Mack C. Atkinson

Post on 01-Oct-2021

0 views 0 download

Transcript of Mack C. Atkinson

Exploring the link between finite nuclei and infinite nuclear matter

Mack C. Atkinson

TRIUMF

Progress in Ab Initio Techniques in Nuclear Physics

arXiv 2001.07231 Mack C. Atkinson TRIUMF 1 / 17

arXiv 2001.07231

Introduction

Fundamental properties of nuclear matter:

1 ρ0 ≈ 0.16 fm−3

2 E0 ≈ −16 MeV

Where do the values for ρ0 and E0 come from?

How does this relate to finite nuclei?

Claim: The value of E0 is not necessarily -16 MeV

arXiv 2001.07231 Mack C. Atkinson TRIUMF 2 / 17

Introduction

Fundamental properties of nuclear matter:1 ρ0 ≈ 0.16 fm−3

2 E0 ≈ −16 MeV

Where do the values for ρ0 and E0 come from?

How does this relate to finite nuclei?

Claim: The value of E0 is not necessarily -16 MeV

arXiv 2001.07231 Mack C. Atkinson TRIUMF 2 / 17

Introduction

Fundamental properties of nuclear matter:1 ρ0 ≈ 0.16 fm−3

2 E0 ≈ −16 MeV

Where do the values for ρ0 and E0 come from?

How does this relate to finite nuclei?

Claim: The value of E0 is not necessarily -16 MeV

arXiv 2001.07231 Mack C. Atkinson TRIUMF 2 / 17

Introduction

Fundamental properties of nuclear matter:1 ρ0 ≈ 0.16 fm−3

2 E0 ≈ −16 MeV

Where do the values for ρ0 and E0 come from?

How does this relate to finite nuclei?

Claim: The value of E0 is not necessarily -16 MeV

arXiv 2001.07231 Mack C. Atkinson TRIUMF 2 / 17

Introduction

Fundamental properties of nuclear matter:1 ρ0 ≈ 0.16 fm−3

2 E0 ≈ −16 MeV

Where do the values for ρ0 and E0 come from?

How does this relate to finite nuclei?

Claim: The value of E0 is not necessarily -16 MeV

arXiv 2001.07231 Mack C. Atkinson TRIUMF 2 / 17

Introduction

Fundamental properties of nuclear matter:1 ρ0 ≈ 0.16 fm−3

2 E0 ≈ −16 MeV

Where do the values for ρ0 and E0 come from?

How does this relate to finite nuclei?

Claim: The value of E0 is not necessarily -16 MeV

arXiv 2001.07231 Mack C. Atkinson TRIUMF 2 / 17

Introduction

Fundamental properties of nuclear matter:1 ρ0 ≈ 0.16 fm−3

2 E0 ≈ −16 MeV

Where do the values for ρ0 and E0 come from?

How does this relate to finite nuclei?

Claim: The value of E0 is not necessarily -16 MeV

arXiv 2001.07231 Mack C. Atkinson TRIUMF 2 / 17

Outline

1 More discussion of nuclear matter

2 Green’s function formalism

3 The dispersive optical model (DOM)

4 Binding energy densities and nuclear matter

arXiv 2001.07231 Mack C. Atkinson TRIUMF 3 / 17

Outline

1 More discussion of nuclear matter

2 Green’s function formalism

3 The dispersive optical model (DOM)

4 Binding energy densities and nuclear matter

arXiv 2001.07231 Mack C. Atkinson TRIUMF 3 / 17

Outline

1 More discussion of nuclear matter

2 Green’s function formalism

3 The dispersive optical model (DOM)

4 Binding energy densities and nuclear matter

arXiv 2001.07231 Mack C. Atkinson TRIUMF 3 / 17

Outline

1 More discussion of nuclear matter

2 Green’s function formalism

3 The dispersive optical model (DOM)

4 Binding energy densities and nuclear matter

arXiv 2001.07231 Mack C. Atkinson TRIUMF 3 / 17

Nuclear Saturation

Nuclear saturation is evident from nuclear charge radii: RA ∝ A1/3

Nuclear charge densities extracted from elastic electron-scattering experiments saturate inthe coreThese experiments revealed that this saturation density is ρ0 ≈ 0.16 fm−3

0

0.04

0.08

0.12

0.16

0 2 4 6 8 10

ρ0

ρ[fm

−3]

r [fm]

Matter Densities

16O40Ca48Ca58Ni

124Sn208Pb

arXiv 2001.07231 Mack C. Atkinson TRIUMF 4 / 17

Nuclear Saturation

Nuclear saturation is evident from nuclear charge radii: RA ∝ A1/3

Nuclear charge densities extracted from elastic electron-scattering experiments saturate inthe core

These experiments revealed that this saturation density is ρ0 ≈ 0.16 fm−3

0

0.04

0.08

0.12

0.16

0 2 4 6 8 10

ρ0

ρ[fm

−3]

r [fm]

Matter Densities

16O40Ca48Ca58Ni

124Sn208Pb

arXiv 2001.07231 Mack C. Atkinson TRIUMF 4 / 17

Nuclear Saturation

Nuclear saturation is evident from nuclear charge radii: RA ∝ A1/3

Nuclear charge densities extracted from elastic electron-scattering experiments saturate inthe core

These experiments revealed that this saturation density is ρ0 ≈ 0.16 fm−3

0

0.04

0.08

0.12

0.16

0 2 4 6 8 10

ρ0

ρ[fm

−3]

r [fm]

Matter Densities

16O40Ca48Ca58Ni

124Sn208Pb

arXiv 2001.07231 Mack C. Atkinson TRIUMF 4 / 17

Nuclear Saturation

Nuclear saturation is evident from nuclear charge radii: RA ∝ A1/3

Nuclear charge densities extracted from elastic electron-scattering experiments saturate inthe coreThese experiments revealed that this saturation density is ρ0 ≈ 0.16 fm−3

0

0.04

0.08

0.12

0.16

0 2 4 6 8 10

ρ0

ρ[fm

−3]

r [fm]

Matter Densities

16O40Ca48Ca58Ni

124Sn208Pb

arXiv 2001.07231 Mack C. Atkinson TRIUMF 4 / 17

Saturation Energy

arXiv 2001.07231 Mack C. Atkinson TRIUMF 5 / 17

BE (A,Z ) = aVA− aSA2/3 − 3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1BE (A,Z ) = aVA− aSA

2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1BE (A,Z ) = aVA−XXXXaSA

2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1BE (A,Z ) = aVA−XXXXaSA

2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc−

XXXXXXXXX

1

2aA(A− 2Z )2A−1

Bethe-Weizsacker 1935

Infinite nuclear matter1 No Coulomb2 No surface3 Symmetric NM

=⇒ E0/A = aV ≈ −16 MeV

E0 is determined empirically (model dependent)

ρ0 ≈ 0.16 fm−3 is determined experimentally

E/A

[MeV

]

pp

W. H. Dickhoff, D. Van Neck MBT Exposed! (2008)

M. Baldo et al., PRC 86, 064001, (2012)

Saturation Energy

arXiv 2001.07231 Mack C. Atkinson TRIUMF 5 / 17

BE (A,Z ) = aVA− aSA2/3 − 3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1

BE (A,Z ) = aVA− aSA2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1BE (A,Z ) = aVA−XXXXaSA

2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1BE (A,Z ) = aVA−XXXXaSA

2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc−

XXXXXXXXX

1

2aA(A− 2Z )2A−1

Bethe-Weizsacker 1935

Infinite nuclear matter1 No Coulomb2 No surface3 Symmetric NM

=⇒ E0/A = aV ≈ −16 MeV

E0 is determined empirically (model dependent)

