Neutrino Mass Ordering: Hints and Challenges · Neutrino Mass Ordering: Hints and Challenges ß...

Post on 29-Oct-2019

5 views 0 download

Transcript of Neutrino Mass Ordering: Hints and Challenges · Neutrino Mass Ordering: Hints and Challenges ß...

NeutrinoMassOrdering:HintsandChallenges

ßRenéMagri+e,VoiceofSpace(1931)

EligioLisi(INFN,Bari,Italy)

SolvayνWorkshop,Brussels,2017

OUTLINE:•  Prologue:3νknownsandunknowns•  Global3ν oscillaFonanalysisandmassordering•  CombinaFonwithnonoscillaFonconstraints•  Futurechallenges•  Epilogue

Mainlybasedon:

F.Capozzi,E.DiValenFno,E.Lisi,A.Marrone,A.Melchiorri,A.Palazzo,“Globalconstraintsonabsoluteneutrinomassesandtheirordering”

arXiv:1703.04471[PRD95,096014(2017)]

Forindependentanalyses,seealsoEsteban+1611.01514;deSalas+1708.01186

2

U↵i =

2

41 0 00 c23 s230 �s23 c23

3

5

2

4c13 0 s13e�i�

0 1 0�s13ei� 0 c13

3

5

2

4c12 s12 0�s12 c12 00 0 1

3

5

2

41 0 00 ei↵/2 00 0 ei�/2

3

5

Mixings and phases: CKMà PMNS (Pontecorvo-Maki-Nakagawa-Sakata)

Extra CPV phases [if Majorana]

not tested in oscillat.

Mass [squared] spectrum (E ~ p + m2/2E + “interaction energy” )

1 2

1 2

δm2

δm2

Δm2

Δm2

“Normal” Ordering NO

“Inverted” Ordering IO

+ interactions in matter à effective terms ~ GF . E . density

+ absolute mass scale (not tested in oscillations)

2-3 rotation 1-3 rotation + CPV “Dirac” phase

1-2 rotation

3

3

Prologue:3νparadigm-parameters 3

ν flavor oscillation experiments: α à β in vacuum and matter

a

b

c

d

e

f

g

eàe (KamLAND), θ12 )

eàe (Solar) θ12 )

µàµ (Atmospheric) ( Δm2 , θ23 )

µàµ (LBL Accel) Δm2 , θ23 )

eàe (SBL Reac.) θ

µàe (LBL Accel) θ

µàτ (OPERA, SK)θ Data from various types of neutrino experiments: (a) solar, (b) long-baseline reactor, (c) atmospheric, (d) long-baseline accelerator, (e) short-baseline reactor, (f,g) long baseline accelerator (and, in part, atmospheric). (a) KamLAND [plot]; (b) Borexino [plot], Homestake, Super-K, SAGE, GALLEX/GNO, SNO; (c) Super-K atmosph. [plot], DeepCore, MACRO, MINOS etc.; (d) T2K (plot), MINOS, K2K; (e) Daya Bay [plot], RENO, Double Chooz; (f) T2K [plot], MINOS, NOvA; (g) OPERA [plot], Super-K atmospheric.

4

Leading sensitivities to 3ν oscillation parameters:

a

b

c

d f

g

eàe ( δm2 , θ12 )

eàe ( δm2 , θ12 )

µàµ ( Δm2 , θ23 )

µàµ ( Δm2 , θ23 )

eàe ( Δm2 , θ13 )

µàe ( Δm2 , θ13 , θ23 )

µàτ ( Δm2 , θ23 ) Data from various types of neutrino experiments: (a) solar, (b) long-baseline reactor, (c) atmospheric, (d) long-baseline accelerator, (e) short-baseline reactor, (f,g) long baseline accelerator (and, in part, atmospheric). (a) KamLAND [plot]; (b) Borexino [plot], Homestake, Super-K, SAGE, GALLEX/GNO, SNO; (c) Super-K atmosph. [plot], DeepCore, MACRO, MINOS etc.; (d) T2K (plot), MINOS, K2K; (e) Daya Bay [plot], RENO, Double Chooz; (f) T2K [plot], MINOS, NOvA; (g) OPERA [plot], Super-K atmospheric.

5

“Broad-brush” 3ν picture (with 1-digit accuracy)

+Δm2

δm2 m2ν

ν2 ν1

ν3

ν3 -Δm2

e µ τ

δm2 ~ 7 x 10-5 eV2

Δm2 ~ 2 x 10-3 eV2

sin2θ12 ~ 0.3 sin2θ23 ~ 0.5 sin2θ13 ~ 0.02

δ = Dirac CPV phase

sign(Δm2) = ordering

“octant” of θ23 absolute mass scale Dirac/Majorana nature

Knowns: Unknowns:

Normal Ordering (NO) Inverted Ordering (IO)

6

Hi-res and larger picture à Global analysis of ν oscill. data

χ2 metric adopted. Parameters not shown are marginalized away:

C.L.’s refer to Nσ = √ Δχ2 = 1, 2, 3, ...

