Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays Intro to the...

52
Igor V. Moskalenko Igor V. Moskalenko (Stanford) (Stanford) Challenges in Astrophysics Challenges in Astrophysics of CR (knee--) & of CR (knee--) & γ γ -rays -rays Intro to the relevant physics Some of the challenges… Modeling of the CR propagation and diffuse emission Perspectives: Pamela, GLAST and other near future missions
  • date post

    15-Jan-2016
  • Category

    Documents

  • view

    218
  • download

    0

Transcript of Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays Intro to the...

Page 1: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko Igor V. Moskalenko (Stanford)(Stanford)

Challenges in AstrophysicsChallenges in Astrophysics

of CR (knee--) & of CR (knee--) & γγ-rays-rays

Intro to the relevant physics Some of the challenges… Modeling of the CR propagation and diffuse

emission Perspectives: Pamela, GLAST and other near

future missions

Page 2: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 2 December 12, 2005 TA-seminar/Fermilab

CR Interactions in the Interstellar Medium

ee++--

PPHeHe

CNOCNO

X,X,γγ

gas

gas

ISRF

ee++--

ππ++--

PP__

LiBeBLiBeB

ISMISM

diffusiondiffusion energy losses energy losses reaccelerationreacceleration convectionconvection etc.etc.

π0

synchrotron

IC

bremss

Chandra

GLAST

ACEhelio-modulation

pp

42 sigma (2003+2004 data)

HESS Preliminary

SNR RX J1713-3946SNR RX J1713-3946

PSF

B

HeHeCNOCNO Fl

ux

20 GeV/n

CR species: Only 1 location modulation

ee++--

ππ++--

PAMELABESS

AMS

Page 3: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 3 December 12, 2005 TA-seminar/Fermilab

Elemental Abundances: CR vs. Solar System

CR abundances: ACE

Solar system abundances

LiBeB

CNO

F

Fe

ScTiV

CrMn

Si

Cl

Al

O

Na

S

Long propagation history…

Page 4: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 4 December 12, 2005 TA-seminar/Fermilab

Nuclear component in CR: What we can learn?

Propagation parameters:

Diffusion coeff., halo size, Alfvén speed,

convection velosity…

Energy markers:Reacceleration,

solar modulation

Local medium: Local Bubble

Material & acceleration sites,

nucleosynthesis (r-vs. s-processes)

Stable secondaries:

Li, Be, B, Sc, Ti, V Radio (t1/2~1

Myr): 10Be, 26Al, 36Cl,

54Mn K-capture: 37Ar,49V, 51Cr, 55Fe,

57Co

Short t1/2 radio 14C

& heavy Z>30 Heavy Z>30:

Cu, Zn, Ga, Ge, Rb

Nucleo-

synthesis:

supernovae,

early universe,

Big Bang…

Solar

modulation

Diffuse γ-raysGalactic,

extragalactic: blazars, relic

neutralino

Dark Matter (p,đ,e+,γ)-

Page 5: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 5 December 12, 2005 TA-seminar/Fermilab

Diffuse Galactic Gamma-ray Diffuse Galactic Gamma-ray EmissionEmission

~80% of total Milky Way luminosity at HE !!!

Tracer of CR (p, e−) interactions in the ISM (π0,IC,bremss):o Study of CR species in distant locations (spectra & intensities)

CR acceleration (SNRs, pulsars etc.) and propagationo Emission from local clouds → local CR spectra

CR variations, Solar modulationo May contain signatures of exotic physics (dark matter etc.)