ρ0 ≈ 0.16 fm−3 is determined experimentally

E/A

[MeV

]

pp

W. H. Dickhoff, D. Van Neck MBT Exposed! (2008)

M. Baldo et al., PRC 86, 064001, (2012)

Saturation Energy

arXiv 2001.07231 Mack C. Atkinson TRIUMF 5 / 17

BE (A,Z ) = aVA− aSA2/3 − 3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1

BE (A,Z ) = aVA− aSA2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1BE (A,Z ) = aVA−XXXXaSA

2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1BE (A,Z ) = aVA−XXXXaSA

2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc−

XXXXXXXXX

1

2aA(A− 2Z )2A−1

Bethe-Weizsacker 1935

Infinite nuclear matter1 No Coulomb2 No surface3 Symmetric NM

=⇒ E0/A = aV ≈ −16 MeV

E0 is determined empirically (model dependent)

ρ0 ≈ 0.16 fm−3 is determined experimentally

E/A

[MeV

]

pp

W. H. Dickhoff, D. Van Neck MBT Exposed! (2008)

M. Baldo et al., PRC 86, 064001, (2012)

Saturation Energy

arXiv 2001.07231 Mack C. Atkinson TRIUMF 5 / 17

BE (A,Z ) = aVA− aSA2/3 − 3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1

BE (A,Z ) = aVA− aSA2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1BE (A,Z ) = aVA−XXXXaSA

2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1BE (A,Z ) = aVA−XXXXaSA

2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc−

XXXXXXXXX

1

2aA(A− 2Z )2A−1

Bethe-Weizsacker 1935

Infinite nuclear matter

1 No Coulomb2 No surface3 Symmetric NM

=⇒ E0/A = aV ≈ −16 MeV

E0 is determined empirically (model dependent)

ρ0 ≈ 0.16 fm−3 is determined experimentally

E/A

[MeV

]

pp

W. H. Dickhoff, D. Van Neck MBT Exposed! (2008)

M. Baldo et al., PRC 86, 064001, (2012)

Saturation Energy

arXiv 2001.07231 Mack C. Atkinson TRIUMF 5 / 17

BE (A,Z ) = aVA− aSA2/3 − 3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1

BE (A,Z ) = aVA− aSA2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1

BE (A,Z ) = aVA−XXXXaSA2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1BE (A,Z ) = aVA−XXXXaSA

2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc−

XXXXXXXXX

1

2aA(A− 2Z )2A−1

Bethe-Weizsacker 1935

Infinite nuclear matter1 No Coulomb

2 No surface3 Symmetric NM

=⇒ E0/A = aV ≈ −16 MeV

E0 is determined empirically (model dependent)

ρ0 ≈ 0.16 fm−3 is determined experimentally

E/A

[MeV

]

pp

W. H. Dickhoff, D. Van Neck MBT Exposed! (2008)

M. Baldo et al., PRC 86, 064001, (2012)

Saturation Energy

arXiv 2001.07231 Mack C. Atkinson TRIUMF 5 / 17

BE (A,Z ) = aVA− aSA2/3 − 3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1BE (A,Z ) = aVA− aSA

2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1

BE (A,Z ) = aVA−XXXXaSA2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1

BE (A,Z ) = aVA−XXXXaSA2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc−

XXXXXXXXX

1

2aA(A− 2Z )2A−1

Bethe-Weizsacker 1935

Infinite nuclear matter1 No Coulomb2 No surface

3 Symmetric NM

=⇒ E0/A = aV ≈ −16 MeV

E0 is determined empirically (model dependent)

ρ0 ≈ 0.16 fm−3 is determined experimentally

E/A

[MeV

]

pp

W. H. Dickhoff, D. Van Neck MBT Exposed! (2008)

M. Baldo et al., PRC 86, 064001, (2012)

Saturation Energy

arXiv 2001.07231 Mack C. Atkinson TRIUMF 5 / 17

BE (A,Z ) = aVA− aSA2/3 − 3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1BE (A,Z ) = aVA− aSA

2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1BE (A,Z ) = aVA−XXXXaSA

2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1

BE (A,Z ) = aVA−XXXXaSA2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc−

XXXXXXXXX

1

2aA(A− 2Z )2A−1

Bethe-Weizsacker 1935

Infinite nuclear matter1 No Coulomb2 No surface3 Symmetric NM

=⇒ E0/A = aV ≈ −16 MeV

E0 is determined empirically (model dependent)

ρ0 ≈ 0.16 fm−3 is determined experimentally

E/A

[MeV

]

pp

W. H. Dickhoff, D. Van Neck MBT Exposed! (2008)

M. Baldo et al., PRC 86, 064001, (2012)

Saturation Energy

arXiv 2001.07231 Mack C. Atkinson TRIUMF 5 / 17

BE (A,Z ) = aVA− aSA2/3 − 3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1BE (A,Z ) = aVA− aSA

2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1BE (A,Z ) = aVA−XXXXaSA

2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1

BE (A,Z ) = aVA−XXXXaSA2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc−

XXXXXXXXX

1

2aA(A− 2Z )2A−1

Bethe-Weizsacker 1935

Infinite nuclear matter1 No Coulomb2 No surface3 Symmetric NM

=⇒ E0/A = aV ≈ −16 MeV

E0 is determined empirically (model dependent)

ρ0 ≈ 0.16 fm−3 is determined experimentally

E/A

[MeV

]

pp

W. H. Dickhoff, D. Van Neck MBT Exposed! (2008)

M. Baldo et al., PRC 86, 064001, (2012)

Saturation Energy

arXiv 2001.07231 Mack C. Atkinson TRIUMF 5 / 17

BE (A,Z ) = aVA− aSA2/3 − 3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1BE (A,Z ) = aVA− aSA

2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1BE (A,Z ) = aVA−XXXXaSA

2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1

BE (A,Z ) = aVA−XXXXaSA2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc−

XXXXXXXXX

1

2aA(A− 2Z )2A−1

Bethe-Weizsacker 1935

Infinite nuclear matter1 No Coulomb2 No surface3 Symmetric NM

=⇒ E0/A = aV ≈ −16 MeV

E0 is determined empirically (model dependent)

ρ0 ≈ 0.16 fm−3 is determined experimentally

E/A

[MeV

]

pp

W. H. Dickhoff, D. Van Neck MBT Exposed! (2008)

M. Baldo et al., PRC 86, 064001, (2012)

Saturation Energy

arXiv 2001.07231 Mack C. Atkinson TRIUMF 5 / 17

BE (A,Z ) = aVA− aSA2/3 − 3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1BE (A,Z ) = aVA− aSA

2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1BE (A,Z ) = aVA−XXXXaSA

2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1

BE (A,Z ) = aVA−XXXXaSA2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc−

XXXXXXXXX

1

2aA(A− 2Z )2A−1

Bethe-Weizsacker 1935

Infinite nuclear matter1 No Coulomb2 No surface3 Symmetric NM

=⇒ E0/A = aV ≈ −16 MeV

E0 is determined empirically (model dependent)

ρ0 ≈ 0.16 fm−3 is determined experimentally

E/A

[MeV

]

pp

W. H. Dickhoff, D. Van Neck MBT Exposed! (2008)

M. Baldo et al., PRC 86, 064001, (2012)

Saturation Energy

arXiv 2001.07231 Mack C. Atkinson TRIUMF 5 / 17

BE (A,Z ) = aVA− aSA2/3 − 3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1BE (A,Z ) = aVA− aSA

