Kuramoto, Y. (1984). Chemical Oscillations, Waves ...dyonet06/Abstracts/zanette2.pdf ·...

22
Bibliography Kuramoto, Y. (1984). Chemical Oscillations, Waves, and Turbulence. Springer, Berlin. Pikovsky, A., Rosenblum, M. and Kurths, J. (2001). Synchronization. A universal concept in non-linear sciences. Cambridge Nonlinear Science Series 12, University Press, Cambridge. Manrubia, S.C., Mikhailov, A.S. and Zanette, D.H. (2004). Emergence of Dynamical Order. Synchronization PHenomena in Complex Systems. World Scientific, Singapore.

Transcript of Kuramoto, Y. (1984). Chemical Oscillations, Waves ...dyonet06/Abstracts/zanette2.pdf ·...

Page 1: Kuramoto, Y. (1984). Chemical Oscillations, Waves ...dyonet06/Abstracts/zanette2.pdf · KURAMOTO’S MODEL ON NETWORKS φ˙ i = ωi +k XN j=1 Jij sin(φj −φi) Jij = 1 if jacts

Bibliography

• Kuramoto, Y. (1984). Chemical Oscillations, Waves, and Turbulence. Springer, Berlin.

• Pikovsky, A., Rosenblum, M. and Kurths, J. (2001). Synchronization. A universalconcept in non-linear sciences. Cambridge Nonlinear Science Series 12, University Press,Cambridge.

• Manrubia, S.C., Mikhailov, A.S. and Zanette, D.H. (2004). Emergence of DynamicalOrder. Synchronization PHenomena in Complex Systems. World Scientific, Singapore.

Page 2: Kuramoto, Y. (1984). Chemical Oscillations, Waves ...dyonet06/Abstracts/zanette2.pdf · KURAMOTO’S MODEL ON NETWORKS φ˙ i = ωi +k XN j=1 Jij sin(φj −φi) Jij = 1 if jacts

KURAMOTO’S MODEL ON NETWORKS

φi = ωi + k

N∑

j=1

Jij sin(φj − φi)

Jij = 1 if j acts on i. Otherwise, Jij = 0.

Jij: adjacency matrix → distance between oscillators

Page 3: Kuramoto, Y. (1984). Chemical Oscillations, Waves ...dyonet06/Abstracts/zanette2.pdf · KURAMOTO’S MODEL ON NETWORKS φ˙ i = ωi +k XN j=1 Jij sin(φj −φi) Jij = 1 if jacts

IDENTICAL OSCILLATORS:

φi =N

j=1

Jij sin(φj − φi)

Full synchronization can be easily proven stable if:

• Jij = Jji (global; Lyapunov function)

• The network is regular,∑

j Jij = z (local)

Page 4: Kuramoto, Y. (1984). Chemical Oscillations, Waves ...dyonet06/Abstracts/zanette2.pdf · KURAMOTO’S MODEL ON NETWORKS φ˙ i = ωi +k XN j=1 Jij sin(φj −φi) Jij = 1 if jacts

An external oscillator (frequency Ω) coupled to oscillator 1 with strength a:

φi =N

j=1

Jij sin(φj − φi) + aδi1 sin(Ωt− φi)

Eur. Phys. J. B 43, 97 (2005)

Page 5: Kuramoto, Y. (1984). Chemical Oscillations, Waves ...dyonet06/Abstracts/zanette2.pdf · KURAMOTO’S MODEL ON NETWORKS φ˙ i = ωi +k XN j=1 Jij sin(φj −φi) Jij = 1 if jacts

NUMERICAL RESULTS

• N = 1, 000 oscillators

• regular network, z = 2

• a = 10−3

• average phase: φ(t) = N−1∑

i φi(t)

• phase dispersion: σφi=

[⟨

(φi − φ)2⟩]1/2

Page 6: Kuramoto, Y. (1984). Chemical Oscillations, Waves ...dyonet06/Abstracts/zanette2.pdf · KURAMOTO’S MODEL ON NETWORKS φ˙ i = ωi +k XN j=1 Jij sin(φj −φi) Jij = 1 if jacts

