Metallic Magnetic Calorimeters for spectrometry applications

Post on 28-Feb-2022

6 views 0 download

Transcript of Metallic Magnetic Calorimeters for spectrometry applications

1

Matias RODRIGUES DRTBT09 11/05/2009

Metallic Magnetic Calorimeters for spectrometry applications

Matias RodriguesCEA-Saclay LNHB

DRTBT09 : 6ième école thématiquePerspectives des détecteurs cryogéniques

2

Matias RODRIGUES DRTBT09 11/05/2009

Metallic magnetic calorimeter

• Physical principle

• Choice of the paramagnetic sensor

• The calculation of signal size

• Intrinsic sources of noise

• Detector read out

• SQUID read out and performances

• SQUID-detector coupling

• Optimizations

• Signal to noise ratio

• Fabrication and experimental set-up

3

Matias RODRIGUES DRTBT09 11/05/2009

• Applications

•External sources

• X ray spectrometry

• Gamma ray spectrometry

• Embedded source in the detector

• Activity measurement

• Beta spectrometry

• MARE project

4

Matias RODRIGUES DRTBT09 11/05/2009

Physical principle of metallic

magnetic calorimeters

5

Matias RODRIGUES DRTBT09 11/05/2009

Physical principle of calorimetersEParticle

Gbath

AbsorberSensor or

thermometer

Cabsorber = CElectron T (Metal)CPhonon T3 (Dielectric crystal, superconductor)

A photon with an energy E interacts in the absorber

Temperature rise : ΔT = E / Ctotal

The detector is weakly thermally coupled to a thermal bath

Return to the equilibrium temperature :td = Ctotal / Gbath

DT maximised at low Tbath

ttd

ΔT

PulseT

t

Tbath < 100 mK

6

Matias RODRIGUES DRTBT09 11/05/2009

Physical principle of magnetic calorimeters

Tbath < 100 mK

EParticle

SensorV

SQUID loop

xxB

expressed in units of the magnetic flux quantum, Ф0 = 2.07x10-15 A/m

The sensor is a paramagnetic material, magnetized by an external magnetic field B

The sensor magnetization M is strongly dependent on the temperature

Absorption of a particle with the energy E leads to a temperature rise and a change of M

A magnetization change induces a flux variation DФ in the SQUID loop

absorbersensor

particle

sensor

looploop CC

E

T

MV

r

Gm

r

G

0

Magnetic coupling factor

Thermodynamic quantities of paramagnetic materialf (B, T , Vsensor , x )

7

Matias RODRIGUES DRTBT09 11/05/2009

Thermodynamics quantities for free magnetic moments

Calculation of thermodynamics quantities using statistical physics

Example for localized spin of 1/2 interacting with B

Zeeman Hamiltonian

Two eigen energies

Partition function of a canonical ensemble

Internal energy

Magnetization

Spin heat capacity

B

J

Jn

kTn

eZ

D E

BH Zeeman

DD

Tk

EEN

T

ZTNkNU

BB

B2

tanhln2

sensorTkE

B

Bspin

V

spin CeTk

EkN

T

UC

B

D

D 22

2

cosh

1

2

DD

Tk

E

B

E

V

N

B

U

V

NM

Bsensor

spin

sensor

spin

2tanh

2

8

Matias RODRIGUES DRTBT09 11/05/2009

Magnetization

TkE BD

0

500

1000

1500

2000

0 1 2 3 4 5 6 7

M (A

/m)

JgV

NM BJ

s

13

22

JJTk

Bg

V

NM

B

BJ

s

9

Matias RODRIGUES DRTBT09 11/05/2009

0,0E+00

1,0E-03

2,0E-03

3,0E-03

4,0E-03

0 1 2 3 4 5

cs

pin

(J

/K/m

ole

)Thermodynamics quantities for the signal

0E+00

2E+04

4E+04

6E+04

8E+04

0 1 2 3 4 5

dM

/dT

(A

/m/K

)

ETkB D

2

2

T

B

TkE BeD

Specific heat Schottky anomaly

0,0

0,2

0,4

0,6

0,8

1,0

1,2

0 1 2 3 4 5

Sig

nal

siz

e (

U.A

.)