2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1BE (A,Z ) = aVA−XXXXaSA

2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc− 1

2aA(A− 2Z )2A−1

BE (A,Z ) = aVA−XXXXaSA2/3 −

HH

HHHH

3

5

Z (Z − 1)

Rc−

XXXXXXXXX

1

2aA(A− 2Z )2A−1

Bethe-Weizsacker 1935

Infinite nuclear matter1 No Coulomb2 No surface3 Symmetric NM

=⇒ E0/A = aV ≈ −16 MeV

E0 is determined empirically (model dependent)

ρ0 ≈ 0.16 fm−3 is determined experimentally

E/A

[MeV

]

pp

W. H. Dickhoff, D. Van Neck MBT Exposed! (2008)

M. Baldo et al., PRC 86, 064001, (2012)

Single-Particle Propagator and the Dyson Equation

arXiv 2001.07231 Mack C. Atkinson TRIUMF 6 / 17

G`j(r , r′;E ) =

∑m

〈ΨA0 | ar`j |ΨA+1

m 〉 〈ΨA+1m | a†r ′`j |ΨA

0 〉E − (EA+1

m − EA0 ) + iη

+∑n

〈ΨA0 | a†r ′`j |ΨA−1

n 〉 〈ΨA−1n | ar`j |ΨA

0 〉E − (EA

0 − EA−1n )− iη

Poles correspond to excitation energies of (A + 1) or (A− 1) nucleus

Numerator like a transition probability to given excitation

Close connection with experimental observables

Perturbation expansion of G leads to the Dyson equation

If the irreducible self-energy (Σ∗) is known, then so is G= + Σ∗

Single-Particle Propagator and the Dyson Equation

arXiv 2001.07231 Mack C. Atkinson TRIUMF 6 / 17

G`j(r , r′;E ) =

∑m

〈ΨA0 | ar`j |ΨA+1

m 〉 〈ΨA+1m | a†r ′`j |ΨA

0 〉E − (EA+1

m − EA0 ) + iη

+∑n

〈ΨA0 | a†r ′`j |ΨA−1

n 〉 〈ΨA−1n | ar`j |ΨA

0 〉E − (EA

0 − EA−1n )− iη

Poles correspond to excitation energies of (A + 1) or (A− 1) nucleus

Numerator like a transition probability to given excitation

Close connection with experimental observables

Perturbation expansion of G leads to the Dyson equation

If the irreducible self-energy (Σ∗) is known, then so is G= + Σ∗

Single-Particle Propagator and the Dyson Equation

arXiv 2001.07231 Mack C. Atkinson TRIUMF 6 / 17

G`j(r , r′;E ) =

∑m

〈ΨA0 | ar`j |ΨA+1

m 〉 〈ΨA+1m | a†r ′`j |ΨA

0 〉E − (EA+1

m − EA0 ) + iη

+∑n

〈ΨA0 | a†r ′`j |ΨA−1

n 〉 〈ΨA−1n | ar`j |ΨA

0 〉E − (EA

0 − EA−1n )− iη

Poles correspond to excitation energies of (A + 1) or (A− 1) nucleus

Numerator like a transition probability to given excitation

Close connection with experimental observables

Perturbation expansion of G leads to the Dyson equation

If the irreducible self-energy (Σ∗) is known, then so is G= + Σ∗

Single-Particle Propagator and the Dyson Equation

arXiv 2001.07231 Mack C. Atkinson TRIUMF 6 / 17

G`j(r , r′;E ) =

∑m

〈ΨA0 | ar`j |ΨA+1

m 〉 〈ΨA+1m | a†r ′`j |ΨA

0 〉E − (EA+1

m − EA0 ) + iη

+∑n

〈ΨA0 | a†r ′`j |ΨA−1

n 〉 〈ΨA−1n | ar`j |ΨA

0 〉E − (EA

0 − EA−1n )− iη

Poles correspond to excitation energies of (A + 1) or (A− 1) nucleus

Numerator like a transition probability to given excitation

Close connection with experimental observables

Perturbation expansion of G leads to the Dyson equation

If the irreducible self-energy (Σ∗) is known, then so is G= + Σ∗

Single-Particle Propagator and the Dyson Equation

arXiv 2001.07231 Mack C. Atkinson TRIUMF 6 / 17

G`j(r , r′;E ) =

∑m

〈ΨA0 | ar`j |ΨA+1

m 〉 〈ΨA+1m | a†r ′`j |ΨA

0 〉E − (EA+1

m − EA0 ) + iη

+∑n

〈ΨA0 | a†r ′`j |ΨA−1

n 〉 〈ΨA−1n | ar`j |ΨA

0 〉E − (EA

0 − EA−1n )− iη

Poles correspond to excitation energies of (A + 1) or (A− 1) nucleus

Numerator like a transition probability to given excitation

Close connection with experimental observables

Perturbation expansion of G leads to the Dyson equation

If the irreducible self-energy (Σ∗) is known, then so is G

= + Σ∗

Single-Particle Propagator and the Dyson Equation

arXiv 2001.07231 Mack C. Atkinson TRIUMF 6 / 17

G`j(r , r′;E ) =

∑m

〈ΨA0 | ar`j |ΨA+1

m 〉 〈ΨA+1m | a†r ′`j |ΨA

0 〉E − (EA+1

m − EA0 ) + iη

+∑n

〈ΨA0 | a†r ′`j |ΨA−1

n 〉 〈ΨA−1n | ar`j |ΨA

0 〉E − (EA

0 − EA−1n )− iη

Poles correspond to excitation energies of (A + 1) or (A− 1) nucleus

Numerator like a transition probability to given excitation

Close connection with experimental observables

Perturbation expansion of G leads to the Dyson equation

If the irreducible self-energy (Σ∗) is known, then so is G= + Σ∗

The Dispersive Optical Model (DOM)

Irreducible self-energy at positive energies corresponds to an optical potential

Use same functional form as standard optical potentials to parametrize self-energy

Σ∗(r , r ′;E ) is explicitly nonlocal

Dispersion relation connects to negative energies

Dispersive Correction

ReΣ`j(r , r′;E ) = ReΣ`j(r , r

′; εF )− 1

π(εF − E )P

∫ ∞ε+T

dE ′ImΣ`j(r , r′;E ′)[

1

E − E ′− 1

εF − E ′]

+1

π(εF − E )P

∫ ε−T

−∞dE ′ImΣ`j(r , r

′;E ′)[1

E − E ′− 1

εF − E ′]

This constraint ensures bound and scattering quantities are simultaneously described

arXiv 2001.07231 Mack C. Atkinson TRIUMF 7 / 17

The Dispersive Optical Model (DOM)

Irreducible self-energy at positive energies corresponds to an optical potential

Use same functional form as standard optical potentials to parametrize self-energy

Σ∗(r , r ′;E ) is explicitly nonlocal

Dispersion relation connects to negative energies

Dispersive Correction

ReΣ`j(r , r′;E ) = ReΣ`j(r , r

′; εF )− 1

π(εF − E )P

∫ ∞ε+T

dE ′ImΣ`j(r , r′;E ′)[

1

E − E ′− 1

εF − E ′]

+1

π(εF − E )P

∫ ε−T

−∞dE ′ImΣ`j(r , r

′;E ′)[1

E − E ′− 1

εF − E ′]

This constraint ensures bound and scattering quantities are simultaneously described

arXiv 2001.07231 Mack C. Atkinson TRIUMF 7 / 17

The Dispersive Optical Model (DOM)

