HT, poly(3-hexylthiophene)

95:5 P3HT:PCBM Mixture

Donor

Acceptor

โ€ข The polymers are in contact with each other in a junction and in contact to electrodes

โ€ข Best way to achieve this is with a Bulk-Heterojunction which maximises dissociation at interface

โ€ข Devise: ITO:P3HT:PCBM:Al

Organic Electronics

Polymer B

Polymer A

Cathode

Anode

A simple bi-layer design A Bulk-Heterojunction

95:5 P3HT:PCBM device layout showing the layers of deposited material, the design and the finished device.

โ€ข LUMO P3HT = 3.7eV

โ€ข LUMO PCBM = 3.0eV

Organic Charge Transfer

Energy level diagram showing electron/hole transfer between the Highest Order Molecular Orbital (HOMO) and the Lowest Order Molecular Orbital (LUMO).

โ„Ž๐œ

To Anode

To Cathode

โ€ข A slab of conjugated polymer will have some dielectric properties:

๐œบ = ๐œบdark

โ€ข A slab of conjugated polymer under illumination will have different dielectric properties:

๐œบ๐’Š๐’๐’๐’–๐’Ž๐’Š๐’๐’‚๐’•๐’†๐’… = ๐œบ๐’…๐’‚๐’“๐’Œ + โˆ†๐œบ

Dielectric Constant

+

+

+

+ - -

- -

โ€ข Three different theoretical approaches:

โ€ข ๐›ฅ๐œ€๐‘‡โ„Ž๐‘’๐‘œ๐‘Ÿ๐‘ฆ โ‡’ โˆ†๐œ€๐‘ƒ๐‘™๐‘Ž๐‘ ๐‘š๐‘Ž = โˆ†๐œ€ ๐œ‡,๐›ฅ๐‘› โ‡’ โˆ†๐œ€๐‘†๐‘๐‘Ž๐‘๐‘’cโ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’ = โˆ†๐œ€ ๐œ‡,๐บ โ‡’ โˆ†๐œ€๐‘’โˆ’โ„Ž = โˆ†๐œ€ ๐‘Ÿ๐‘,๐›ฅ๐‘›๐‘’โˆ’โ„Ž

โ€ขโˆ†๐œ€๐ธ๐‘ฅ๐‘๐‘’๐‘Ÿ๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘Ž๐‘™ โ‡’ โˆ†๐œ€ ๐œ (DC and GHZ)

๐œŸ๐œบ

P3HT:PCBM device in an open vacuum chamber

โ€ข Change in dielectric constant can be calculated according to established plasma theory: (for high mobility silicon)

โ€ข โˆ†๐œ€๐‘ƒ๐‘™๐‘Ž๐‘ ๐‘š๐‘Ž is dependant on the density and mobility of the charge carriers

โ€ข These can be easily measured, thus โˆ†๐œ€๐‘ƒ๐‘™๐‘Ž๐‘ ๐‘š๐‘Ž can be calculated.

โ€ขโˆ†๐œ€๐‘ƒ๐‘™๐‘Ž๐‘ ๐‘š๐‘Ž = โˆ’ ๐‘š๐‘’๐œ‡๐‘’2 +๐‘šโ„Ž๐œ‡โ„Ž

2 โˆ†๐‘›

๐œ€0 โˆˆ โ„

๐œŸ๐œบ๐‘ป๐’‰๐’†๐’๐’“๐’š โ‡’ โˆ†๐œบ๐‘ท๐’๐’‚๐’”๐’Ž๐’‚ = โˆ†๐œบ ๐,๐œŸ๐’

Electron/Hole

Mobility

Dielectric

Constant

Change

Charge Carrier

Density M. El Khaldi,

F. Podevin, and

A. Vilcot,

Microwave and

Optical

Technology

Letters 47 (6),

570 (2005). โˆ†๐œบ๐‘ท๐’๐’‚๐’”๐’Ž๐’‚ โ‡’ ๐œ‡ = 10-4cm2v-1s-1

โ‡’ โˆ†๐‘›

โ€ข From Ohms Law: ๐ฝ = โˆ†๐‘›๐‘’๐œ‡๐ธ โ€ข And Charge definition between two plates:

๐ธ =โˆ†๐œ™

๐‘‘=๐‘‰๐‘’๐‘“๐‘“

๐‘‘=๐‘‰๐ต๐‘–๐‘Ž๐‘  โˆ’ ๐‘‰๐ต๐‘ข๐‘–๐‘™๐‘กโˆ’๐ผ๐‘

๐‘‘

โ€ข We get โˆ†๐‘› as a function of photocurrent, mobility and voltage:

ฮ”๐‘› = ๐ผ๐‘‘

๐ด๐‘’๐œ‡๐‘‰๐‘’๐‘“๐‘“

โ€ข So simply excite and measure photocurrent under a bias voltage.

Charge Carrier Concentration, ฮ”n

Al

ITO

A

h๐œˆ

95%P3HT:5%PCBM

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.00E+000

2.00E+021

4.00E+021

6.00E+021

8.00E+021

1.00E+022

Full Intensity

ND 0.1

ND 0.3

ND 0.5

ND 1

Voltage (V)

n

(m

-3)

Free Carrier Densityof 100nm, 95:5 P3HT:PCBM

โ€ข Measure photocurrent

โ€ข Calculate โˆ†๐‘›

โ€ข Extrapolate to Zero Field, โˆ†๐‘›๐ธ=0

โ€ข Calculate โˆ†๐œ€๐‘ƒ๐‘™๐‘Ž๐‘ ๐‘š๐‘Ž

Charge Carrier Concentration, ฮ”n

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0

500

1000

1500

2000

2500

3000 Photocurrent of 100nm, 95:5 P3HT:PCBM

Full Intensity (ยตA)

ND 0.1 (ยตA)

ND 0.3 (ยตA)

ND 0.5 (ยตA)

ND 1 (ยตA)

Ph

oto

cu

rre

nt (

A)

Voltage (V)

Graphs showing Photocurrent ๐ผ (above) (quadratic as both V and ๐œ‡ dependant) and charge carrier concentration โˆ†๐‘› (left) against effective voltage ๐‘‰๐‘’๐‘“๐‘“.

โ€ข Measure photocurrent

โ€ข Calculate โˆ†๐‘›

โ€ข Extrapolate to Zero Field, โˆ†๐‘›๐ธ=0

โ€ข Calculate โˆ†๐œ€๐‘ƒ๐‘™๐‘Ž๐‘ ๐‘š๐‘Ž

Charge Carrier Concentration, ฮ”n

0 20 40 60 80 100

0.00E+000

5.00E+020

1.00E+021

1.50E+021

2.00E+021

2.50E+021

3.00E+021

n

(E=

0) (m

-3)

Free Carrier Densityof 100nm, 95:5 P3HT:PCBM

Transmittance

Graphs showing zero field concentration โˆ†๐‘›๐ธ=0 (above) and change in dielectric constant โˆ†๐œ€๐‘‡โ„Ž๐‘’๐‘œ๐‘Ÿ๐‘ฆ

(left) against % light transmittance. (100%=1234Wm-2)

0 20 40 60 80 100

0.00E+000

5.00E-014

1.00E-013

1.50E-013

2.00E-013

2.50E-013

3.00E-013

(T

he

ory

) (F

/m)

(Theory)

of 100nm, 95:5 P3HT:PCBM

Transmittance

โ€ข Can model photocapacitance as a spacecharge:

โ€ข Dependant on conductance G and mobility ๐œ‡

โ€ข As ๐‘ = ๐œ€๐œ€0๐ด

๐‘‘ and ๐ธ0 =

๐‘‰

๐‘‘

โ€ข ๐‘ โˆ ๐‘‘3 ๐‘ โ‰ˆ 10โˆ’38๐น

โ€ข โˆ†๐œ€๐‘†๐‘๐‘Ž๐‘๐‘’ ๐ถโ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’๐‘  = โˆ†๐œ€ ๐œ‡,๐บ = 10โˆ’26

๐œŸ๐œบ๐‘ป๐’‰๐’†๐’๐’“๐’š โ‡’ โˆ†๐œบ๐‘บ๐’‘๐’‚๐’„๐’†๐’„๐’‰๐’‚๐’“๐’ˆ๐’† = โˆ†๐œบ ๐,๐‘ฎ

Richard S.

Crandall,

Journal of

Applied

Physics 54 (12),

7176 (1983).

โ€ขโˆ†๐œ€ = โˆ†๐œ€๐‘ ๐‘ก๐‘Ž๐‘ก๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’๐‘  + โˆ†๐œ€๐‘“๐‘Ÿ๐‘’๐‘’ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’๐‘ 

๐œŸ๐œบ๐‘ป๐’‰๐’†๐’๐’“๐’š โ‡’ โˆ†๐œบ๐’†โˆ’๐’‰ = โˆ†๐œบ ๐’“๐’„,๐›ฅ๐‘›๐‘’โˆ’โ„Ž

Coulombically bound e-h pairs โ€ข rotating with the electronic field โ€ข Traditionally assumed to be

negligible โ€ข Derived via:

Richard Friend New QMUL Model

Free electrons and holes โ€ข โˆ†๐œ€๐‘ƒ๐‘™๐‘Ž๐‘ ๐‘š๐‘Ž โ€ข โˆ†๐œ€๐‘†๐‘๐‘Ž๐‘๐‘’๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’

๐œŸ๐œบ๐‘ป๐’‰๐’†๐’๐’“๐’š โ‡’ โˆ†๐œบ๐’†โˆ’๐’‰ = โˆ†๐œบ ๐’“๐’„,๐›ฅ๐‘›๐‘’โˆ’โ„Ž

โˆ†๐œ€๐‘ ๐‘ก๐‘Ž๐‘ก๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’๐‘  = ?

โ€ข Can define polarizability per unit dipole as:

โ€ขโˆ†๐‘ƒ = ๐œ€0 โˆ†๐œ€ โˆ’ 1 ๐ธ โ€ขโˆ†๐‘ƒ = ๐‘โˆฅ โˆ†๐‘›

โ€ข Dipole moment parallel to Field:

โ€ข๐‘โˆฅ โ‰ค ๐‘๐‘’โˆ’โ„Ž โ‰ค ๐‘’๐‘Ÿ๐‘

โ€ข e-h pair density:

โ€ขโˆ†๐‘›๐‘’โˆ’โ„Ž โ‰ฅ๐œ€0 โˆ†๐œ€โˆ’1 ๐ธ

๐‘’๐‘Ÿ๐‘

โ€ข Using โˆ†๐œ€ of order unity

โ€ขโˆ†๐‘›๐‘’โˆ’โ„Ž โ‰ฅ 1022 mโˆ’3 โ€ข which is smaller than the maximum pair density of

1024 m-3

โ€ข Assuming a cube of coulomb radius completely filled with e-h dipoles:

โ€ข โˆ†๐œ€๐‘’โˆ’โ„Ž โ‰ค๐‘’๐‘Ÿ๐‘โˆ†๐‘›๐‘’โˆ’โ„ŽV

๐‘‘

โ€ข โˆ†๐œ€๐‘’โˆ’โ„Ž โ‰ค 105

A. D.

Chepelianskii,

J. Wang, and

R. H. Friend,

Phys Rev Lett

112 (12),

126802 (2014).