Cosmology, SUSY, hints for accelerator experimentso Background for point sources (positions, low latitude sources…)

Besides:o “Diffuse” emission from other normal galaxies (M31, LMC,

SMC) Cosmic rays in other galaxies !

o Foreground in studies of the extragalactic diffuse emissiono Extragalactic diffuse emission (blazars ?) may contain

signatures of exotic physics (dark matter, BH evaporation etc.)Calculation requires knowledge of CR (p,e) spectra in the entire Galaxy

Page 6: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 6 December 12, 2005 TA-seminar/Fermilab

Transport Equations ~90 (no. of CR species)

ψψ((rr,p,t),p,t) – – density per total momentum

df

Vpdt

dp

p

ppppDp

p

Vxx

D

prqt

tpr

3

1

22

][

),(),,(

sources (SNR, nuclear reactions…)sources (SNR, nuclear reactions…)

convection convection (Galactic wind)

diffusiondiffusion

diffusive diffusive reacceleration reacceleration

(diffusion in the momentum space)

E-lossE-loss

fragmentationfragmentation radioactive decayradioactive decay

+ boundary conditions

Page 7: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 7 December 12, 2005 TA-seminar/Fermilab

CR Propagation: Milky Way Galaxy

Halo

Gas, sources

100

pc 40 kpc

4-12

kpc

0.1-0.01/ccm

1-100/ccm

Intergalactic space

1 kpc ~ 3x1018 cm

R Band image of NGC8911.4 GHz continuum (NVSS), 1,2,…64 mJy/ beam

Optical image: Cheng et al. 1992, Brinkman et al. 1993Radio contours: Condon et al. 1998 AJ 115, 1693

NGC891

Sun

“Flat halo” model (Ginzburg & Ptuskin 1976)

Halo

Page 8: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 8 December 12, 2005 TA-seminar/Fermilab

A Model of CR Propagation in the Galaxy

Gas distribution (energy losses, Gas distribution (energy losses, ππ00, brems), brems)

Interstellar radiation field (IC, eInterstellar radiation field (IC, e±± energy losses) energy losses)

Nuclear & particle production cross sectionsNuclear & particle production cross sections

Gamma-ray production: brems, IC, Gamma-ray production: brems, IC, ππ00

Energy losses: Energy losses: ionization, Coulomb, brems, IC, synchionization, Coulomb, brems, IC, synch

Solve transport equations for all CR speciesSolve transport equations for all CR species

Fix propagation parametersFix propagation parameters

“Precise” Astrophysics

Page 9: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 9 December 12, 2005 TA-seminar/Fermilab

How It Works: Fixing Propagation Parameters

Using secondary/primary nuclei ratio & flux:•Diffusion coefficient and its index•Propagation mode and its parameters

(e.g., reacceleration VA, convection Vz)

Radioactive isotopes:

Galactic halo size Zh

Zh increase

B/C

Be10/Be9

Inte

rste

llar

Ek, MeV/nucleon

Ek, MeV/nucleon

E2 Flux

Carbon

Ek, GeV/nucleon

Page 10: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 10 December 12, 2005 TA-seminar/Fermilab

Peak in the Secondary/Primary Ratio

• Leaky-box model: fitting path-length distribution -> free function

B/C

• Diffusion models: Diffusive reacceleration Convection Damping of interstellar

turbulence Etc.

Accurate measurements in a wide energy range may help to distinguish between the models

EEkk, MeV/nucleon, MeV/nucleon

too sharp max?

Page 11: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 11 December 12, 2005 TA-seminar/Fermilab

Distributed Stochastic Reacceleration

Fermi 2-nd order mechanism

BB

Scattering on magnetic turbulences Dpp~ p2Va

2/D

D ~ vR1/3 - Kolmogorov spectrum

Icr

E

strongreaccelerati

onweakreacceleration

ΔE

Simon et al. 1986Seo & Ptuskin

1994

1/3

Dxx = 5.2x1028 (R/3 GV)1/3cm-2 s-1

Va = 36 km s-1

γ ~ R-δ, δ=1.8/2.4 below/above 4 GV

Page 12: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 12 December 12, 2005 TA-seminar/Fermilab

Convection

Galactic wind

Escape length

Xe

E

vR-0.6

wind orturbulentdiffusion

resonantdiffusion

Jones 1979

problem: too broad sec/prim peak

D~R0.