Irreducible self-energy at positive energies corresponds to an optical potential

Use same functional form as standard optical potentials to parametrize self-energy

Σ∗(r , r ′;E ) is explicitly nonlocal

Dispersion relation connects to negative energies

Dispersive Correction

ReΣ`j(r , r′;E ) = ReΣ`j(r , r

′; εF )− 1

π(εF − E )P

∫ ∞ε+T

dE ′ImΣ`j(r , r′;E ′)[

1

E − E ′− 1

εF − E ′]

+1

π(εF − E )P

∫ ε−T

−∞dE ′ImΣ`j(r , r

′;E ′)[1

E − E ′− 1

εF − E ′]

This constraint ensures bound and scattering quantities are simultaneously described

arXiv 2001.07231 Mack C. Atkinson TRIUMF 7 / 17

The Dispersive Optical Model (DOM)

Irreducible self-energy at positive energies corresponds to an optical potential

Use same functional form as standard optical potentials to parametrize self-energy

Σ∗(r , r ′;E ) is explicitly nonlocal

Dispersion relation connects to negative energies

Dispersive Correction

ReΣ`j(r , r′;E ) = ReΣ`j(r , r

′; εF )− 1

π(εF − E )P

∫ ∞ε+T

dE ′ImΣ`j(r , r′;E ′)[

1

E − E ′− 1

εF − E ′]

+1

π(εF − E )P

∫ ε−T

−∞dE ′ImΣ`j(r , r

′;E ′)[1

E − E ′− 1

εF − E ′]

This constraint ensures bound and scattering quantities are simultaneously described

arXiv 2001.07231 Mack C. Atkinson TRIUMF 7 / 17

The Dispersive Optical Model (DOM)

Irreducible self-energy at positive energies corresponds to an optical potential

Use same functional form as standard optical potentials to parametrize self-energy

Σ∗(r , r ′;E ) is explicitly nonlocal

Dispersion relation connects to negative energies

Dispersive Correction

ReΣ`j(r , r′;E ) = ReΣ`j(r , r

′; εF )− 1

π(εF − E )P

∫ ∞ε+T

dE ′ImΣ`j(r , r′;E ′)[

1

E − E ′− 1

εF − E ′]

+1

π(εF − E )P

∫ ε−T

−∞dE ′ImΣ`j(r , r

′;E ′)[1

E − E ′− 1

εF − E ′]

This constraint ensures bound and scattering quantities are simultaneously described

arXiv 2001.07231 Mack C. Atkinson TRIUMF 7 / 17

The Dispersive Optical Model (DOM)

Irreducible self-energy at positive energies corresponds to an optical potential

Use same functional form as standard optical potentials to parametrize self-energy

Σ∗(r , r ′;E ) is explicitly nonlocal

Dispersion relation connects to negative energies

Dispersive Correction

ReΣ`j(r , r′;E ) = ReΣ`j(r , r

′; εF )− 1

π(εF − E )P

∫ ∞ε+T

dE ′ImΣ`j(r , r′;E ′)[

1

E − E ′− 1

εF − E ′]

+1

π(εF − E )P

∫ ε−T

−∞dE ′ImΣ`j(r , r

′;E ′)[1

E − E ′− 1

εF − E ′]

This constraint ensures bound and scattering quantities are simultaneously described

arXiv 2001.07231 Mack C. Atkinson TRIUMF 7 / 17

Fitting the Self-energy (40Ca)

arXiv 2001.07231 Mack C. Atkinson TRIUMF 8 / 17

Parameters of self-energy varied to minimize χ2

Reproducing the data means self-energy is found

100

105

1010

1015

1020

1025

1030

0 30 60 90 120 150 180

Elab >100100>Elab >4040>Elab >2020>Elab >10

dσ/d

Ω[m

b/sr

]

p+40Ca

105

1010

1015

1020

1025

1030

0 30 60 90 120 150 180

n+40Ca

θc.m. [deg] θc.m. [deg]

0

5

10

15

20

25

0 30 60 90 120 150 180

Elab >100100>Elab >4040>Elab >2020>Elab >10

A

p+40Ca

0

5

10

15

20

25

0 30 60 90 120 150 180

A

n+40Ca

θc.m. [deg] θc.m. [deg]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 1 2 3 4 5 6 7 8

ρ[e·fm

-3]

r [fm]

ExperimentDOM

0

200

400

600

800

0 50 100 150 200

p+40Ca

σ[m

b]

Elab [MeV]

05001000150020002500300035004000

0 50 100 150 200

n+40Ca

σ[m

b]

Elab [MeV]

σtotσreact

Data: J.M. Mueller et al. Phys. Rev. C, 83 064605, 2011

Fitting the Self-energy (40Ca)

arXiv 2001.07231 Mack C. Atkinson TRIUMF 8 / 17

Parameters of self-energy varied to minimize χ2

Reproducing the data means self-energy is found

100

105

1010

1015

1020

1025

1030

0 30 60 90 120 150 180

Elab >100100>Elab >4040>Elab >2020>Elab >10

dσ/d

Ω[m

b/sr

]

p+40Ca

105

1010

1015

1020

1025

1030

0 30 60 90 120 150 180

n+40Ca

θc.m. [deg] θc.m. [deg]

0

5

10

15

20

25

0 30 60 90 120 150 180

Elab >100100>Elab >4040>Elab >2020>Elab >10

A

p+40Ca

0

5

10

15

20

25

0 30 60 90 120 150 180

A

n+40Ca

θc.m. [deg] θc.m. [deg]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 1 2 3 4 5 6 7 8

ρ[e·fm

-3]

r [fm]

ExperimentDOM

0

200

400

600

800

0 50 100 150 200

p+40Ca

σ[m

b]

Elab [MeV]

05001000150020002500300035004000

0 50 100 150 200

n+40Ca

σ[m

b]

Elab [MeV]

σtotσreact

Data: J.M. Mueller et al. Phys. Rev. C, 83 064605, 2011

Fitting the Self-energy (40Ca)

arXiv 2001.07231 Mack C. Atkinson TRIUMF 8 / 17

Parameters of self-energy varied to minimize χ2

Reproducing the data means self-energy is found

100

105

1010

1015

1020

1025

1030

0 30 60 90 120 150 180

Elab >100100>Elab >4040>Elab >2020>Elab >10

dσ/d

Ω[m

b/sr

]

p+40Ca

105

1010

1015

1020

1025

1030

0 30 60 90 120 150 180

n+40Ca

θc.m. [deg] θc.m. [deg]

0

5

10

15

20

25

0 30 60 90 120 150 180

Elab >100100>Elab >4040>Elab >2020>Elab >10

A

p+40Ca

0

5

10

15

20

25

0 30 60 90 120 150 180

A

n+40Ca

θc.m. [deg] θc.m. [deg]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 1 2 3 4 5 6 7 8

ρ[e·fm

-3]

r [fm]

ExperimentDOM

0

200

400

600

800

0 50 100 150 200

p+40Ca

σ[m

b]

Elab [MeV]

05001000150020002500300035004000

0 50 100 150 200

n+40Ca

σ[m

b]

Elab [MeV]

σtotσreact

Data: J.M. Mueller et al. Phys. Rev. C, 83 064605, 2011

Fitting the Self-energy (40Ca)

arXiv 2001.07231 Mack C. Atkinson TRIUMF 8 / 17

Parameters of self-energy varied to minimize χ2

Reproducing the data means self-energy is found

100

105

1010

1015

1020

1025

1030

0 30 60 90 120 150 180

Elab >100100>Elab >4040>Elab >2020>Elab >10

dσ/d

Ω[m

b/sr

]

p+40Ca

105

1010

1015

1020

1025

1030

0 30 60 90 120 150 180

n+40Ca

θc.m. [deg] θc.m. [deg]