โ€ข From capacitance definition: ๐‘ = ๐œ€๐œ€0๐ด

๐‘‘

โ€ข And RC circuits: ๐œ”๐‘…๐‘’๐‘ ๐‘œ๐‘›๐‘Ž๐‘›๐‘ก =1

๐‘…๐ถ

โ€ข We get: ฮ”๐œ€

๐œ€=

ฮ”๐œ

๐œ

โ€ข Any change in ๐œ comes from change in C from change in ฮต

โ€ข Measurable via Impedance Spectroscopy.

โ€ขฮ”๐œ = ฮ”๐œ๐ฟ๐‘–๐‘”โ„Ž๐‘ก โˆ’ ฮ”๐œ๐ท๐‘Ž๐‘Ÿ๐‘˜

โˆ†๐œบ๐‘ฌ๐’™๐’‘๐’†๐’“๐’Š๐’Ž๐’†๐’๐’•๐’‚๐’ = โˆ†๐œบ ๐Š

Al

ITO

h๐œˆ

R

~

Impedance Spectrometer

๐‘ = 1๐‘›๐น

๐‘… = 1๐‘˜ฮฉ

0 50000 100000 150000 200000

250

300

350

400

450

500

Impedance Spectroscopy of 100nm 95:5 P3HT:PCBM

Frequency Resonance:

Dark Conditions

Full Intensity

Z''

()

(hz)

Impedance Spectroscopy

โ€ข Sweeps over a range of frequencies

โ€ข Finds Imaginary Impedance ๐‘โ€ฒโ€ฒ =1

๐‘๐œ”๐‘–

as a function of frequency.

โ€ข Can find resonance frequency and hence โˆ†๐œ€๐ธ๐‘ฅ๐‘.

โˆ†๐œ€๐ธ๐‘ฅ๐‘ vs % of light (100% = 1234Wm-2)

Impedance Spectroscopy data showing highly reproducible frequency shifts between active and dark states.

0 25 50 75 100

0

1

2

3

(E

xp

erim

en

tal)

(

)

Transmittance

0 200 400 600 800 1000 1200

/ of 100nm 95:5 P3HT:PCBM - Sample 613

Power (W/m2)

โˆ†๐œบ = ๐ŸŽ. ๐Ÿ (unsaturated)

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600

-Z''/

f/kHz

Dark 1

Light 1

Dark 2

Light 2

Dark 3

Light 3

Impedance Spectroscopy data showing highly reproducible frequency shifts between active and dark states.

Impedance Spectroscopy โ€“REPRODUCIBLE!

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

0

50000

100000

150000

200000

250000

300000

Temperature

Experimental

Transmittance

(

Hz) E

xp

erim

en

tal

Temperature (OC)

โ€ข Mobility is highly dependant on temperature, T:

โ€ข ๐œ‡(๐‘‡,๐ธ) = ๐œ‡(๐‘‡,๐ธ=0)๐‘’๐›พ(๐‘‡) ๐ธ

โ€ข From Graph: โ€ข As T increases, ๐œ increases. โ€ข As Light increases, ๐œ decreases.

โ€ข So heating of device not affecting results.

Temperature Dependence

T. Kreouzis

et. al.

Physical

Review B 73

235201

(2006) Left-bottom axis โ€“ Frequency resonance against % light (100% = 1234Wm-2) Left-top axis โ€“ Frequency resonance against temperature.

โ€ข Can measure at GHz frequencies.

โ€ข Uses free space propagation on quasi-optical setup โ€ข mm-wave transition

โ€ข Vector Network Analyser.