Analysis includes increasingly rich oscillation data sets:

LBL Acc + Solar + KL LBL Acc + Solar + KL + SBL Reactor LBL Acc + Solar + KL + SBL Reactor + Atmosph.

Global fit results taken from 1703.04471 . Note: KL=KamLAND.

7

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors + Atmos

NOIO

Current 1σ errors (1/6 of ±3σ range):

Note: Δm2 = (Δm2

31 + Δm232)/2

Five known oscillation parameters:

δm2 2.3 % Δm2 1.6 % sin2θ12 5.8 % sin2θ13 4.0 % sin2θ23 ~ 9 %

all<10%...2-3digitsneeded

à Precision Era!

[but: PMNS still very far from CKM accuracy]

à novel expt+theo challenges (fluxes, cross sections, ...) in nuclear physics

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors + Atmos

NOIO

8

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors + Atmos

NOIO

θ23 octant

δCP

Three unknown oscillation parameters

NO or IO

9

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.015 0.02 0.025 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND

NHIH

LBL+Sol+KL

θ23

Δχ2 (IO-NO)

octant

+1.1

12θ2sin0.25 0.30 0.35

0

1

2

3

4

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03 0.04

2 eV -5/102mδ6.5 7.0 7.5 8.0 8.50

1

2

3

4

2 eV -3/102m∆2.0 2.2 2.4 2.6 2.8

π/δ0.0 0.5 1.0 1.5 2.0

LBL Acc + Solar + KL + SBL Reactors

σNσN

NHIH

More on unknown oscillation parameters:

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.015 0.02 0.025 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND

NHIH

12θ2sin0.25 0.30 0.35

0

1

2

3

4

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03 0.04

2 eV -5/102mδ6.5 7.0 7.5 8.0 8.50

1

2

3

4

2 eV -3/102m∆2.0 2.2 2.4 2.6 2.8

π/δ0.0 0.5 1.0 1.5 2.0

LBL Acc + Solar + KL + SBL Reactors

σNσN

NHIH

δCP

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors + Atmos

NOIO

10

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors

NHIH

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.015 0.02 0.025 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND

NHIH

LBL+Sol+KL +SBL Reac

θ23

Δχ2 (IO-NO)

octant

+1.1 +1.1

12θ2sin0.25 0.30 0.35

0

1

2

3

4

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03 0.04

2 eV -5/102mδ6.5 7.0 7.5 8.0 8.50

1

2

3

4

2 eV -3/102m∆2.0 2.2 2.4 2.6 2.8

π/δ0.0 0.5 1.0 1.5 2.0

LBL Acc + Solar + KL + SBL Reactors

σNσN

NHIH

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.015 0.02 0.025 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND

NHIH

12θ2sin0.25 0.30 0.35

0

1

2

3

4

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03 0.04

2 eV -5/102mδ6.5 7.0 7.5 8.0 8.50

1

2

3

4

2 eV -3/102m∆2.0 2.2 2.4 2.6 2.8

π/δ0.0 0.5 1.0 1.5 2.0

LBL Acc + Solar + KL + SBL Reactors

σNσN

NHIH

δCP

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors

NHIH

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors + Atmos

NOIO

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors + Atmos

NOIO

More on unknown oscillation parameters: 11

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors

NHIH

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.015 0.02 0.025 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND

NHIH

LBL+Sol+KL +SBL Reac +Atmos

θ23

Δχ2 (IO-NO)

octant

+1.1 +1.1 +3.6

Max-mixing disfavored; octant flips with NO/IO

Intriguing! NO favored

12θ2sin0.25 0.30 0.35

0

1

2

3

4

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03 0.04

2 eV -5/102mδ6.5 7.0 7.5 8.0 8.50

1

2

3

4

2 eV -3/102m∆2.0 2.2 2.4 2.6 2.8

π/δ0.0 0.5 1.0 1.5 2.0

LBL Acc + Solar + KL + SBL Reactors

σNσN

NHIH

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors + Atmos

NOIO

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.015 0.02 0.025 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND

NHIH

12θ2sin0.25 0.30 0.35

0

1

2

3

4

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03 0.04

2 eV -5/102mδ6.5 7.0 7.5 8.0 8.50

1

2

3

4

2 eV -3/102m∆2.0 2.2 2.4 2.6 2.8

π/δ0.0 0.5 1.0 1.5 2.0

LBL Acc + Solar + KL + SBL Reactors

σNσN

NHIH

δCP

sin δ ~ -1 (or sin δ < 0)

favored; sin δ ~ +1 excluded

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors

NHIH

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors + Atmos

NOIO

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors + Atmos

NOIO

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors + Atmos

NOIO

More on unknown oscillation parameters: 12

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.015 0.02 0.025 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND

NHIH

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors

NHIH

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.015 0.02 0.025 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND

NHIH

LBL+Sol+KL +SBL Reac +Atmos

θ23

Δχ2 (IO-NO)

octant

+1.1 +1.1 +3.6

12θ2sin0.25 0.30 0.35

0

1

2

3

4

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03 0.04

2 eV -5/102mδ6.5 7.0 7.5 8.0 8.50

1

2

3

4

2 eV -3/102m∆2.0 2.2 2.4 2.6 2.8

π/δ0.0 0.5 1.0 1.5 2.0

LBL Acc + Solar + KL + SBL Reactors

σNσN

NHIH

Compare the current results (circa 2017) with...