0

5

10

15

20

25

0 30 60 90 120 150 180

Elab >100100>Elab >4040>Elab >2020>Elab >10

A

p+40Ca

0

5

10

15

20

25

0 30 60 90 120 150 180

A

n+40Ca

θc.m. [deg] θc.m. [deg]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 1 2 3 4 5 6 7 8

ρ[e·fm

-3]

r [fm]

ExperimentDOM

0

200

400

600

800

0 50 100 150 200

p+40Ca

σ[m

b]

Elab [MeV]

05001000150020002500300035004000

0 50 100 150 200

n+40Ca

σ[m

b]

Elab [MeV]

σtotσreact

Data: J.M. Mueller et al. Phys. Rev. C, 83 064605, 2011

Fitting the Self-energy (40Ca)

arXiv 2001.07231 Mack C. Atkinson TRIUMF 8 / 17

Parameters of self-energy varied to minimize χ2

Reproducing the data means self-energy is found

100

105

1010

1015

1020

1025

1030

0 30 60 90 120 150 180

Elab >100100>Elab >4040>Elab >2020>Elab >10

dσ/d

Ω[m

b/sr

]

p+40Ca

105

1010

1015

1020

1025

1030

0 30 60 90 120 150 180

n+40Ca

θc.m. [deg] θc.m. [deg]

0

5

10

15

20

25

0 30 60 90 120 150 180

Elab >100100>Elab >4040>Elab >2020>Elab >10

A

p+40Ca

0

5

10

15

20

25

0 30 60 90 120 150 180

A

n+40Ca

θc.m. [deg] θc.m. [deg]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 1 2 3 4 5 6 7 8

ρ[e·fm

-3]

r [fm]

ExperimentDOM

0

200

400

600

800

0 50 100 150 200

p+40Ca

σ[m

b]

Elab [MeV]

05001000150020002500300035004000

0 50 100 150 200

n+40Ca

σ[m

b]

Elab [MeV]

σtotσreact

Data: J.M. Mueller et al. Phys. Rev. C, 83 064605, 2011

Fitting the Self-energy (40Ca)

arXiv 2001.07231 Mack C. Atkinson TRIUMF 8 / 17

Parameters of self-energy varied to minimize χ2

Reproducing the data means self-energy is found

100

105

1010

1015

1020

1025

1030

0 30 60 90 120 150 180

Elab >100100>Elab >4040>Elab >2020>Elab >10

dσ/d

Ω[m

b/sr

]

p+40Ca

105

1010

1015

1020

1025

1030

0 30 60 90 120 150 180

n+40Ca

θc.m. [deg] θc.m. [deg]

0

5

10

15

20

25

0 30 60 90 120 150 180

Elab >100100>Elab >4040>Elab >2020>Elab >10

A

p+40Ca

0

5

10

15

20

25

0 30 60 90 120 150 180

A

n+40Ca

θc.m. [deg] θc.m. [deg]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 1 2 3 4 5 6 7 8

ρ[e·fm

-3]

r [fm]

ExperimentDOM

0

200

400

600

800

0 50 100 150 200

p+40Ca

σ[m

b]

Elab [MeV]

05001000150020002500300035004000

0 50 100 150 200

n+40Ca

σ[m

b]

Elab [MeV]

σtotσreact

Data: J.M. Mueller et al. Phys. Rev. C, 83 064605, 2011

Fitting the Self-energy (48Ca)

arXiv 2001.07231 Mack C. Atkinson TRIUMF 9 / 17

Parameters of self-energy varied to minimize χ2

Reproducing the data means self-energy is found

100

105

1010

1015

1020

1025

1030

0 30 60 90 120 150 180

Elab >100100>Elab >4040>Elab >2020>Elab >10

dσ/d

Ω[m

b/sr

]

p+48Ca

100

105

1010

1015

1020

1025

1030

0 30 60 90 120 150 180

n+48Ca

θc.m. [deg] θc.m. [deg]

0

5

10

15

20

25

0 30 60 90 120 150 180

Elab >100100>Elab >4040>Elab >2020>Elab >10

A

p+48Ca

θc.m. [deg]

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 1 2 3 4 5 6 7 8

ρ[e

fm-3]

r [fm]

ExperimentDOM

0

200

400

600

800

1000

0 50 100 150 200

p+48Ca

σ[m

b]

Elab [MeV]

500100015002000250030003500400045005000

0 50 100 150 200

n+48Ca

σ[m

b]

Elab [MeV]

σtot

Data: J.M. Mueller et al. Phys. Rev. C, 83 064605, 2011

Fitting the Self-energy (208Pb)

arXiv 2001.07231 Mack C. Atkinson TRIUMF 10 / 17

Parameters of self-energy varied to minimize χ2

Reproducing the data means self-energy is found

100

105

1010

1015

1020

1025

1030

1035

1040

0 30 60 90 120 150 180

Elab >100100>Elab >4040>Elab >2020>Elab >10

dσ/d

Ω[m

b/sr

]

p+208Pb

100

1010

1020

1030

1040

1050

0 30 60 90 120 150 180

n+208Pb

θc.m. [deg] θc.m. [deg]

0

5

10

15

20

25

30

35

0 30 60 90 120 150 180

Elab >100100>Elab >4040>Elab >2020>Elab >10

A

p+208Pb

0

5

10

15

20

25

0 30 60 90 120 150 180

A

n+208Pb

θc.m. [deg] θc.m. [deg]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 2 4 6 8 10

ρ[e

fm-3]

r [fm]

ExperimentDOM

0200400600800

1000120014001600180020002200

0 50 100 150 200

p+208Pb

σ[m

b]

Elab [MeV]

2000300040005000600070008000900010000

0 50 100 150 200

n+208Pb

σ[m

b]

Elab [MeV]

σtot

Data: J.M. Mueller et al. Phys. Rev. C, 83 064605, 2011

Fitting the Self-energy (12C)

arXiv 2001.07231 Mack C. Atkinson TRIUMF 11 / 17

Parameters of self-energy varied to minimize χ2

DOM fit of 12C can be compared with ab-initioresults

100

1010

1020

1030

1040

1050

0 30 60 90 120 150 180

Elab >100100>Elab >4040>Elab >2020>Elab >10

dσ/d

Ω[m

b/sr

]

p+12C

100

1010

1020

1030

1040

1050

0 30 60 90 120 150 180

n+12C

θc.m. [deg] θc.m. [deg]

0

5

10

15

20

25

30

35

40

45

0 30 60 90 120 150 180

Elab >100100>Elab >4040>Elab >2020>Elab >10

A

p+12C

0

5

10

15

20

25

0 30 60 90 120 150 180

A

n+12C

θc.m. [deg] θc.m. [deg]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 1 2 3 4 5 6

ρ[e

fm-3]

r [fm]

ExperimentDOM

0

200

400

600

0 50 100 150 200

p+12C

σ[m

b]

Elab [MeV]

200400600800100012001400160018002000

0 50 100 150 200

n+12C

σ[m

b]

Elab [MeV]