0 3 6 9 12 15

10-7

10-6

10-5

10-4 Ω = 0.1 Ω = 2 Ω = 6 Ω = 20

σφ

d

Page 7: Kuramoto, Y. (1984). Chemical Oscillations, Waves ...dyonet06/Abstracts/zanette2.pdf · KURAMOTO’S MODEL ON NETWORKS φ˙ i = ωi +k XN j=1 Jij sin(φj −φi) Jij = 1 if jacts

-6 -4 -2 0 2 4 60

5x10-6

1x10-5

d=5 d=8 d=12 σφ

Ω

Page 8: Kuramoto, Y. (1984). Chemical Oscillations, Waves ...dyonet06/Abstracts/zanette2.pdf · KURAMOTO’S MODEL ON NETWORKS φ˙ i = ωi +k XN j=1 Jij sin(φj −φi) Jij = 1 if jacts

0.1 1 10

10-7

10-6

10-5

10-4

d=0 d=3 d=5 d=8 d=12

σφ

Ω

Page 9: Kuramoto, Y. (1984). Chemical Oscillations, Waves ...dyonet06/Abstracts/zanette2.pdf · KURAMOTO’S MODEL ON NETWORKS φ˙ i = ωi +k XN j=1 Jij sin(φj −φi) Jij = 1 if jacts

-0.8 -0.6 -0.4 -0.2

0.50

0.75

1.00

d > 6

d = 4

d = 5

d = 6

d = 3

d = 1

d = 2

d = 0

sin

φ

cos φ

Page 10: Kuramoto, Y. (1984). Chemical Oscillations, Waves ...dyonet06/Abstracts/zanette2.pdf · KURAMOTO’S MODEL ON NETWORKS φ˙ i = ωi +k XN j=1 Jij sin(φj −φi) Jij = 1 if jacts

0 3 6 9 12 15

10-3

10-2

10-1

100

a=0.001 a=1 a=3 a=10

σ φ /a

d

Page 11: Kuramoto, Y. (1984). Chemical Oscillations, Waves ...dyonet06/Abstracts/zanette2.pdf · KURAMOTO’S MODEL ON NETWORKS φ˙ i = ωi +k XN j=1 Jij sin(φj −φi) Jij = 1 if jacts

ANALYTICAL RESULTS:

• Linearization

φi(t) = φ(t) + aψi(t)

φ(t) = φ0 + aΦ(t)

Page 12: Kuramoto, Y. (1984). Chemical Oscillations, Waves ...dyonet06/Abstracts/zanette2.pdf · KURAMOTO’S MODEL ON NETWORKS φ˙ i = ωi +k XN j=1 Jij sin(φj −φi) Jij = 1 if jacts

• Expanding to the first order in a:

Φ =1

N

ij

Jij(ψj − ψi) +1

Nexp(iΩt)

ψi = −Φ +∑

j

Jij(ψj − ψi) + δi1 exp(iΩt)

[sin → exp] (!)

Page 13: Kuramoto, Y. (1984). Chemical Oscillations, Waves ...dyonet06/Abstracts/zanette2.pdf · KURAMOTO’S MODEL ON NETWORKS φ˙ i = ωi +k XN j=1 Jij sin(φj −φi) Jij = 1 if jacts

• Propose ψi(t) = Ai exp(iΩt)

LA = b → A = L−1b

with A = (A1, A2, . . . , AN)

Lij = (z + iΩ)δij − Jij + 1N

k Jkj

bi = δi1 −1N

• The amplitudes are complex: Ai = |Ai| exp(iϕi)

Page 14: Kuramoto, Y. (1984). Chemical Oscillations, Waves ...dyonet06/Abstracts/zanette2.pdf · KURAMOTO’S MODEL ON NETWORKS φ˙ i = ωi +k XN j=1 Jij sin(φj −φi) Jij = 1 if jacts

0 3 6 9 12 15

10-4

10-3

10-2

10-1 Ω = 0.1 Ω = 2 Ω = 6 Ω = 20

|A|

d

Page 15: Kuramoto, Y. (1984). Chemical Oscillations, Waves ...dyonet06/Abstracts/zanette2.pdf · KURAMOTO’S MODEL ON NETWORKS φ˙ i = ωi +k XN j=1 Jij sin(φj −φi) Jij = 1 if jacts