โˆ†๐œ€๐ธ๐‘ฅ๐‘๐‘’๐‘Ÿ๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘Ž๐‘™ โ‡’ โˆ†๐œ€๐บ๐ป๐‘ง

A.S. Andy

School of

Electronic

Engineering

and Computer

Science

Queen Mary,

University of

London

220 225 230 235 240 245 250

2.6

2.8

3.0

3.2

Real Dark

Real Active R

eal (

F/m

)

(Ghz)

High Frequency readings of Real from 95:5 P3HT:PCBM device

=0.1

โˆ†๐œบ = ๐ŸŽ. ๐Ÿ

โ€ข ๐›ฅ๐œ€๐‘‡โ„Ž๐‘’๐‘œ๐‘Ÿ๐‘ฆ

โ‡’ โˆ†๐œ€๐‘ƒ๐‘™๐‘Ž๐‘ ๐‘š๐‘Ž = โˆ†๐œ€ ๐œ‡,๐›ฅ๐‘› โ‰ˆ โˆ’10โˆ’9

โ‡’ โˆ†๐œ€๐‘†๐‘๐‘Ž๐‘๐‘’ ๐ถโ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’๐‘  = โˆ†๐œ€ ๐œ‡,๐บ โ‰ˆ 10โˆ’26

โ‡’ โˆ†๐œ€๐‘’โˆ’โ„Ž = โˆ†๐œ€ ๐‘Ÿ๐‘,๐›ฅ๐‘›๐‘’โˆ’โ„Ž โ‰ค +10+5

โ€ข โˆ†๐œ€๐ธ๐‘ฅ๐‘๐‘’๐‘Ÿ๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘Ž๐‘™

โ‡’ โˆ†๐œ€ ๐œ=100๐‘˜๐ป๐‘ง ๐ฟ๐‘œ๐‘ค ๐‘™๐‘–๐‘”โ„Ž๐‘ก ๐ผ๐‘›๐‘ก๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ โ‰ˆ โˆ’0.1

โ‡’ โˆ†๐œ€ ๐œ=100๐‘˜๐ป๐‘ง ๐ป๐‘–๐‘”โ„Ž ๐‘™๐‘–๐‘”โ„Ž๐‘ก ๐ผ๐‘›๐‘ก๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ โ‰ˆ +1

โ‡’ โˆ†๐œ€ ๐œ=100๐บ๐ป๐‘ง ๐ป๐‘–๐‘”โ„Ž ๐‘™๐‘–๐‘”โ„Ž๐‘ก ๐ผ๐‘›๐‘ก๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ โ‰ˆ โˆ’0.1

โ‡’ |โˆ†๐œ€| ๐œ=100๐บ๐ป๐‘ง ๐ป๐‘–๐‘”โ„Ž ๐‘™๐‘–๐‘”โ„Ž๐‘ก ๐ผ๐‘›๐‘ก๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ โ‰ˆ 0.1

(from phase shift)

โˆ†๐œบ๐‘ป๐’‰๐’†๐’๐’“๐’š ๐’—๐’” โˆ†๐œบ๐‘ฌ๐’™๐’‘๐’†๐’“๐’Š๐’Ž๐’†๐’๐’•๐’‚๐’

Conclusions

โ€ข Can optically induce dielectric changes in P3HT:PCBM

โ€ข Can measure said changes:

โ€ข โˆ†๐œ€๐ธ๐‘ฅ๐‘ = โˆ†๐œ€(๐œ)

โ€ข๐›ฅ๐œ€๐‘‡โ„Ž๐‘’๐‘œ๐‘Ÿ๐‘ฆ

โ€ข Only theoretical model that can explain dielectric change is that of static charges โ‡’ e-h pairs

An ITO:P3HT:PCBM:Al device

โ‡’ โˆ†๐œ€๐‘ƒ๐‘™๐‘Ž๐‘ ๐‘š๐‘Ž = โˆ†๐œ€ ๐œ‡,๐›ฅ๐‘› โ‡’ โˆ†๐œ€๐‘†๐‘๐‘Ž๐‘๐‘’ ๐ถโ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’๐‘  = โˆ†๐œ€ ๐œ‡,๐บ โ‡’ โˆ†๐œ€๐‘’โˆ’โ„Ž = โˆ†๐œ€ ๐‘Ÿ๐‘,๐›ฅ๐‘›

x x โˆš