(Ex. with Cabsorber fixed)

absorberspinspin

sensorCcN

E

T

MVm

Signal

Possibility to use large Cspin and

couple absorber with large Cabsorber

0E+00

2E+04

4E+04

6E+04

8E+04

0 1 2 3 4 5

dM

/dT

(A

/m/K

)

∂M

/ ∂

T

ETkB D

0,0E+00

1,0E-03

2,0E-03

3,0E-03

4,0E-03

0 1 2 3 4 5

cs

pin

(J

/K/m

ole

)

c spin

TkE BeD

2

2

T

B

Magnetization

Signal

m

(U.A

.)

ETkB D

cste1

spinspin

sensorcNT

MV

10

Matias RODRIGUES DRTBT09 11/05/2009

Ideal magnetic calorimeters for spectrometry

Tbath ~ 30 mK

Each application requires a detection efficiency which fixes the absorber heat capacity.

One has to calculate the parameters B, Tbath, x, Vsensor,that maximize the Signal/Noise ratio.

For spectrometry applications one needs a fast rise time and high energy resolution.

Ideal magnetic calorimeters :- Large signal strong dependence of the magnetization on the temperature

No interaction between magnetic momentsNo additional heat capacities

- Fast rise time Strong coupling between spins and the absorber heat capacity

Csensor = Cspin

large Gsensor-absorber

Csensor

~ Cspin

Cabsorber

11

Matias RODRIGUES DRTBT09 11/05/2009

Different choices of magnetic ions and host• Dielectric host

– TmAG:Er, YAG:Er

– CMN, CDPHigh sensitivity but very long rise time due to a weak coupling between magnetic moments and phonons

• Metallic host– LaB6:Er (large additional heat capacity at low T)

– Au:Er (well known, stable)

– Ag:ErReduced sensitivity due to exchange interaction between magnetic moments but fast rise time due to strong coupling between magnetic magnetics moments and conduction electrons

• Semi metallic host (unstudied)

• Semiconductor (unstudied)– Bi2Te3 (Eg = 0,15 eV) doped with Er

12

Matias RODRIGUES DRTBT09 11/05/2009

Signal size forMetallic Magnetic Calorimeter

using Au:Er sensor

13

Matias RODRIGUES DRTBT09 11/05/2009

Magnetic properties of AuEr. Er in cubic symmetry

• Electronic Zeeman interaction

J = 15/2 gJ = 6/5

• Crystal field interaction

JBgH BJ

Zeeman

5s, 5p

Au

Er3+

4f

o

5

o

4

621110

A 1

A 3.0

5544Kr

p

f

r

r

psfd

Γ7

Γ8

8.6~ g

2/1~

S

64 VVJBgH BJ

SBgH B

~~

isotrope

At T < 1 K

eV 1 ~~2 D BgSE B

mT 1 B

B

M

Quantum energy :

14

Matias RODRIGUES DRTBT09 11/05/2009

Exchange interactions

• Dipole – Dipole interaction

Coupling between two localized magnet

• RKKY interaction (Ruderman - Kittel - Kasuya - Yosida)

Interaction between two localized magnetic moments mediates through

the conduction electrons and their magnetic moment (itinerant electrons).

GRKKY = 5.GDipole

RKKY interaction leads to spin glass transition at ~ 1 mK with 300 ppm erbium

minimal Tbath ~ 10 mK

3

320

2

~~3

~~

2~

4ijF

ijjijiji

FB

Dipole

ijrk

rSrSSS

kgH

Interaction between two localized spins Si and Sj

332

4*2

2

222

2

2sin212cos~~

2

41~

ijF

ijFijFijF

ji

Fep

J

Jsf

RKKY

ijrk

rkrkrkSS

kmV

g

ggJH

GRKKY

GDipole

15

Matias RODRIGUES DRTBT09 11/05/2009

Thermodynamic quantities for the signal

ETkB D

∂M

/ ∂

T (

A/m

/K)

ETkB D

c AuE

r(J

/K/m

ole

)

0E+00

1E+04

2E+04

3E+04

4E+04

0 0,5 1 1,5 2

dM

/dT

(A

/m/K

)

0E+00

1E-03

2E-03

3E-03

4E-03

0,0 0,5 1,0 1,5 2,0

Sp

ec

ific

he

at

(J/K

/mo

le)

0,0

0,2

0,4

0,6

0,8

1,0

1,2

0 0,5 1 1,5 2S

ign

al siz

e (

U.A

.)

Specific heat

868 ppm

9,7 mT

ETkB D

Exchange interactions lead to

a reduced of the signal size

AuEr with exchange

AuEr w/o exchange

TkE BD

M (

A/m

)

0

500

1000

1500

2000

0 1 2 3 4

M (

A/m

)

868 ppm

9,7 mT

absorberspinspin

sensorCcN

E

T

MVm

Signal

m

(U.A

.)