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors + Atmos

NOIO

12θ2sin0.25 0.30 0.35

0

1

2

3

4

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03 0.04

2 eV -5/102mδ6.5 7.0 7.5 8.0 8.50

1

2

3

4

2 eV -3/102m∆2.0 2.2 2.4 2.6 2.8

π/δ0.0 0.5 1.0 1.5 2.0

LBL Acc + Solar + KL + SBL Reactors

σNσN

NHIH

δCP

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors

NHIH

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors + Atmos

NOIO

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors + Atmos

NOIO

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors + Atmos

NOIO

13

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03 0.04

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND

NHIH

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors + Atmos

NHIH

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors

NHIH

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03 0.04

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND

NHIH

LBL+Sol+KL +SBL Reac +Atmos

θ23

Δχ2 (IO-NO)

octant

-1.2 -0.9 +1.0

12θ2sin0.25 0.30 0.35

0

1

2

3

4

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03 0.04

2 eV -5/102mδ6.5 7.0 7.5 8.0 8.50

1

2

3

4

2 eV -3/102m∆2.0 2.2 2.4 2.6 2.8

π/δ0.0 0.5 1.0 1.5 2.0

LBL Acc + Solar + KL + SBL Reactors

σNσN

NHIH

12θ2sin0.25 0.30 0.35

0

1

2

3

4

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03 0.04

2 eV -5/102mδ6.5 7.0 7.5 8.0 8.50

1

2

3

4

2 eV -3/102m∆2.0 2.2 2.4 2.6 2.8

π/δ0.0 0.5 1.0 1.5 2.0

LBL Acc + Solar + KL + SBL Reactors

σNσN

NHIH

δCP

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors + Atmos

NOIO

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors + Atmos

NOIO

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors

NHIH

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors + Atmos

NHIH

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors + Atmos

NOIO

... 1yr ago, 2016: trends were somewhat weaker 14

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.015 0.02 0.025 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND

NHIH

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors

NHIH

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.015 0.02 0.025 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND

NHIH

LBL+Sol+KL +SBL Reac +Atmos

θ23

Δχ2 (IO-NO)

octant

+1.1 +1.1 +3.6

12θ2sin0.25 0.30 0.35

0

1

2

3

4

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03 0.04

2 eV -5/102mδ6.5 7.0 7.5 8.0 8.50

1

2

3

4

2 eV -3/102m∆2.0 2.2 2.4 2.6 2.8

π/δ0.0 0.5 1.0 1.5 2.0

LBL Acc + Solar + KL + SBL Reactors

σNσN

NHIH

Currently: ~2σ hints in favor of Dirac CPV, NO, and non-maximal θ23 (*)

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors + Atmos

NOIO

12θ2sin0.25 0.30 0.35

0

1

2

3

4

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03 0.04

2 eV -5/102mδ6.5 7.0 7.5 8.0 8.50

1

2

3

4

2 eV -3/102m∆2.0 2.2 2.4 2.6 2.8

π/δ0.0 0.5 1.0 1.5 2.0

LBL Acc + Solar + KL + SBL Reactors

σNσN

NHIH

δCP

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors

NHIH

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors + Atmos

NOIO

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors + Atmos

NOIO

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors + Atmos

NOIO

(*) Latest T2K data (Aug. 2017) not yet included in this fit. Update (2018) of the global analysis with these and other data is in progress

Timewilltellifthesehintswillgrowup!

15

θ23 octant + (non)max

Very personal and subjective rating of such ~2σ hints:

δCP

Δχ2 (IO-NO)

***

**

*

νe/νeappearanceprobab.seemtodifferbyCPV:Veryinteres7ng![Akintoθ13hintsbefore2012]

__

Mass-orderinginforma7onrather“diluted”indata:S7llvague,butstartstobeinteres7ng

Fragile-differentexperimentsnotyetconverging:Degeneracymightstaywithusforquitesome7me...