6

Dxx = 2.5x1028 (R/4 GV)0.6cm-2 s-1

dV/dz = 10 km s-1 kpc-1

γ ~ R-δ, δ=2.46/2.16 below/above 20 GV

Page 13: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 13 December 12, 2005 TA-seminar/Fermilab

Damping of Interstellar Turbulence

p

l(p)

Iroshnikov-Kraichnan cascade:

Kolmogorov cascade:

W(k)

k

dissipation

1/1012cm1/1020cm

Simplified case:

• 1-D diffusion• No energy losses

Mean free path

nonlinearcascade

Ptuskin et al. 2003, 2005

Page 14: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 14 December 12, 2005 TA-seminar/Fermilab

LiBeB: Major Production Channels

Propagated Abundance * Cross-sectionPropagated Abundance * Cross-section

Be B

C

Li

N

OLi6

79 10

1113

1514

•Well defined (65%):C12, O16 ->LiBeBN14 -> Be7

(see Moskalenko & Mashnik 28 ICRC, 2003)

•Few measurements:C13,N -> LiBeBB -> BeB

•Unknown:LiBeB,C13,N -> LiBeB

“Tertiary” reactions also important! -35%

12 16

A=

Page 15: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 15 December 12, 2005 TA-seminar/Fermilab

Effect of Cross Sections: Radioactive Effect of Cross Sections: Radioactive SecondariesSecondaries

Different Different size from different ratios…size from different ratios…

Zhalo,kpc

STST

WW

2727Al+pAl+p2626AlAl

•ErrorsErrors in CR measurements (HE & LE) in CR measurements (HE & LE)•ErrorsErrors in production cross sections in production cross sections•ErrorsErrors in the lifetime estimates in the lifetime estimates•DifferentDifferent origin of elements (Local origin of elements (Local Bubble ?)Bubble ?)

natnatSi+pSi+p2626AlAl

WW

STST

TT1/21/2==??

Ek, MeV/nucleon

Page 16: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 16 December 12, 2005 TA-seminar/Fermilab

Wherever you look, the GeV -ray excess is there !

4a-f

EGRET dataExcess: x2

Page 17: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 17 December 12, 2005 TA-seminar/Fermilab

Reacceleration Model vs. Plain Reacceleration Model vs. Plain DiffusionDiffusion

Plain Diffusion

(Dxx~β-3 R0.6)

DiffusiveReacceleration

B/C ratio

Antiproton flux

Antiproton flux

B/C ratio

Excess: x2

Page 18: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 18 December 12, 2005 TA-seminar/Fermilab

Positron Excess ?

HEAT (Beatty et al. 2004)

GALPROP

GALPROP

1E, GeV

10

e+/e e+/e

HEAT 2000 HEAT 1994-95

HEAT combined

1E, GeV

10

Q: Are all the excesses connected?Q: Are all the excesses connected?

A: “Yes” and “No”A: “Yes” and “No”

Same progenitor (CR p or DM) for pbars, e+’s, γ’s

Systematic errors of different detectors

E > 6 GeV

Excess: 20%

Page 19: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 19 December 12, 2005 TA-seminar/Fermilab

CR Source Distribution

SNR source

The CR source (SNRs, pulsars) distribution is too narrow to match the CR distribution in the Galaxy assuming XCO=N(H2)/WCO=const (CO is a tracer of H2)

Lorimer 2004

PulsarsCR afterpropagation

diffuse γ-raydistribution

Page 20: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 20 December 12, 2005 TA-seminar/Fermilab

CR Abundances at LE & HE (ACE vs HEAO-3)

Fitting to measured CR abundances in the wide energy range (~0.1 – 30 GeV) is problematic.

May indicate:• systematic or cross-

calibration errors• different origin of LE

and HE CR

=(Calcs-Exp)/Exp

Fit quality

Relat. deviation

Page 21: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 21 December 12, 2005 TA-seminar/Fermilab

Hypotheses…

Provide Provide good agreementgood agreement with all with all data (diffuse gammas, pbars, e+)data (diffuse gammas, pbars, e+) CR intensity variationsCR intensity variations Dark Matter signals Dark Matter signals

Other possibilities:Other possibilities:

Harder CR spectrum (protons, electrons) Harder CR spectrum (protons, electrons) – deviates – deviates limits from pbars, gamma-ray profileslimits from pbars, gamma-ray profiles