Magnetization

Signal

16

Matias RODRIGUES DRTBT09 11/05/2009

T (mK)

c AuE

r(1

04

J m

ol

1 K

1 )

T1 (K 1)

M(A

/m)

Thermodynamic properties of AuEr can be calculated by mean field

approximations or with Monte Carlo simulations.

We can predict the signal size as a function of all the parameters

Magnetization Specific heat

17

Matias RODRIGUES DRTBT09 11/05/2009

Time structure of the signal

18

Matias RODRIGUES DRTBT09 11/05/2009

Cadd

CAu

If we use a gold absorber

• Cspin electronic magnetic moments (Zeeman+exchange)

• Cel conduction electrons of Au:Er (~ 1% of Cspin)

• Cadd : interaction of the nuclear quadrupole moments

of gold with the electric field gradient due to the

presence of Er3+

• CEr168 : hyperfine interactions of the nuclear magnetic

moments of Er168. Using of enriched Er166 or Er167

Heat capacities and thermal conductances

Cel

EParticle

3

234D

aBAu

TNkTNC

/moleJ/K 10.29.7 24

K 4,162D

CEr168

Cspin

Celectron Cspin

Csensor

Tbath ~ 30 mK

Tbath ~ 30 mK

(with enriched Er166)

x = 900 ppm

B ~ 5 mTcAu

mJ/K/mole

cspin

mJ/K/mole

cadd

mJ/K/mole

20 mK 0.015 1.8 ~1/4 cspin

30 mK 0.022 1.4 ~1/5 cspin

Cadd

19

Matias RODRIGUES DRTBT09 11/05/2009

Thermalisation of the particle energy and pulse shape

Cspin

Zeeman+exchange

CaddCelectron

EParticle

tadd ~ 100-300 s

td = Ctotal / GGKapitza ~ 10 nW/K/mm² at 20 mK

Gmetal-metal preferable, >> GKapitza

tspin-e = 0.25 s at 30 mKKorringa relation, tspin-e = k/T, k = 7x10-9 K.s

CaddT0 ~ 30 mK

Csp

in+C

elel

ctro

n

Time (ms)

Pulse

Sig

nal siz

e (

U.A

.)

We suppose heat diffusion through conduction electrons very fast

20

Matias RODRIGUES DRTBT09 11/05/2009

100

102

104

106

108

10-25

10-20

10-15

10-10

10-5

222121 rr

d

ffEfS

tt

t

electronspin

spin

CC

C

Spectr

ale

density (

eV

/Hz)

Frequency (Hz)

12

dt 12

espint

dt

Fourier spectrum of the signal

21

Matias RODRIGUES DRTBT09 11/05/2009

Intrinsic sources of noise

22

Matias RODRIGUES DRTBT09 11/05/2009

Thermodynamic fluctuations of the energy

2

2

21

4

d

dBE

fCTkS

t

t

A simple canonical ensemble with one system.

CTkT

UTkUUU BB

2222

D

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

Frequence (Hz)

Po

we

r sp

ectr

um

(e

V/H

z1

/2) dB CTk t24

ms 1 pJ/K, 1 mK, 30 dCT t

C

dt

EParticle.(t)

T0 ~ 30 mK

12

dt

Low Temperature required!

23

Matias RODRIGUES DRTBT09 11/05/2009

Thermodynamic fluctuations of the energy

22

2

electron

21

4

21

41

,10C1.0 ,

d

d

espin

espin

spinBspin

despinspin

electronspin

spin

ffTCkS

CCC

C

t

t

t

t

tt

Canonical ensemble with two sub systems

(Cadd ignored).

Fundamental limits of metallic magnetic calorimeter :

CspinZeeman+exchange

Celectron

ms 1μs, 25.0

mK, 30 pJ/K, 5.0

e-spin

d

spinelectron TCC

tt

espint

T0 ~ 30 mK

dt

EParticle.(t)

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

Frequence (Hz)

Pow

er

sp

ectr

um

(e

V/H

z1

/2) dspinB TCk t 24

12

dt

espinspinB TCk t 241

12

espint

D

4/1

2

1

14

d

espin

eBspin CTkUt

t

Low Temperature required!

