Kuramoto, Y. (1984). Chemical Oscillations, Waves ...dyonet06/Abstracts/zanette2.pdf ·...

Post on 01-Feb-2018

218 views 2 download

Transcript of Kuramoto, Y. (1984). Chemical Oscillations, Waves ...dyonet06/Abstracts/zanette2.pdf ·...

Bibliography

• Kuramoto, Y. (1984). Chemical Oscillations, Waves, and Turbulence. Springer, Berlin.

• Pikovsky, A., Rosenblum, M. and Kurths, J. (2001). Synchronization. A universalconcept in non-linear sciences. Cambridge Nonlinear Science Series 12, University Press,Cambridge.

• Manrubia, S.C., Mikhailov, A.S. and Zanette, D.H. (2004). Emergence of DynamicalOrder. Synchronization PHenomena in Complex Systems. World Scientific, Singapore.

KURAMOTO’S MODEL ON NETWORKS

φi = ωi + k

N∑

j=1

Jij sin(φj − φi)

Jij = 1 if j acts on i. Otherwise, Jij = 0.

Jij: adjacency matrix → distance between oscillators

IDENTICAL OSCILLATORS:

φi =N

j=1

Jij sin(φj − φi)

Full synchronization can be easily proven stable if:

• Jij = Jji (global; Lyapunov function)

• The network is regular,∑

j Jij = z (local)

An external oscillator (frequency Ω) coupled to oscillator 1 with strength a:

φi =N

j=1

Jij sin(φj − φi) + aδi1 sin(Ωt− φi)

Eur. Phys. J. B 43, 97 (2005)

NUMERICAL RESULTS

• N = 1, 000 oscillators

• regular network, z = 2

• a = 10−3

• average phase: φ(t) = N−1∑

i φi(t)

• phase dispersion: σφi=

[⟨

(φi − φ)2⟩]1/2

0 3 6 9 12 15

10-7

10-6

10-5

10-4 Ω = 0.1 Ω = 2 Ω = 6 Ω = 20

σφ

d

-6 -4 -2 0 2 4 60

5x10-6

1x10-5

d=5 d=8 d=12 σφ

Ω

0.1 1 10

10-7

10-6

10-5

10-4

d=0 d=3 d=5 d=8 d=12

σφ

Ω

-0.8 -0.6 -0.4 -0.2

0.50

0.75

1.00

d > 6

d = 4

d = 5

d = 6

d = 3

d = 1

d = 2

d = 0

sin

φ

cos φ

0 3 6 9 12 15

10-3

10-2

10-1

100

a=0.001 a=1 a=3 a=10

σ φ /a

d

ANALYTICAL RESULTS:

• Linearization

φi(t) = φ(t) + aψi(t)

φ(t) = φ0 + aΦ(t)

• Expanding to the first order in a:

Φ =1

N

ij

Jij(ψj − ψi) +1

Nexp(iΩt)

ψi = −Φ +∑

j

Jij(ψj − ψi) + δi1 exp(iΩt)

[sin → exp] (!)

• Propose ψi(t) = Ai exp(iΩt)

LA = b → A = L−1b

with A = (A1, A2, . . . , AN)

Lij = (z + iΩ)δij − Jij + 1N

k Jkj

bi = δi1 −1N

• The amplitudes are complex: Ai = |Ai| exp(iϕi)

0 3 6 9 12 15

10-4

10-3

10-2

10-1 Ω = 0.1 Ω = 2 Ω = 6 Ω = 20

|A|

d

0 3 6 9 12 15

-5

-4

-3

-2

-1

0 Ω = 0.1 Ω = 1 Ω = 2 Ω = 6 Ω = 20

ϕ

d

APPROXIMATE EXPLICIT SOLUTION OF A = L−1b

Lij = (z + iΩ)δij − Jij + 1N

k Jkj → L = (z + iΩ)I − J

with Jij = Jij −1N

k Jkj

• Power expanding:

L−1 =[I − (z + iΩ)−1J ]−1

(z + iΩ)=

∞∑

m=0

J m

(z + iΩ)m+1

• Moreover

J(m)ij ≈ J

(m)ij −

zm

N

This gives

Ai =∞

m=0

J(m)i1

(z + iΩ)m+1+

i

• J(m)i1 : number of paths if length m from 1 to i.

• Small distances:

Ai ≈ (z2 + Ω2)−di+1

2 exp

[

−i(di + 1) tan−1 Ω

z

]

• Large distances:

Ai ≈i

Ω

−J0

(

1 +Ω2

z2

)

−di

2

exp

(

−idi tan−1 Ω

z

)

+1

N

• Large frequencies:

Ai ≈i

Ω

(

−δi1 +1

N

)

10-7

10-6

10-5

10-4

random I

σφ

0 3 6 9 12 15

10-7

10-6

10-5

10-4 random II

σφ

d

CHAOTIC (ROESSLER) OSCILLATORS

• Coupled oscillators

xi = −yi − zi + k∑

j Jij(xj − xi) + aδi1 sin Ωt

yi = xi + 0.2yi + k∑

j Jij(yj − yi)

zi = 0.2 + zi(xi − c) + k∑

j Jij(zj − zi).

• Measureσ

ri=

(⟨

|ri − r|2⟩)1/2

with

ri = (xi, yi, zi) and r = N−1∑

i ri

0 3 6 9 12 1510-6

10-5

10-4

10-3

Ω = 0.1 Ω = 0.5 Ω = 1 Ω = 3

σr

d

0.0 0.5 1.0 1.5 2.0 2.5 3.010-6

10-5

10-4

10-3

d = 0 d = 3 d = 7 d = 12

σr

Ω