Hints are “entangled” as subleading effects in νeappearance channel

[They might also be entangled with BSM neutrino physics, if any]

16

0.00 0.010.02 0.030.04 0.050.06 0.070.08 0.09 0.100.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.00 0.01 0.02 0.03 0.04 0.05 0.060.0

0.5

1.0

1.5

2.0

0.00 0.010.02 0.030.04 0.050.06 0.07 0.080.09 0.100.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.00 0.01 0.02 0.03 0.04 0.05 0.060.0

0.5

1.0

1.5

2.0

0.00 0.010.020.03 0.040.05 0.060.07 0.08 0.090.100.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.00 0.01 0.02 0.03 0.04 0.05 0.060.0

0.5

1.0

1.5

2.00.00 0.010.020.03 0.040.05 0.06 0.070.08 0.090.100.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.00 0.01 0.02 0.03 0.04 0.05 0.060.0

0.5

1.0

1.5

2.0

0.00 0.010.02 0.030.04 0.050.06 0.07 0.080.09 0.100.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.00 0.01 0.02 0.03 0.04 0.05 0.060.0

0.5

1.0

1.5

2.0

0.00 0.010.020.03 0.040.05 0.060.07 0.08 0.090.100.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.00 0.01 0.02 0.03 0.04 0.05 0.060.0

0.5

1.0

1.5

2.0LBL Acc + Solar + KL + SBL Reactors + Atmos

13θ2sin 13θ2sin 13θ2sin

13θ2sin 13θ2sin 13θ2sin

π/δπ/δ

σ1σ2σ3

Norm

al Hierarchy

Inverted Hierarchy

[SupplementarytoarXiv:1703.04471]

NO

IO

2overlappingbandsfortwooctants

E.g.:(θ13,δ)covariances

θ13fromreactors(vsaccel.) Impactofatmosphericν

Hintsmay(not)convergebe\erinonemassorderingwrttheother

17

Mass ordering via oscillations

Oscillation experiments can determine the sign of ±Δm2 ...

δm2

δm2

+Δm2 -Δm2

...if they can observe interference of oscill. driven by ±Δm2 with oscill. driven by a quantity Q having known sign. Three options:

Q ~ δm2 medium-baseline reactors (a)

Q ~ GF E Ne matter effects in accel./atmosph. ν (b)

Q ~ GF E Nν self-interaction effects in supernovae (c)

(IO) (NO)

(a)JUNO(b)Atmos:KM3NeT-ORCA,PINGU,HyperK...;Accel.:DUNE,T2HK,...(c)AlloperaFnglow-Edetectors

18

Oscillation experiments can determine the sign of ±Δm2 ...

δm2

δm2

+Δm2 -Δm2

...if they can observe interference of oscill. driven by ±Δm2 with oscill. driven by a quantity Q having known sign. Three options:

(IO) (NO)

Nonoscillation searches may provide further probes of ordering à [independently on δCP and on θ23]

Q ~ δm2 medium-baseline reactors

Q ~ GF E Ne matter effects in accel./atmosph. ν

Q ~ GF E Nν self-interaction effects in supernovae

Mass ordering via oscillations 19

(mβ,mββ,Σ)

βdecay,sensiFvetothe“effecFveelectronneutrinomass”:

0νββdecay:onlyifMajorana.“EffecFveMajoranamass”:

Cosmology:DominantlysensiFvetosumofneutrinomasses:

Note 1: These observables may provide handles to distinguish NO/IO. Note 2: Majorana case gives a new source of CPV (unconstrained) Note 2: The three observables are correlated by oscillation dataà

3ν paradigm: absolute ν masses and observables 20

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

-110 1-310

-210

-110

1

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

10

20

30

40

50

60

70

80

90

100

-310 -210 -110 1-310

-210

-110

1-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

-2.0

-1.5

-1.0

-0.5

0.0

-110 1-310

-210

-110

1

(NH)σ2 (IH)σ2

(eV)Σ (eV)βm

(eV)

ββm

(eV)

βm

Constraints on nonoscillation observables from oscillation data

mββspread due to

Majorana CP phase(s):

accessible in principle [but: large errors on Nuclear Matrix Elements from nuclear modeling]

NOIO

~degenerate for relatively large neutrino masses

21

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

-110 1-310

-210

-110

1

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

10

20

30

40

50

60

70

80

90

100

-310 -210 -110 1-310

-210

-110

1-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

-2.0

-1.5

-1.0

-0.5

0.0

-110 1-310

-210

-110

1

(NH)σ2 (IH)σ2

(eV)Σ (eV)βm

(eV)

ββm

(eV)

βm

β :Mainz+Troitsk

Σ : CMB+LSS 0νββ :KL-Zen, GERDA, EXO, Cuore...

Upper limits on mβ,mββ,Σ(up to some syst.) + osc. constraints

Cosmological data generally prefer the smallest values for the total neutrino mass, and already contribute to put IO “under pressure” à

NOIO

22

Δχ2 (IO-NO)

+1.1 +1.1 +3.6

LBL+Sol+KL +SBL Reac +Atmos +DBD, Cosmo

+3.6 ... +4.4

Smallbutcoherentsteps:N.O.favored...Overallpreferenceat1.9σ - 2.1σ

GrandtotalofIO-NOdifferences:

Thesta^s^calsignificanceofpossiblehintsaboutorderingiscurrentlydebated.

Iftheyarenotfluctua^ons,expect(frac^onal)improvementsinupcomingyears

Dedicatedprojectsareplannedwithreactor,atmospheric,accel.neutrinos...