Minimized for Celectron = Cspin

24

Matias RODRIGUES DRTBT09 11/05/2009

Other intrinsic sources of noise

Depends strongly on the way the sensor is coupled to the SQUID

1/f noise of Au:Er sensor

Independent of temperature and proportional to erbium concentration

tzfc

04

1TVkS B

mag 0

SQUID loop

xx

e-

Magnetic Johnson noise, random motion of conduction electrons in metalsfrom the sensor and the absorber

t

z

25

Matias RODRIGUES DRTBT09 11/05/2009

100

101

102

103

104

105

10-15

10-14

10-13

10-12

10-11

10-10

10-9

Total flux noise

1/f from Au:Er

Thermodynamic fluctuations

Johnson noise

T = 30 mK

Cabsorber = 0.5 nJ/K

CAuEr = 0.4 nJ/K

tr = 1 ms

td = 5 ms

Signal size :

d0/dE = 1.7 m0/keV

Flu

x n

ois

e

02

/ H

z

Frequency (Hz)

26

Matias RODRIGUES DRTBT09 11/05/2009

Signal to noise ratio

100

101

102

103

104

105

10-18

10-16

10-14

10-12

10-10

10-8

Signal (U.A)

Noise (U.A)

Signa/Noise

Frequency (Hz)

(U.A

.)

FWHM = 35 eV

(Fundamental limit from thermodynamic fluctuations FWHM = 24 eV)

27

Matias RODRIGUES DRTBT09 11/05/2009

How to read the magnetization of the sensor

28

Matias RODRIGUES DRTBT09 11/05/2009

Hzμ 15.0

mK 300 ... 100 pF, 1 pH, 100

32

0,

min

3

,

SQUID

squidsquid

SQUIDSQUIDBSQUID

S

TC L

CLTkS

Amplification and linearization

Hzμ 15.0 0 HzμΦ 7.1HznV 33.0 0,, elecelecv SSNoise limited by room

temperature electronics

Room temperature electronicsSQUID

SQUID Noise

SQUID

Rfb (150 W6xRfb

35xRfb

sensor

Shunt

resistor

Vs

30 mK 300 K

Limited bandwidth ~ 1MHz

Slew rate < 10/s, rise time ~ 1 s

Maximal signal size ~ 10

1 0

Ib

Vs

29

Matias RODRIGUES DRTBT09 11/05/2009

100

101

102

103

104

105

10-15

10-14

10-13

10-12

10-11

10-10

10-9

Total flux noise

SQUID noise

1/f from Au:Er

Thermodynamic fluctuation

Johnson noise

FWHM = 69 eV, SQUID electronics white noise of 1.7 0 / Hz1/2

(FWHM = 35 eV with a noiseless electronics)

Flu

x n

ois

e

02

/ H

z

Frequency (Hz)

30

Matias RODRIGUES DRTBT09 11/05/2009

Two stage SQUID set up

262628

26

106.0

22

2,

,

107.0 ... 08.0

2

2,

102

2

1,1015.0

1,,

4

GV

S

G

S

V

TRkSS

elecVgB

SQUID

VV

SQUID 2(single or array)

30 mK 30 mK – 4 K Room temperature

1,2

1

2

VRR

MG

VV

Sg

is

HzμΦ 1 to5.0 0, SQUIDS

3 ,μV/Φ 200

HzμV 33.0

50...1

HzμΦ 2 ... 15.0

HzμΦ 15.0

max,02,

,

02,

01,

W

GV

S

R

S

S

elecV

g

Lower power dissipation in the SQUID1 shunts Hzμ 8Hz 1 01, fSQUIDS

SQUID 1

31

Matias RODRIGUES DRTBT09 11/05/2009

100

101

102

103

104

105

10-15

10-14

10-13

10-12

10-11

10-10

10-9

Total flux noise

SQUID noise

1/f from Au:Er

Thermodynamic fluctuations

Johnson noise

FWHM = 45 eV, SQUID electronics white noise of 0.5 0 / Hz1/2

(FWHM = 35 eV with a noiseless electronics)

Flu

x n

ois

e

02

/ H

z

Frequency (Hz)

32

Matias RODRIGUES DRTBT09 11/05/2009

How to couple the magnetization of the sensor

to the SQUID

33

Matias RODRIGUES DRTBT09 11/05/2009

Direct coupling

absorbersensor

sensor

loop CC

E

T

MV

r

G

0

Magnetic coupling factor between the sensor and the SQUID loop

T ≥ Tcryosat

SensorSQUID loop

xx

B

dSQUID ~ 50 m

Advantage• High coupling factor• Easy to realize

Disadvantage

• Josephson junctions are sensitive to BReduce the signal to noise ratio of the SQUID