Influence of the Local Bubble (local component)Influence of the Local Bubble (local component) – – helps with pbars, but doesn’t help with diffuse helps with pbars, but doesn’t help with diffuse gammasgammas

Page 22: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 22 December 12, 2005 TA-seminar/Fermilab

Diffuse emission models

0.5-1 GeV

>0.5 GeV

Dark MatterCosmic Ray

Spectral VariationsEGRET “GeV Excess”

There are two possible BUT fundamentally different explanations of the excess, in terms of exotic and traditional physics:

Dark MatterCR spectral variations

Both have their pros & cons.

from Strong et al. ApJ (2004)from de Boer et al. A&A (2005)

from Hunter et al. ApJ (1997)

Page 23: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 23 December 12, 2005 TA-seminar/Fermilab

CR Variations in Space & Time

Historical variations Historical variations of CR of CR intensityintensity: : ~40kyr~40kyr ( (1010Be in South Polar ice), Be in South Polar ice), ~2.8Myr ~2.8Myr ((6060Fe in deep sea FeMn Fe in deep sea FeMn crust)crust)

Konstantinov et al. 1990

Electron/positron energy losses

Different “collecting” areas A vs. p (σ~30 mb)(different sources ?)

SN

R n

um

ber

den

sit

y

R, kpc

sun

sun

More frequent SN in the spiral arms

Page 24: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 24 December 12, 2005 TA-seminar/Fermilab

Electron Fluctuations/SNR stochastic events

GeV electrons 100 TeV electrons

GALPROP/Credit S.Swordy

Energy losses

107 yr

106 yr

Bremsstrahlung

1 TeV

Ionization

Coulomb

IC, synchrotron

1 GeV

Ekin, GeV

E(d

E/d

t)-1,y

r

Electron energy loss timescale:

1 TeV: ~300 kyr 100 TeV: ~3 kyr

Page 25: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 25 December 12, 2005 TA-seminar/Fermilab

GeV excess: Optimized/Reaccleration model

Uses Uses all skyall sky and antiprotons & gammas and antiprotons & gammas to fix the nucleon and electron spectrato fix the nucleon and electron spectra

Uses Uses antiprotonsantiprotons to fix to fix the the intensityintensity of CR nucleons @ HE of CR nucleons @ HE

Uses Uses gammasgammas to adjust to adjust the nucleon spectrum at LEthe nucleon spectrum at LE the the intensity intensity of the CR electrons of the CR electrons

(uses also synchrotron index)(uses also synchrotron index)

Uses EGRET data Uses EGRET data up to 100 GeVup to 100 GeV

protonsprotonselectronselectrons

x4x4

x1.8

antiprotonsantiprotons

EEkk, GeV, GeV

EEkk, GeV, GeV

EEkk, GeV, GeV

pbarse+ -fluxγ-rays

Page 26: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 26 December 12, 2005 TA-seminar/Fermilab

Secondary e± are seen in γ-rays !

Lots of new effects !

Improves an agreement at LE

brems

IC

Heliosphere: e+/e~0.2

electronselectrons

positronspositrons

sec.

Page 27: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 27 December 12, 2005 TA-seminar/Fermilab

Diffuse Gammas at Different Sky RegionsDiffuse Gammas at Different Sky Regions

Intermediate latitudes:l=0°-360°,10°<|b|<20°

Outer Galaxy:l=90°-270°,|b|<10°

Intermediate latitudes:l=0°-360°,20°<|b|<60°

Inner Galaxy:l=330°-30°,|b|<5°

Hunter et al. region:l=300°-60°,|b|<10°

l=40°-100°,|b|<5°

corrected

Milagro

Page 28: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 28 December 12, 2005 TA-seminar/Fermilab

Longitude Profiles |b|<5Longitude Profiles |b|<5°°

50-70 MeV

2-4 GeV

0.5-1 GeV

4-10 GeV

Page 29: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 29 December 12, 2005 TA-seminar/Fermilab