[See1703.04471fordetaileddiscussion]

23

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

-110 1-310

-210

-110

1

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

10

20

30

40

50

60

70

80

90

100

-310 -210 -110 1-310

-210

-110

1-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

-2.0

-1.5

-1.0

-0.5

0.0

-110 1-310

-210

-110

1

(NH)σ2 (IH)σ2

(eV)Σ (eV)βm

(eV)

ββm

(eV)

βm

β :KATRIN

Σ : Precision Cosmology 0νββ :Upgraded/New expt. (+ NME)

... and on absolute masses. Upper limits on mβ,mββ,Σ in ~10 years ?

Large phase space for discoveries about ν mass and nature. Theoretical challenges: cosmo high accuracy calculations/simulations, NME uncertainties

NOIO

24

25

Once upon a time... all neutrino observations were limited by stat’s, and systematics could be treated as numbers (normalization, bias ...) Now we have as many as O(106) events collected in SBL reactors, and we expect O(105) events in each of JUNO, ORCA, PINGU etc. Systematic errors are no longer “numbers” but become “functions”. Dedicated approaches are needed to deal with such uncertainties. [This transition has already taken place in other fields, such as in parton distribution function fits and precision cosmology forecasts.] Unprecedented challenges are awaiting us in neutrino data analyses: We must be prepared to deal with “functions” which ideally should be known in size, shape, correlations and probability distributions, but in practice may also be partly (if not completely!) unknown.

Oscilla^ons:Aglimpseofupcomingchallenges...

Hard lesson learned from current reactor experiments: An unknown systematic error source (function) δΦ(E), well beyond supposedly-known shape uncertainties!

Now we know its shape, and can correct for it, but residuals do remain: energy-scale uncertainties E à E’(E) (x-axis “stretch”) flux-shape uncertainties Φ (E) à Φ’(E) (y-axis “stretch”)

From S. Jetter (TAU 2014) & J. Cao (TAUP 2015)

Daya Bay data Huber + Mueller uncert.

Daya Bay RENO Double Chooz

26

default

halved

2 3 4 5 6 7 8 90.98

0.99

1.00

1.01

1.02

2 3 4 5 6 7 8 90.8

0.9

1.0

1.1

1.2E (MeV)

E’/E

E (MeV)

Φ’/Φ

Relative 1σ error bands

Recent evaluations of energy-scale and flux-shape errors (reactors)

Dwyer & Langford 2014

B-Z. Hu @ Moriond 2015

E’(E) and Φ’(E) models

Smoothed errors assumed to be linear and symmetric (gaussian)

[Note sawtooth-like spectrum]

27

2 3 4 5 6 7 8 90.8

0.9

1.0

1.1

1.2

2 3 4 5 6 7 8 90.8

0.9

1.0

1.1

1.2

2 3 4 5 6 7 8 90.8

0.9

1.0

1.1

1.2

2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 90.98

0.99

1.00

1.01

1.02

0.98

0.99

1.00

1.01

1.02

0.98

0.99

1.00

1.01

1.02NH true

E’/E

Φ’/Φ

E (MeV) E (MeV) E (MeV)

osc. + norm. + energy scale + flux shape

0

1

2

3

4

5

0 5 10

NH trueosc. + norm.

+ energy scale+ flux shape

σN

T (y)

Energy-scale and flux-shape errors with constrained “size” but unconstrained “shape” can noticeably lower JUNO sensitivity

(Note abscissa prop. to √T)

In addition: sawtooth-like fluctuations may further affect and challenge JUNO performances! Near detector needed? [See next reactor talks]

[SeearXiv:1508.01392]

28

29

Anotherexample:effectofshapeuncertain^esonenergy-anglespectrainORCA

Time (years)

σN

0

5

10

exponential axis

0 5 10

exponential axis

Time (years)

σN

0

5

10

exponential axis

0 5 10

exponential axis

Time (years)

σN

0

5

10

exponential axis

0 5 10

exponential axis

Time (years)

σN

0

5

10

exponential axis

0 5 10

exponential axis

Time (years)

σN

0

5

10

exponential axis

0 5 10

exponential axis

Time (years)

σN

0

5

10

exponential axis

0 5 10

exponential axis

Time (years)

σN

0

5

10

exponential axis

0 5 10

exponential axis

Time (years)

σN

0

5

10

exponential axis

0 5 10

exponential axis

Stat + syst (osc+norm) + resolution (scale,width) + polynomial + uncorrelated

σN

σN

Norm

al orderingInverted ordering

Time (y) Time (y) Time (y) Time (y)

OtherfuncFonaluncertainFesinfutureexpts:differenFalneutrinocross-secFons,nuclearformfactors(includingMA,gA),inhomogeneiFesoflarge-volumedetectors,...

SeearXiv:1708.03022

“Everything we see hides another thing, we always want to see what is hidden by what we see.”

Epilogue

RenéMagri+e:

Starttohavesomehintsonνmassordering.But:unprecedented

challengesbeforewecanreally“see”it!Surprises?