σtot

Data in DOM fit: J.M. Mueller et al. Phys. Rev. C, 83 064605, 2011

DOM Binding Energy Density

arXiv 2001.07231 Mack C. Atkinson TRIUMF 12 / 17

−15

−10

−5

0

5

10

15

0 1 2 3 4 5 6 7 8

40Ca

−15

−10

−5

0

5

10

15

0 1 2 3 4 5 6 7 8

40Ca

4πr2E/A

[MeV·fm

−3]

4πr2ρ

[fm−3]

r [fm]

ρ2ρnTEV

4πr2E/A

[MeV·fm

−3]

4πr2ρ

[fm−3]

r [fm]

CD-BonnAV18N3LO

Shape of E(r) is consistent with NM calculations

Core of nucleus is NM-like (ρ ≈ ρ0)

Core of nucleus minimally contributes to EA0

=⇒ NM is not well-constrained by EA0

EA0 =

1

2

∫d3r

∫d3r ′

[〈r |T |r ′〉 〈r ′|ρ|r〉+ δ3(r − r ′)

∫ ε−f

−∞dEESh(r ;E )

]= 4π

∫ ∞0

drr2E(r)p

N Z DOM EA0 Exp. EA

012C 5.80 5.90 -93.5 -92.2

40Ca 19.9 19.8 -340 -34248Ca 27.9 19.9 -418 -416

208Pb 126 81.7 -1629 -1637

Nuclear matter points: A. Rios et al., PRC 89, 044303, (2014)

DOM Binding Energy Density

arXiv 2001.07231 Mack C. Atkinson TRIUMF 12 / 17

−15

−10

−5

0

5

10

15

0 1 2 3 4 5 6 7 8

40Ca

−15

−10

−5

0

5

10

15

0 1 2 3 4 5 6 7 8

40Ca

4πr2E/A

[MeV·fm

−3]

4πr2ρ

[fm−3]

r [fm]

ρ2ρnTEV

4πr2E/A

[MeV·fm

−3]

4πr2ρ

[fm−3]

r [fm]

CD-BonnAV18N3LO

Shape of E(r) is consistent with NM calculations

Core of nucleus is NM-like (ρ ≈ ρ0)

Core of nucleus minimally contributes to EA0

=⇒ NM is not well-constrained by EA0

EA0 =

1

2

∫d3r

∫d3r ′

[〈r |T |r ′〉 〈r ′|ρ|r〉+ δ3(r − r ′)

∫ ε−f

−∞dEESh(r ;E )

]= 4π

∫ ∞0

drr2E(r)p

N Z DOM EA0 Exp. EA

012C 5.80 5.90 -93.5 -92.2

40Ca 19.9 19.8 -340 -34248Ca 27.9 19.9 -418 -416

208Pb 126 81.7 -1629 -1637

Nuclear matter points: A. Rios et al., PRC 89, 044303, (2014)

DOM Binding Energy Density

arXiv 2001.07231 Mack C. Atkinson TRIUMF 12 / 17

−15

−10

−5

0

5

10

15

0 1 2 3 4 5 6 7 8

40Ca

−15

−10

−5

0

5

10

15

0 1 2 3 4 5 6 7 8

40Ca

4πr2E/A

[MeV·fm

−3]

4πr2ρ

[fm−3]

r [fm]

ρ2ρnTEV

4πr2E/A

[MeV·fm

−3]

4πr2ρ

[fm−3]

r [fm]

CD-BonnAV18N3LO

Shape of E(r) is consistent with NM calculations

Core of nucleus is NM-like (ρ ≈ ρ0)

Core of nucleus minimally contributes to EA0

=⇒ NM is not well-constrained by EA0

EA0 =

1

2

∫d3r

∫d3r ′

[〈r |T |r ′〉 〈r ′|ρ|r〉+ δ3(r − r ′)

∫ ε−f

−∞dEESh(r ;E )

]= 4π

∫ ∞0

drr2E(r)

p

N Z DOM EA0 Exp. EA

012C 5.80 5.90 -93.5 -92.2

40Ca 19.9 19.8 -340 -34248Ca 27.9 19.9 -418 -416

208Pb 126 81.7 -1629 -1637

Nuclear matter points: A. Rios et al., PRC 89, 044303, (2014)

DOM Binding Energy Density

arXiv 2001.07231 Mack C. Atkinson TRIUMF 12 / 17

−15

−10

−5

0

5

10

15

0 1 2 3 4 5 6 7 8

40Ca

−15

−10

−5

0

5

10

15

0 1 2 3 4 5 6 7 8

40Ca

4πr2E/A

[MeV·fm

−3]

4πr2ρ

[fm−3]

r [fm]

ρ2ρnTEV

4πr2E/A

[MeV·fm

−3]

4πr2ρ

[fm−3]

r [fm]

CD-BonnAV18N3LO

Shape of E(r) is consistent with NM calculations

Core of nucleus is NM-like (ρ ≈ ρ0)

Core of nucleus minimally contributes to EA0

=⇒ NM is not well-constrained by EA0

EA0 =

1

2

∫d3r

∫d3r ′

[〈r |T |r ′〉 〈r ′|ρ|r〉+ δ3(r − r ′)

∫ ε−f

−∞dEESh(r ;E )

]= 4π

∫ ∞0

drr2E(r)

p

N Z DOM EA0 Exp. EA

012C 5.80 5.90 -93.5 -92.2

40Ca 19.9 19.8 -340 -34248Ca 27.9 19.9 -418 -416

208Pb 126 81.7 -1629 -1637

Nuclear matter points: A. Rios et al., PRC 89, 044303, (2014)

DOM Binding Energy Density

arXiv 2001.07231 Mack C. Atkinson TRIUMF 12 / 17

−15

−10

−5

0

5

10

15

0 1 2 3 4 5 6 7 8

40Ca

−15

−10

−5

0

5

10

15

0 1 2 3 4 5 6 7 8

40Ca

4πr2E/A

[MeV·fm

−3]

4πr2ρ

[fm−3]

r [fm]

ρ2ρnTEV

4πr2E/A

[MeV·fm

−3]

4πr2ρ

[fm−3]

r [fm]

CD-BonnAV18N3LO

Shape of E(r) is consistent with NM calculations

Core of nucleus is NM-like (ρ ≈ ρ0)

Core of nucleus minimally contributes to EA0

=⇒ NM is not well-constrained by EA0

EA0 =

1

2

∫d3r

∫d3r ′

[〈r |T |r ′〉 〈r ′|ρ|r〉+ δ3(r − r ′)

∫ ε−f

−∞dEESh(r ;E )

]= 4π

∫ ∞0

drr2E(r)

p

N Z DOM EA0 Exp. EA

012C 5.80 5.90 -93.5 -92.2

40Ca 19.9 19.8 -340 -34248Ca 27.9 19.9 -418 -416

208Pb 126 81.7 -1629 -1637

Nuclear matter points: A. Rios et al., PRC 89, 044303, (2014)

DOM Binding Energy Density

arXiv 2001.07231 Mack C. Atkinson TRIUMF 12 / 17

−15

−10

−5

0

5

10

15

0 1 2 3 4 5 6 7 8

40Ca

−15

−10

−5

0

5

10

15

0 1 2 3 4 5 6 7 8

40Ca

4πr2E/A

[MeV·fm

−3]

4πr2ρ

[fm−3]

r [fm]

ρ2ρnTEV

4πr2E/A

[MeV·fm

−3]

4πr2ρ

[fm−3]

r [fm]

CD-BonnAV18N3LO

Shape of E(r) is consistent with NM calculations

Core of nucleus is NM-like (ρ ≈ ρ0)