Latitude Profiles: Inner Galaxy

50-70 MeV 2-4 GeV0.5-1 GeV

4-10 GeV 20-50 GeV

Page 30: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 30 December 12, 2005 TA-seminar/Fermilab

Latitude Profiles: Outer Galaxy

50-70 MeV

2-4 GeV

0.5-1 GeV

4-10 GeV

Page 31: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 31 December 12, 2005 TA-seminar/Fermilab

Anisotropic Inverse Compton Scattering

Electrons in the halo see anisotropic radiation Observer sees mostly head-on collisions

e-

e-

head-on:large boost &more collisions

γγ

small boost &less collisions

γ

sun

Energy density

Z, kpc

R=4 kpc

Important @ high

latitudes !

Page 32: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 32 December 12, 2005 TA-seminar/Fermilab

Extragalactic Gamma-Ray BackgroundExtragalactic Gamma-Ray Background

Predicted vs. observedPredicted vs. observed

E, MeVE, MeV

EE22xFxF

Sreekumar et al. 1998Sreekumar et al. 1998

Strong et al. 2004Strong et al. 2004Elsaesser & Mannheim,

astro-ph/0405235

•Blazars•Cosmological neutralinos

EGRB in differentdirections

Page 33: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 33 December 12, 2005 TA-seminar/Fermilab

Distribution of CR Sources & Gradient in the CO/H2

CR distribution from diffuse gammas (Strong & Mattox 1996)

SNR distribution (Case &Bhattacharya 1998)

sun

XXCOCO=N(H=N(H22)/W)/WCOCO::

Histo –This work, Strong et al.’04----- -Sodroski et al.’95,’971.9x1020 -Strong & Mattox’96~Z-1 –Boselli et al.’02~Z-2.5 -Israel’97,’00, [O/H]=0.04,0.07 dex/kpc

Pulsar distribution Lorimer 2004

Page 34: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 34 December 12, 2005 TA-seminar/Fermilab

Again Diffuse Galactic Gamma Rays

More IC in the GC –better

agreement !

The pulsar distribution vs. R falls too fast OR

larger H2/CO gradient

Very good agreement !Very good agreement !

2-4 GeV

Page 35: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 35 December 12, 2005 TA-seminar/FermilabE.Bloom’05

Page 36: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 36 December 12, 2005 TA-seminar/Fermilab

Matter, Dark Matter, Dark Energy…

Ω ≡ ρ/ρcrit

Ωtot =1.02 +/−0.02

ΩMatter =4.4%+/−0.4%

ΩDM =23% +/−4%

ΩVacuum =73% +/−4%“Supersymmetry is a mathematically beautiful theory,

and would give rise to a very predictive scenario, if it is not broken in an unknown way which unfortunately introduces a large number of unknown parameters…”

Lars Bergström (2000)

SUSY DM candidate has also other reasons to exist -particle physics…

Page 37: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 37 December 12, 2005 TA-seminar/Fermilab

Where is the DM ?!

What (flavors): Neutrinos ~ visible matter Super-heavy relics: “wimpzillas” Axions Topological objects “Q-balls” Neutralino-like, KK-like

Where (places): Galactic halo, Galactic center The sun and the Earth

How (tools): Direct searches

– low-background experiments (DAMA, EDELWEISS)

– neutrino detectors (AMANDA/IceCUBE)

– Accelerators (LHC) Indirect searches

– CR, γ’s (PAMELA,GLAST,BESS)

from E.Bloom presentation

Page 38: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 38 December 12, 2005 TA-seminar/Fermilab

Example “Global Fit:” diffuse Example “Global Fit:” diffuse γγ’s, pbars, ’s, pbars, positrons positrons

Look at the combined (pbar,e+,γ) data Possibility of a successful “global fit”

can not be excluded -non-trivial !

pbars

e+

γ

GALPROP/W. de Boer et al. hep-ph/0309029GALPROP/W. de Boer et al. hep-ph/0309029

Supersymmetry: MSSM (DarkSUSY) Lightest neutralino χ0

mχ ≈ 50-500 GeV S=½ Majorana

particles χ0χ0−> p, pbar, e+, e−,

γ

Page 39: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 39 December 12, 2005 TA-seminar/Fermilab

Longitude and Latitude Distr. E >0.5 GeV

In the plane (± 50 in lat.) Out of the plane (± 300 in long..)