Extra slides

Currentindica^onΔχ2ΙΟ-ΝΟ= 3.6 fromoscill.datastartstobeinteres^ng.

Usefultoseetheeffectofexcluding/includingthisoffsetintheanalysis:

6.5 7 7.5 8 8.50

1

2

3

4

2 2.2 2.4 2.6 2.80

1

2

3

4

0 0.5 1 1.5 20

1

2

3

4

0.25 0.3 0.350

1

2

3

4

0.01 0.015 0.02 0.025 0.030

1

2

3

4

0.3 0.4 0.5 0.6 0.70

1

2

3

4

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2 2.2 2.4 2.6 2.8

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

13θ2sin0.01 0.02 0.03

σN

0

1

2

3

4

σN

0

1

2

3

4

LBL Acc + Solar + KamLAND + SBL Reactors + Atmos

NOIO

6.5 7 7.5 8 8.50

5

10

15

2.4 2.5 2.6 2.70

5

10

15

0 0.5 1 1.5 20

5

10

15

0.25 0.3 0.350

5

10

15

1.8 2 2.2 2.4 2.60

5

10

15

0.3 0.4 0.5 0.6 0.70

5

10

15

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2.4 2.5 2.6 2.7

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

-2/1013θ2sin1.8 2 2.2 2.4 2.6

0

5

10

15

0

5

10

15

Oscillation parameters

NOI O

Twodifferentwaysofmarginalizingovermassordering(s)à

parameterP

Applya“Δχ2cut”toSEPARATEminimainNO,IO....

χ2

(doesnotincludeIO-NOoffsetinformaFon)

parameterP

...orminimizeandexpandoverANYORDERING

χ2

(includesIO-NOoffsetinformaFon)

offset

6.5 7 7.5 8 8.50

5

10

15

2.4 2.5 2.6 2.70

5

10

15

0 0.5 1 1.5 20

5

10

15

0.25 0.3 0.350

5

10

15

1.8 2 2.2 2.4 2.60

5

10

15

0.3 0.4 0.5 0.6 0.70

5

10

15

2 eV-5/102mδ6.5 7 7.5 8 8.5

2 eV-3/102m∆2.4 2.5 2.6 2.7

π/δ0 0.5 1 1.5 2

12θ2sin0.25 0.3 0.35

23θ2sin0.3 0.4 0.5 0.6 0.7

-2/1013θ2sin1.8 2 2.2 2.4 2.6

0

5

10

15

0

5

10

15

Oscillation parameters

NOI O

Oscilla^onparameterranges

1.4− 1.2− 1.0− 0.8− 0.6− 0.4− 0.2− 0.0−3.0−

2.5−

2.0−

1.5−

1.0−

0.5−

0.0

10

20

30

40

50

60

70

80

90

100

23θ 2sin

1−10 1

13θ 2si

n

3−10

2−10

1−10

1

23θ 2sin

1−10 1

13θ 2si

n

3−10

2−10

1−10

1Oscillations

SeparateNO IO,

)σ and 3σ(2

AnyOrdering

(eV)Σ (eV)Σ

(eV)

ββm

Sumofneutrinomasses(Cosmology)

EffecFveMajoranaMass(DB

D)

Absoluteneutrinomassobservables

spreadfromMajoranaCPVphases

0νββ Cosmo

yr)25 (101/2T

0 5 10 15 20 25 30 35 40

2 χ∆

0

1

2

3

4

5

6

7

8

9

10KamLAND-Zen Phase-I

KamLAND-Zen Phase-II

KamLAND-Zen Combined

EXO-200 (2014)

KamLAND-Zenhalf-lifelimits

+NMELikelihoodbasedon:E.L.,A.Rotunno,F.Simkovic,arXiv:1506.04058

Currentleading0νββconstraints

2−10 1−100

1

2

3

4

5

6

7

8

9

10

(eV)ββm

(KamLAND-Zen)ββν0

sub-eV

1.4− 1.2− 1.0− 0.8− 0.6− 0.4− 0.2− 0.0−3.0−

2.5−

2.0−

1.5−

1.0−

0.5−

0.0

20

40

60

80

100

120

140

160

180

23θ 2sin

1−10 1

13θ 2si

n

3−10

2−10

1−10

1

23θ 2sin

1−10 1

13θ 2si

n

3−10

2−10

1−10

1ββνOscill. + 0

SeparateNO IO,

AnyOrdering

(eV)Σ (eV)Σ

(eV)

ββm

Analysisofvariousdatasetswithinstandard(6-param.)ΛCDMmodelaugmentedwithΣplusonepossible1extraparameterAlens,toaccountforsyst’sornonstandardeffects[Alens>1maybetypicallytradedforhighervaluesofthesumofneutrinomassΣ]

Code:CosmoMCwithNO/IOop^onsexplicitlyincludedinΣ, viathetwomass2differences

àunphysicalspectraofneutrinomasses(e.g.,Σ =0)notallowedbyconstrucFon.àexpectsmallNO-IOdifferencesatlowΣ,butvanishingathighΣ(degeneratespectrum)