0 3 6 9 12 15

-5

-4

-3

-2

-1

0 Ω = 0.1 Ω = 1 Ω = 2 Ω = 6 Ω = 20

ϕ

d

Page 16: Kuramoto, Y. (1984). Chemical Oscillations, Waves ...dyonet06/Abstracts/zanette2.pdf · KURAMOTO’S MODEL ON NETWORKS φ˙ i = ωi +k XN j=1 Jij sin(φj −φi) Jij = 1 if jacts

APPROXIMATE EXPLICIT SOLUTION OF A = L−1b

Lij = (z + iΩ)δij − Jij + 1N

k Jkj → L = (z + iΩ)I − J

with Jij = Jij −1N

k Jkj

• Power expanding:

L−1 =[I − (z + iΩ)−1J ]−1

(z + iΩ)=

∞∑

m=0

J m

(z + iΩ)m+1

• Moreover

J(m)ij ≈ J

(m)ij −

zm

N

Page 17: Kuramoto, Y. (1984). Chemical Oscillations, Waves ...dyonet06/Abstracts/zanette2.pdf · KURAMOTO’S MODEL ON NETWORKS φ˙ i = ωi +k XN j=1 Jij sin(φj −φi) Jij = 1 if jacts

This gives

Ai =∞

m=0

J(m)i1

(z + iΩ)m+1+

i

• J(m)i1 : number of paths if length m from 1 to i.

Page 18: Kuramoto, Y. (1984). Chemical Oscillations, Waves ...dyonet06/Abstracts/zanette2.pdf · KURAMOTO’S MODEL ON NETWORKS φ˙ i = ωi +k XN j=1 Jij sin(φj −φi) Jij = 1 if jacts

• Small distances:

Ai ≈ (z2 + Ω2)−di+1

2 exp

[

−i(di + 1) tan−1 Ω

z

]

• Large distances:

Ai ≈i

Ω

−J0

(

1 +Ω2

z2

)

−di

2

exp

(

−idi tan−1 Ω

z

)

+1

N

• Large frequencies:

Ai ≈i

Ω

(

−δi1 +1

N

)

Page 19: Kuramoto, Y. (1984). Chemical Oscillations, Waves ...dyonet06/Abstracts/zanette2.pdf · KURAMOTO’S MODEL ON NETWORKS φ˙ i = ωi +k XN j=1 Jij sin(φj −φi) Jij = 1 if jacts

10-7

10-6

10-5

10-4

random I

σφ

0 3 6 9 12 15

10-7

10-6

10-5

10-4 random II

σφ

d

Page 20: Kuramoto, Y. (1984). Chemical Oscillations, Waves ...dyonet06/Abstracts/zanette2.pdf · KURAMOTO’S MODEL ON NETWORKS φ˙ i = ωi +k XN j=1 Jij sin(φj −φi) Jij = 1 if jacts

CHAOTIC (ROESSLER) OSCILLATORS

• Coupled oscillators

xi = −yi − zi + k∑

j Jij(xj − xi) + aδi1 sin Ωt

yi = xi + 0.2yi + k∑

j Jij(yj − yi)

zi = 0.2 + zi(xi − c) + k∑

j Jij(zj − zi).

• Measureσ

ri=

(⟨

|ri − r|2⟩)1/2

with

ri = (xi, yi, zi) and r = N−1∑

i ri

Page 21: Kuramoto, Y. (1984). Chemical Oscillations, Waves ...dyonet06/Abstracts/zanette2.pdf · KURAMOTO’S MODEL ON NETWORKS φ˙ i = ωi +k XN j=1 Jij sin(φj −φi) Jij = 1 if jacts

0 3 6 9 12 1510-6

10-5

10-4

10-3

Ω = 0.1 Ω = 0.5 Ω = 1 Ω = 3

σr

d

Page 22: Kuramoto, Y. (1984). Chemical Oscillations, Waves ...dyonet06/Abstracts/zanette2.pdf · KURAMOTO’S MODEL ON NETWORKS φ˙ i = ωi +k XN j=1 Jij sin(φj −φi) Jij = 1 if jacts

0.0 0.5 1.0 1.5 2.0 2.5 3.010-6

10-5

10-4

10-3

d = 0 d = 3 d = 7 d = 12

σr

Ω