Page 40: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 40 December 12, 2005 TA-seminar/Fermilab

x y

z

2003, Ibata et al, Yanny et al.

Outer RingInner Ring

DM halo

diskbulge

Rotation Curvexy

xz

xy

xz

Expected Profile (NFW)

Halo profile

Isothermal Profile

v2M/r=cons.and

M/r3

1/r2

for const.rotation

curve

Observed Profile: EGRET data+ GALPROP

Executive Summary –de Boer et al. astro-ph/0408272

Page 41: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Page Number

PAMELA: Secondary to Primary ratios

plots: M.Simon

LE: sec/prim peak: one instrument -no cross calibration errors

HE: Dxx(R)

Page 42: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 42 December 12, 2005 TA-seminar/Fermilab

PAMELA positrons

A factor of 2 will become statistically significant

Measuring absolute flux not ratio

Solar minimum conditions

After 3 years

Page 43: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 43 December 12, 2005 TA-seminar/Fermilab

PAMELA antiprotons

After 3 years

Page 44: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 44 December 12, 2005 TA-seminar/Fermilab

Page 45: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 45 December 12, 2005 TA-seminar/Fermilab

A.Morselli

Page 46: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 46 December 12, 2005 TA-seminar/Fermilab

GLAST LAT simulations

EGRET intensity (>100 MeV)

LAT simulation (>100 MeV)

|b| < 20°

Seth Digel

Page 47: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 47 December 12, 2005 TA-seminar/Fermilab

GLAST LAT: The Gamma-Ray Sky

EGRET(>100 MeV)

Simulated LAT (>100 MeV, 1 yr)Simulated LAT (>1 GeV, 1 yr)

This is an animation that steps from 1. EGRET (>100 MeV), to 2. LAT (>100 MeV), to 3. LAT (>1 GeV)

Seth Digel

Page 48: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 48 December 12, 2005 TA-seminar/Fermilab

Conclusions I

Accurate measurements of nuclear species in CR, secondary positrons, antiprotons, and diffuse γ-rays simultaneously may provide a new vital information for Astrophysics – in broad sense, Particle Physics, and Cosmology.

Gamma rays: GLAST is scheduled to launch in 2007 – diffuse gamma rays is one of its priority goals

CR species: New measurements at LE & HE simultaneously (PAMELA, Super-TIGER, AMS…)

Hunter et al. region:l=300°-60°,|b|<10°

Dark Matter

Zh increase

Be10/Be9

EEkk, MeV/nucleon, MeV/nucleon

B/C

EEkk, MeV/nucleon, MeV/nucleon

Page 49: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 49 December 12, 2005 TA-seminar/Fermilab

Conclusions II

Antiprotons: PAMELA (2006), AMS (2008) and a new BESS-polar instrument to fly a long-duration balloon mission (in 2004, 2006…), we thus will have more accurate and restrictive antiproton data

HE electrons: Several missions are planned to target specifically HE electrons

In few years we may expect major breakthroughs in Astrophysics and Particle Physics !

CERN Large Hadronic Collider – will address SUSY

Positrons: PAMELA (2006), AMS (2008): accurate and restrictive positron data

Page 50: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 50 December 12, 2005 TA-seminar/Fermilab

Thank you !

Page 51: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 51 December 12, 2005 TA-seminar/Fermilab

Backup slides

Page 52: Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.

Igor V. Moskalenko 52 December 12, 2005 TA-seminar/Fermilab

Isotopic Production Cross Sections of LiBeB

Semi-empirical systematics (Webber, ST) are not always correct.

Results obtained by different groups are often inconsistent and hard to test.

Very limited number of nuclear measurements:

Evaluating the cross section is very laborious and can’t be done without modern nuclear codes.

Use LANL nuclear database and modern computer codes.

W

ST