Cosmologicalconstraints(circa2017)

Cosmologicalconstraints(circa2017)

Analysisofvariousdatasetswithinstandard(6-param.)ΛCDMmodelaugmentedwithΣplusonepossible1extraparameterAlens,toaccountforsyst’sornonstandardeffects[Alens>1maybetypicallytradedforhighervaluesofthesumofneutrinomassΣ]

Code:CosmoMCwithNO/IOop^onsexplicitlyincludedinΣ, viathetwomass2differences

àunphysicalspectraofneutrinomasses(e.g.,Σ =0)notallowedbyconstrucFon.àexpectsmallNO-IOdifferencesatlowΣ,butvanishingathighΣ(degeneratespectrum)

ResultsonΣ (upperbounds)andonΔχ2ΙΟ-ΝΟ:

χ2profileforNO,IOinrepresenta^vecases

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

1

2

3

4

5

6

7

8

9

10

#10

#1

#9#6

Cosmology

(eV)Σ

IO

NO

convergenceofNO,IOcurvesathighΣ

bifurca^onofNO,IOcurvesatlowΣ

Thresholds:Σ>0.06eV(NO) Σ>0.10eV(IO) Σ=0:notallowed

bestfitΣ maybeabovethreshold

Grandtotal:combina^onofoscilla^on+nonoscilla^ondata(withincreasinglystrongcosmologicalconstraints)

1.4− 1.2− 1.0− 0.8− 0.6− 0.4− 0.2− 0.0−3.0−

2.5−

2.0−

1.5−

1.0−

0.5−

0.0

10

20

30

40

50

60

70

80

90

100

23θ 2sin

1−10 1

13θ 2si

n

3−10

2−10

1−10

1

23θ 2sin

1−10 1

13θ 2si

n

3−10

2−10

1−10

1Oscillations

SeparateNO IO,

)σ and 3σ(2

AnyOrdering

(eV)Σ (eV)Σ

(eV)

ββm

1.4− 1.2− 1.0− 0.8− 0.6− 0.4− 0.2− 0.0−3.0−

2.5−

2.0−

1.5−

1.0−

0.5−

0.0

20

40

60

80

100

120

140

160

180

23θ 2sin

1−10 1

13θ 2si

n

3−10

2−10

1−10

1

23θ 2sin

1−10 1

13θ 2si

n

3−10

2−10

1−10

1ββνOscill. + 0

SeparateNO IO,

AnyOrdering

(eV)Σ (eV)Σ

(eV)

ββm

1.4− 1.2− 1.0− 0.8− 0.6− 0.4− 0.2− 0.0−3.0−

2.5−

2.0−

1.5−

1.0−

0.5−

0.0

20

40

60

80

100

120

140

160

180

23θ 2sin

1−10 1

13θ 2si

n

3−10

2−10

1−10

1

23θ 2sin

1−10 1

13θ 2si

n

3−10

2−10

1−10

1 + CosmoββνOscill. + 0 #10

SeparateNO IO,

AnyOrdering

(eV)Σ (eV)Σ

(eV)

ββm

[Casewith“conservaFve”boundsfromcosmology]

1.4− 1.2− 1.0− 0.8− 0.6− 0.4− 0.2− 0.0−3.0−

2.5−

2.0−

1.5−

1.0−

0.5−

0.0

20

40

60

80

100

120

140

160

180

200

23θ 2sin

1−10 1

13θ 2si

n

3−10

2−10

1−10

1

23θ 2sin

1−10 1

13θ 2si

n

3−10

2−10

1−10

1 + CosmoββνOscill. + 0 #9

SeparateNO IO,

AnyOrdering

(eV)Σ (eV)Σ

(eV)

ββm

[RHSplot(innerredcurve)showshowacosmological“claim”ofΣ>0 couldlooklike]

1.4− 1.2− 1.0− 0.8− 0.6− 0.4− 0.2− 0.0−3.0−

2.5−

2.0−

1.5−

1.0−

0.5−

0.0

20

40

60

80

100

120

140

160

180

200

23θ 2sin

1−10 1

13θ 2si

n

3−10

2−10

1−10

1

23θ 2sin

1−10 1

13θ 2si

n

3−10

2−10

1−10

1 + CosmoββνOscill. + 0 #6

SeparateNO IO,

AnyOrdering

(eV)Σ (eV)Σ

(eV)

ββm

[Casewith“aggressive”boundsfromcosmology]

Δχ2 (IO-NO)

+1.1 +1.1 +3.6

LBL+Sol+KL +SBL Reac +Atmos +DBD, Cosmo

+3.6 ... +4.4

Smallbutcoherentsteps:N.O.favored...Overallpreferenceat1.9σ - 2.1σ

GrandtotalofIO-NOdifferences:

Thesta^s^calsignificanceofpossiblehintsaboutorderingiscurrentlydebated.Iftheyarenotfluctua^ons,expect(frac^onal)improvementsinupcomingyearsDedicatedprojectsareplannedwithreactor,atmospheric,acceleratorneutrinos

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

-110 1-310

-210

-110

1

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

10

20

30

40

50

60

70

80

90

100

-310 -210 -110 1-310

-210

-110

1-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

-2.0

-1.5

-1.0

-0.5

0.0

-110 1-310

-210

-110

1

(NH)σ2 (IH)σ2

(eV)Σ (eV)βm

(eV)

ββm

(eV)

βm

With “dreamlike” and converging data one could, e.g.