Core of nucleus minimally contributes to EA0

=⇒ NM is not well-constrained by EA0

EA0 =

1

2

∫d3r

∫d3r ′

[〈r |T |r ′〉 〈r ′|ρ|r〉+ δ3(r − r ′)

∫ ε−f

−∞dEESh(r ;E )

]= 4π

∫ ∞0

drr2E(r)

p

N Z DOM EA0 Exp. EA

012C 5.80 5.90 -93.5 -92.2

40Ca 19.9 19.8 -340 -34248Ca 27.9 19.9 -418 -416

208Pb 126 81.7 -1629 -1637

Nuclear matter points: A. Rios et al., PRC 89, 044303, (2014)

DOM Binding Energy Density

arXiv 2001.07231 Mack C. Atkinson TRIUMF 12 / 17

−15

−10

−5

0

5

10

15

0 1 2 3 4 5 6 7 8

40Ca

−15

−10

−5

0

5

10

15

0 1 2 3 4 5 6 7 8

40Ca

4πr2E/A

[MeV·fm

−3]

4πr2ρ

[fm−3]

r [fm]

ρ2ρnTEV

4πr2E/A

[MeV·fm

−3]

4πr2ρ

[fm−3]

r [fm]

CD-BonnAV18N3LO

Shape of E(r) is consistent with NM calculations

Core of nucleus is NM-like (ρ ≈ ρ0)

Core of nucleus minimally contributes to EA0

=⇒ NM is not well-constrained by EA0

EA0 =

1

2

∫d3r

∫d3r ′

[〈r |T |r ′〉 〈r ′|ρ|r〉+ δ3(r − r ′)

∫ ε−f

−∞dEESh(r ;E )

]= 4π

∫ ∞0

drr2E(r)

p

N Z DOM EA0 Exp. EA

012C 5.80 5.90 -93.5 -92.2

40Ca 19.9 19.8 -340 -34248Ca 27.9 19.9 -418 -416

208Pb 126 81.7 -1629 -1637

Nuclear matter points: A. Rios et al., PRC 89, 044303, (2014)

DOM Binding Energy Density

arXiv 2001.07231 Mack C. Atkinson TRIUMF 12 / 17

−15

−10

−5

0

5

10

15

0 1 2 3 4 5 6 7 8

40Ca

−15

−10

−5

0

5

10

15

0 1 2 3 4 5 6 7 8

40Ca

4πr2E/A

[MeV·fm

−3]

4πr2ρ

[fm−3]

r [fm]

ρ2ρnTEV

4πr2E/A

[MeV·fm

−3]

4πr2ρ

[fm−3]

r [fm]

CD-BonnAV18N3LO

Shape of E(r) is consistent with NM calculations

Core of nucleus is NM-like (ρ ≈ ρ0)

Core of nucleus minimally contributes to EA0

=⇒ NM is not well-constrained by EA0

EA0 =

1

2

∫d3r

∫d3r ′

[〈r |T |r ′〉 〈r ′|ρ|r〉+ δ3(r − r ′)

∫ ε−f

−∞dEESh(r ;E )

]= 4π

∫ ∞0

drr2E(r)

p

N Z DOM EA0 Exp. EA

012C 5.80 5.90 -93.5 -92.2

40Ca 19.9 19.8 -340 -34248Ca 27.9 19.9 -418 -416

208Pb 126 81.7 -1629 -1637

Nuclear matter points: A. Rios et al., PRC 89, 044303, (2014)

3N Contribution

arXiv 2001.07231 Mack C. Atkinson TRIUMF 13 / 17

Energy sum-rule used in DOM assumes no 3-body force

Variational Monte Carlo (VMC) calculations show small 3N contribution

Verifies that the lack of a 3N force in DOM calculations does not affect conclusions

−25−20−15−10−505

10152025

0 1 2 3 4 5

12C

4πr2E/A

[MeV·fm

−3]

r [fm]

VMC using AV18+UX

ρETVU

−1

0

1

0 1 2 3 4 5

r [fm]

3N Potential Densities

Urbana-XNV3-Ib*NV3-Ia*

NV3-IIb*NV3-IIa*

−4

−3

−2

−1

0

1

0 1 2 3 4 5

r [fm]

Energy Densities

Chiral Interactions: M. Piarulli et al., PRL 120, 052503, (2018)

3N Contribution

arXiv 2001.07231 Mack C. Atkinson TRIUMF 13 / 17

Energy sum-rule used in DOM assumes no 3-body force

Variational Monte Carlo (VMC) calculations show small 3N contribution

Verifies that the lack of a 3N force in DOM calculations does not affect conclusions

−25−20−15−10−505

10152025

0 1 2 3 4 5

12C

4πr2E/A

[MeV·fm

−3]

r [fm]

VMC using AV18+UX

ρETVU

−1

0

1

0 1 2 3 4 5

r [fm]

3N Potential Densities

Urbana-XNV3-Ib*NV3-Ia*

NV3-IIb*NV3-IIa*

−4

−3

−2

−1

0

1

0 1 2 3 4 5

r [fm]

Energy Densities

Chiral Interactions: M. Piarulli et al., PRL 120, 052503, (2018)

3N Contribution

arXiv 2001.07231 Mack C. Atkinson TRIUMF 13 / 17

Energy sum-rule used in DOM assumes no 3-body force

Variational Monte Carlo (VMC) calculations show small 3N contribution

Verifies that the lack of a 3N force in DOM calculations does not affect conclusions

−25−20−15−10−505

10152025

0 1 2 3 4 5

12C

4πr2E/A

[MeV·fm

−3]

r [fm]

VMC using AV18+UX

ρETVU

−1

0

1

0 1 2 3 4 5

r [fm]

3N Potential Densities

Urbana-XNV3-Ib*NV3-Ia*

NV3-IIb*NV3-IIa*

−4

−3

−2

−1

0

1

0 1 2 3 4 5

r [fm]

Energy Densities

Chiral Interactions: M. Piarulli et al., PRL 120, 052503, (2018)

3N Contribution

arXiv 2001.07231 Mack C. Atkinson TRIUMF 13 / 17

Energy sum-rule used in DOM assumes no 3-body force

Variational Monte Carlo (VMC) calculations show small 3N contribution

Verifies that the lack of a 3N force in DOM calculations does not affect conclusions

−25−20−15−10−505

10152025

0 1 2 3 4 5

12C

4πr2E/A

[MeV·fm

−3]

r [fm]

VMC using AV18+UX

ρETVU

−1

0

1

0 1 2 3 4 5

r [fm]

3N Potential Densities

Urbana-XNV3-Ib*NV3-Ia*

NV3-IIb*NV3-IIa*

−4

−3

−2

−1

0

1

0 1 2 3 4 5

r [fm]

Energy Densities

Chiral Interactions: M. Piarulli et al., PRL 120, 052503, (2018)

3N Contribution

arXiv 2001.07231 Mack C. Atkinson TRIUMF 13 / 17

Energy sum-rule used in DOM assumes no 3-body force

Variational Monte Carlo (VMC) calculations show small 3N contribution

Verifies that the lack of a 3N force in DOM calculations does not affect conclusions

−25−20−15−10−505

10152025

0 1 2 3 4 5

12C

4πr2E/A

[MeV·fm

−3]

r [fm]

VMC using AV18+UX

ρETVU

−1

0

1

0 1 2 3 4 5

r [fm]

3N Potential Densities

Urbana-XNV3-Ib*NV3-Ia*

NV3-IIb*NV3-IIa*

−4

−3

−2

−1

0

1

0 1 2 3 4 5

r [fm]