• Thermal decoupling between bath and SQUID chip• Sensor size and SQUID noise limited by SQUIDloop radius

• Sensitive to magnetic Johnson noise

4343

, SQUIDSQUIDSQUID rLS

SQUID chip

Ibias

34

Matias RODRIGUES DRTBT09 11/05/2009

Tcryostat (mK)

Tsen

so

r(m

K)

35

Matias RODRIGUES DRTBT09 11/05/2009

Flux transformer

Input coilPick-up coil

SQUID

Tbath

winputuppick

SQin

turninLLL

MNG

uppick

uppick

SQUID

w

inputuppick

LS

L

LL

,

0

Advantage• Sensor thermally decouple from SQUID chip• Possibility to read large sensor, required for applications needing a large absorber

Disadvantage• Signal to SQUID noise ratio is smaller by a factor 2at least• Sensitive to magnetic Johnson noise

B

Optimised for

wL

abssens

s

uppick

inmag

CC

E

T

MV

r

GG

0SQUID chip

36

Matias RODRIGUES DRTBT09 11/05/2009

p

AL

LL

MG

meandermeander

inputmeander

SQin

in

2

Meander pick-up coil :

I δI Input coil

sensor

absorber

V

Flux transformer with meander shaped pickup coil

I

I I

Interrupteur

SQUIDInput coil

Al bond wires

Normal at T > 1K

Pick-up coilsAu:Er

Advantage • Advantages of a flux transformer• Insensitive to external magnetic field, Johnson magnetic noise• No external field coil• Gradiometric • Microfabrication (reproducible, serial)Disadvantage

• Large current in the SQUID input coil• Microfabrication (expensive equipements)• Signal size reduced

?

?

B

Gmag

37

Matias RODRIGUES DRTBT09 11/05/2009

Inhomogeneous magnetic field B

IBpGmag 0

Magnetic field B (mT)

Magnetic coupling Gmag (mT)

Pro

bab

ilit

y (

U.A

) magmagmag

magmag

dGGPT

MG

dGGPcVC

VG

pAuErAuErabsorber

AuErin

0

CAuEr Magnetization

sensor

absorber

pw

w = 2 … 5 m

p = 5…10 m

Field distribution

38

Matias RODRIGUES DRTBT09 11/05/2009

Optimization, fabricationand

experimental set-up

39

Matias RODRIGUES DRTBT09 11/05/2009

Optimization

• Tbath as low as possible but > 10 mK and fixed by the

cryostat

• Cabsorber as small as possible but fixed by the

application

• Signal size as large as possible but < 1 0 in the

SQUID loop

• td as long as possible but limited by the count rate

bathopt TB

bathopt Tx 31

Signal absorberC

40

Matias RODRIGUES DRTBT09 11/05/2009

Meander shaped pick-up coil

Heater

1 : Heater

2 : Heater bond pads

3 : Field bond pad

7 : Meander pick-up coil made of Nb

8 : SQUID input coil bond pads

Current of 100 mA required in the meander

Good niobium film quality

1 mm1 mm

41

Matias RODRIGUES DRTBT09 11/05/2009

AuEr sensor

Sputtering of the AuEr

Bad Au:Er Good Au:Er

Good Au:Er at low T

UHV required < 10-8 TorrFlu

x (

0)

42

Matias RODRIGUES DRTBT09 11/05/2009

Wiring

Iheater

Ifield

Ibias

SQUID1

Ibias

Voutput

Ifb

43

Matias RODRIGUES DRTBT09 11/05/2009

Detector stages.

Temperature regulation

with a PID at 15 to 20 mK ± few µK

In the cryostat

Dilution or ADR cryostat

SQUIDs of preamplification :

T reguled between 1.5 and 4.2 K

Thermalisation of the wires and filters

44

Matias RODRIGUES DRTBT09 11/05/2009

ApplicationExternal sources

45

Matias RODRIGUES DRTBT09 11/05/2009

X ray spectrometry

0

2

4

6

8

10

12

14

Dec-99 Nov-01 Oct-03 Sep-05 Aug-07 Jul-09

FW

HM

at

6 k

eV

(e

V)

measured

fundamental limit

T Cabsorber

(pJ/K)

Csensor

(pJ/K)

B

(mT)

/6 keV

(0)

SQUID noise

0/Hz1/2

FWHM

(eV)