Check3νconsistency…

IdenFfythehierarchy…

ProbetheMajoranaphase(s)…

Determinethemassscale…

27

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

-110 1-310

-210

-110

1

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

10

20

30

40

50

60

70

80

90

100

-310 -210 -110 1-310

-210

-110

1-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

-2.0

-1.5

-1.0

-0.5

0.0

-110 1-310

-210

-110

1

(NH)σ2 (IH)σ2

(eV)Σ (eV)βm

(eV)

ββm

(eV)

βm

But alternative situations (surprises!) might also occur....

?

?

something wrong ?

new physics ?

why the mismatch ?

28

Physics beyond “3 light ν” should always be kept in mind, e.g., in neutrinoless double beta decay:

u e e u

W W ν

Standard

u e e u

W W N

Heavyν

u e e u

Kaluza-Klein

W W ν(n)

u e e u

WR,L

νL,R RHCλ,ηλ=RHhad,η=LHhad

WR,L

e u u e

u u g

SUSYg

~ ~ ~

~

p e e p

π

SUSYπ

π SUSY

29

More on known oscillation parameters: sinergyonΔm2

0.2 0.3 0.4 0.5 0.6 0.7 0.82.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

0

50

100

150

200

250

300

350

400

450

23θ2sin

0.3 0.4 0.5 0.6 0.7

2 e

V3

10

× m

^2∆

2.0

2.2

2.4

2.6

2.8

0.2 0.3 0.4 0.5 0.6 0.7 0.82.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

0

50

100

150

200

250

300

350

400

450

23θ2sin

0.3 0.4 0.5 0.6 0.7

2 e

V3

10

× m

^2∆

2.0

2.2

2.4

2.6

2.8

0.2 0.3 0.4 0.5 0.6 0.7 0.82.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

0

50

100

150

200

250

300

350

400

450

23θ2sin

0.3 0.4 0.5 0.6 0.7

2 e

V3

10

× m

^2∆

2.0

2.2

2.4

2.6

2.80.2 0.3 0.4 0.5 0.6 0.7 0.82.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

0

50

100

150

200

250

300

350

400

450

23θ2sin

0.3 0.4 0.5 0.6 0.7

2 e

V3

10

× m

^2∆

2.0

2.2

2.4

2.6

2.8

0.2 0.3 0.4 0.5 0.6 0.7 0.82.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

0

50

100

150

200

250

300

350

400

450

23θ2sin

0.3 0.4 0.5 0.6 0.7

2 e

V3

10

× m

^2∆

2.0

2.2

2.4

2.6

2.8

0.2 0.3 0.4 0.5 0.6 0.7 0.82.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

0

50

100

150

200

250

300

350

400

450

23θ2sin

0.3 0.4 0.5 0.6 0.7

2 e

V3

10

× m

^2∆

2.0

2.2

2.4

2.6

2.8LBL Acc + Solar + KL + SBL Reactors + Atmos

23θ2sin 23θ2sin 23θ2sin

23θ2sin 23θ2sin 23θ2sin

2 e

V-3

/10

2m

∆2

eV

-3/1

02

m∆

σ1σ2σ3

Norm

al Hierarchy

Inverted Hierarchy

Norm

alOrdering

InvertedOrdering

EachofthesethreedatasetscontributestoconstrainΔm2

12

0.2 0.3 0.4 0.5 0.6 0.7 0.80.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.3 0.4 0.5 0.6 0.70.0

0.5

1.0

1.5

2.0

0.2 0.3 0.4 0.5 0.6 0.7 0.80.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.3 0.4 0.5 0.6 0.70.0

0.5

1.0

1.5

2.0

0.2 0.3 0.4 0.5 0.6 0.7 0.80.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.3 0.4 0.5 0.6 0.70.0

0.5

1.0

1.5

2.00.2 0.3 0.4 0.5 0.6 0.7 0.80.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.3 0.4 0.5 0.6 0.70.0

0.5

1.0

1.5

2.0

0.2 0.3 0.4 0.5 0.6 0.7 0.80.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.3 0.4 0.5 0.6 0.70.0

0.5

1.0

1.5

2.0

0.2 0.3 0.4 0.5 0.6 0.7 0.80.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.3 0.4 0.5 0.6 0.70.0

0.5

1.0

1.5

2.0LBL Acc + Solar + KL + SBL Reactors + Atmos

23θ2sin 23θ2sin 23θ2sin

23θ2sin 23θ2sin 23θ2sin

π/δπ/δ

σ1σ2σ3

Norm

al Hierarchy

Inverted Hierarchy

SupplementarytoarXiv:1703.04471