Energy Densities

Chiral Interactions: M. Piarulli et al., PRL 120, 052503, (2018)

Energy in 208Pb

arXiv 2001.07231 Mack C. Atkinson TRIUMF 14 / 17

Large core of 208Pb makes it ideal to study

Must remove effect of Coulomb

Account for asymmetry:BE = aVA− 1

2aA(A− 2Z )2A−1

Energy does not match canonical value −18

−16

−14

−12

−10

−8

0 1 2 3 4 5 6

208Pb

E/A

[MeV

]

r [fm]

DOMAV18

EA0 =

EA0

A

∫d3rρ(r) =

∫d3rE(r) =⇒ E(r) =

(EA

0

A

)ρ(r) =⇒ E (r) ≈ A

E(r)

ρ(r)

Energy in 208Pb

arXiv 2001.07231 Mack C. Atkinson TRIUMF 14 / 17

Large core of 208Pb makes it ideal to study

Must remove effect of Coulomb

Account for asymmetry:BE = aVA− 1

2aA(A− 2Z )2A−1

Energy does not match canonical value

−18

−16

−14

−12

−10

−8

0 1 2 3 4 5 6

208Pb

E/A

[MeV

]r [fm]

DOMAV18

EA0 =

EA0

A

∫d3rρ(r) =

∫d3rE(r) =⇒ E(r) =

(EA

0

A

)ρ(r) =⇒ E (r) ≈ A

E(r)

ρ(r)

Energy in 208Pb

arXiv 2001.07231 Mack C. Atkinson TRIUMF 14 / 17

Large core of 208Pb makes it ideal to study

Must remove effect of Coulomb

Account for asymmetry:BE = aVA− 1

2aA(A− 2Z )2A−1

Energy does not match canonical value

−18

−16

−14

−12

−10

−8

0 1 2 3 4 5 6

208Pb

E/A

[MeV

]r [fm]

DOMAV18

EA0 =

EA0

A

∫d3rρ(r) =

∫d3rE(r) =⇒ E(r) =

(EA

0

A

)ρ(r) =⇒ E (r) ≈ A

E(r)

ρ(r)

Energy in 208Pb

arXiv 2001.07231 Mack C. Atkinson TRIUMF 14 / 17

Large core of 208Pb makes it ideal to study

Must remove effect of Coulomb

Account for asymmetry:BE = aVA− 1

2aA(A− 2Z )2A−1

Energy does not match canonical value

−18

−16

−14

−12

−10

−8

0 1 2 3 4 5 6

208Pb

E/A

[MeV

]r [fm]

DOMAV18

EA0 =

EA0

A

∫d3rρ(r) =

∫d3rE(r) =⇒ E(r) =

(EA

0

A

)ρ(r) =⇒ E (r) ≈ A

E(r)

ρ(r)

Energy in 208Pb

arXiv 2001.07231 Mack C. Atkinson TRIUMF 14 / 17

Large core of 208Pb makes it ideal to study

Must remove effect of Coulomb

Account for asymmetry:BE = aVA− 1

2aA(A− 2Z )2A−1

Energy does not match canonical value −18

−16

−14

−12

−10

−8

0 1 2 3 4 5 6

208Pb

E/A

[MeV

]r [fm]

DOMAV18

EA0 =

EA0

A

∫d3rρ(r) =

∫d3rE(r) =⇒ E(r) =

(EA

0

A

)ρ(r) =⇒ E (r) ≈ A

E(r)

ρ(r)

Energy in the Interior

arXiv 2001.07231 Mack C. Atkinson TRIUMF 15 / 17

Energy of each nucleus consistently above -16 MeV

Consistent with SCGF calculation in NM

−16

−14

−12

−10

−8

−6

0 0.2 0.4 0.6 0.8 1 1.2 1.4

−16

−14

−12

−10

−8

−6

0 0.2 0.4 0.6 0.8 1 1.2 1.4

E/A

[MeV

]

r [fm]

12C40Ca48Ca

E/A

[MeV

]

r [fm]

208PbAV18

E/A

[MeV

]

pp

M. Baldo et al., PRC 86, 064001, (2012)

Energy in the Interior

arXiv 2001.07231 Mack C. Atkinson TRIUMF 15 / 17

Energy of each nucleus consistently above -16 MeV

Consistent with SCGF calculation in NM

−16

−14

−12

−10

−8

−6

0 0.2 0.4 0.6 0.8 1 1.2 1.4

−16

−14

−12

−10

−8

−6

0 0.2 0.4 0.6 0.8 1 1.2 1.4

E/A

[MeV

]

r [fm]

12C40Ca48Ca

E/A

[MeV

]

r [fm]

208PbAV18

E/A

[MeV

]

pp

M. Baldo et al., PRC 86, 064001, (2012)

Energy in the Interior

arXiv 2001.07231 Mack C. Atkinson TRIUMF 15 / 17

Energy of each nucleus consistently above -16 MeV

Consistent with SCGF calculation in NM

−16

−14

−12

−10

−8

−6

0 0.2 0.4 0.6 0.8 1 1.2 1.4

−16

−14

−12

−10

−8

−6

0 0.2 0.4 0.6 0.8 1 1.2 1.4

E/A

[MeV

]

r [fm]

12C40Ca48Ca

E/A

[MeV

]

r [fm]

208PbAV18

E/A

[MeV

]

pp

M. Baldo et al., PRC 86, 064001, (2012)

Summary

Canonical value of saturation energy is determined empirically from the mass formula

Minimal contribution to the binding energy from the core of the nucleus=⇒ Empirical mass formula is not a great constraint for NM

Results are consistent with SCGF calculation of NM using AV18

The value of E0 is not necessarily -16 MeV

arXiv 2001.07231 Mack C. Atkinson TRIUMF 16 / 17

Summary

Canonical value of saturation energy is determined empirically from the mass formula

Minimal contribution to the binding energy from the core of the nucleus

=⇒ Empirical mass formula is not a great constraint for NM

Results are consistent with SCGF calculation of NM using AV18

The value of E0 is not necessarily -16 MeV

arXiv 2001.07231 Mack C. Atkinson TRIUMF 16 / 17

Summary

Canonical value of saturation energy is determined empirically from the mass formula

Minimal contribution to the binding energy from the core of the nucleus=⇒ Empirical mass formula is not a great constraint for NM

Results are consistent with SCGF calculation of NM using AV18

The value of E0 is not necessarily -16 MeV

arXiv 2001.07231 Mack C. Atkinson TRIUMF 16 / 17

Summary

Canonical value of saturation energy is determined empirically from the mass formula

Minimal contribution to the binding energy from the core of the nucleus=⇒ Empirical mass formula is not a great constraint for NM

Results are consistent with SCGF calculation of NM using AV18

The value of E0 is not necessarily -16 MeV

arXiv 2001.07231 Mack C. Atkinson TRIUMF 16 / 17

Summary

Canonical value of saturation energy is determined empirically from the mass formula

Minimal contribution to the binding energy from the core of the nucleus=⇒ Empirical mass formula is not a great constraint for NM

Results are consistent with SCGF calculation of NM using AV18

The value of E0 is not necessarily -16 MeV

arXiv 2001.07231 Mack C. Atkinson TRIUMF 16 / 17

Thanks

arXiv 2001.07231 Mack C. Atkinson TRIUMF 17 / 17

Willem Dickhoff

Maria Piarulli

Robert Charity

Hossein Mahzoon

Lee Sobotka

Cole Pruitt

Natalie Calleya

Bob Wiringa

Arnau Rios