30 mK 0.11 0.073 0.39 8 1.4 0.6 0.94

50 mK 0.19 0.067 0.26 12 0.65 0.6 2.2

Absorber: x150x150x3 μm3 95 % detection efficiency at 6 keV

46

Matias RODRIGUES DRTBT09 11/05/2009

SensorsAbsorber

Josephson

junctions

Thermal link

Feedback

coil

200 m

X ray spectrometry

47

Matias RODRIGUES DRTBT09 11/05/2009

Gamma spectrometry

T Cabsorber

(nJ/K)

Csensor

(nJ/K)

I

(mA)

/100

keV

(0)

SQUID noise

0/Hz1/2

FWHM

(eV)

30 mK 0.5 0.41 0.45 80 0.17 0.5 45

Sensor

SQUID

Thermal link

1 mm

MeandersAbsorbeur

= 1.1 mm, h = 340 m

Heat

switch

Absorber: x0.5x0.5x0.3 mm3 60 % intrinsic detection efficiency at 100 keV

48

Matias RODRIGUES DRTBT09 11/05/2009

0

0,2

0,4

0,6

0,8

1

0 50 100 150 200 250 300 350 400

Energy (keV)

Intr

insic

dete

ction e

ffic

iency

Experimental data

Monte Calo simulation Monte Carlo simulation

Gamma spectrometry

Monte Carlo simulations

49

Matias RODRIGUES DRTBT09 11/05/2009Energy (eV)

Co

un

ts p

er

ch

an

ne

l

30300 30800 31300 31800 32300 32800 33300 33800 34300 34800 35300 35800 36300

10

60

100

K2K1

K3

K1

K2

K4

FWHM of

52 eV at 30 keV

and 58 eV at 81 keV

T = 13 mK

Energy spectrum of a 133Ba source

FWHM = 52 eV

50

Matias RODRIGUES DRTBT09 11/05/2009

ApplicationEmbeded sources

51

Matias RODRIGUES DRTBT09 11/05/2009

Absolute activity measurement of 55Fe

Source enclosed inside the absorber

4 p detection geometry

Gold absorber: high stopping power

thickness 12 µm: ≥ 99.9 % absorption

for electrons and photons up to 6.5 keV

high detection efficiency

Au foil

SQUID

loop

sensorabsorber

substrate

B

Au:ErFe source55

52

Matias RODRIGUES DRTBT09 11/05/2009

log (E)

Em

issi

on

pro

ba

bili

tyK capture6539 eV88.53 %

L capture769 eV9.83 %M, N capture

84 eV 1.64 %

_<

X-rays

Augerelectrons

Magnetic

calorimeter

60 %

30 %

98 %

Semiconductor

detector

Liquid scintil-

lation counting

53

Matias RODRIGUES DRTBT09 11/05/2009

Beta spectrometry

Calibration source (57Co)

750 000 counts(3.2 cps)

DE = 750 eV à 122 keV

Using 1x1 mm² meander

pick-up coil

Absorber 800x800x500 m3

54

Matias RODRIGUES DRTBT09 11/05/2009

Advantage• Advantages of a flux transformer• No external field coil• Insensitive to external magnetic field, Johnson magnetic noise• Microfabrication of arrays

Disadvantage

• Large current in the SQUID input coil• Microfabrication

Flux transformer with meander shaped pickup coilI

Meander shapedpick-up coil

SQUID

Input coil

xxp

AL

LL

MG

meandermeander

inputmeander

SQin

in

?

?

B

Gmag

55

Matias RODRIGUES DRTBT09 11/05/2009

MARE project, neutrino massMARE Microcalorimeter Array for a rhenium Experiment

Superconducting absorbers

56

Matias RODRIGUES DRTBT09 11/05/2009

Thank you for attention

57

Matias RODRIGUES DRTBT09 11/05/2009

AgEr could be a better choice below 20 mK

even if the RKKY interaction is stronger than for

AuEr

AuEr

Cadd’ (hyperfine interactions between the

nuclear magnetic moments of Er168)

I = 7/2

Cadd (interaction between the quadrupole

moments of gold and the electric field gradient

due to the presence of Er3+)

58

Matias RODRIGUES DRTBT09 11/05/2009

59

Matias RODRIGUES DRTBT09 11/05/2009

133Ba source

85 kBq

Pb Collimator

Detector stage

Sn Collimator

6 cm

The activity of the source was measured

with a HPGe detector

60

Matias RODRIGUES DRTBT09 11/05/2009

Z = 32 Z = 79

61

Matias RODRIGUES DRTBT09 11/05/2009