John Rickert Tom Langley Ralph Grimaldi April 28,...

Post on 04-Mar-2018

215 views 1 download

Transcript of John Rickert Tom Langley Ralph Grimaldi April 28,...

The Jacobsthal Subcube of the Hypercube

John Rickert

Tom Langley

Ralph Grimaldi

April 28, 2012

Cubes using the alphabet Σ = {0, 1} with languageQ = {0, 1}

Q2

00

01 10

11

Q3

000

001 010 100

011 101 110

111

Q4

0000

0001 0010 0100 1000

0011 0101 0110 1001 1010 1100

0111 1011 1101 1110

1111

Vertices: 2n Edges: n2n−1

Restrict to the language A = {0, 01, 11}

A0 = {∅}A1 = {0}A2 = {00, 01, 11}A3 = {000, 010, 110, 001, 011}A4 = {0000, 0100, 1100, 0010, 0110,

0001, 0101, 1101, 0011, 0111, 1111}A4 = A30 ∪ A201 ∪ A211|An| = |An−1|+ 2|An−2|

Jacobsthal numbers

J0 = 1 J1 = 1Jn = Jn−1 + 2Jn−2

1, 1, 3, 5, 11, 21, 43, 85, 171, 341, . . .

|A0| = 1 |A1| = 1|An| = |An−1|+ 2|An−2|

Jn = 23 · 2

n + 13 · (−1)

n

Jacobsthal subcube Hn

A2 = {00, 01, 11}

00

01 10

11

00

01 10

11

H3 Q3

000

001 010 100

011 101 110

111

000

001 010

011 110

A3 = {000, 010, 110, 001, 011}

H4 Q4

0000

0001 0010 0100 1000

0011 0101 0110 1001 1010 1100

0111 1011 1101 1110

1111

0000

0001 0010 0100

0011 0101 0110 1100

0111 1101

1111

Subcube recursion

An = An−10 ∪ An−201 ∪ An−211

000

110010

001011

0000

0010

0100

0110

11000001

01011101

00110111

1111

00000

00100

01000

01100

1100000010

0101011010

0011001110

11110

00001

00101

01001

01101

11001

00011

00111

01011

01111

11011

A string starts with an even number of 1s

00111 0 H5

11 0111 11

00000

00100

01000

01100

1100000010

0101011010

001100111011110

00001

00101

01001

01101

11001

00011

00111

01011

01111

11011

A = {0, 01, 11}

Subcube recursion with cubes

An = 0Qn−1 ∪ 11An−2

00000

00001 00010 00100 01000

00011 00101 00110 01001 01010 01100

00111 01011 01101 01110

0111111011

11110 11001

1101011000

Counting the edges

0 Q7 7 · 261 1 0 Q5 5 · 241 1 1 1 0 Q3 3 · 221 1 1 1 1 1 0 Q1 1 · 20

Count of edges between rows 2 and 3

0 Q7 7 · 261 1 0 1 0 Q5 5 · 241 1 1 1 0 23 Q3 3 · 221 1 1 1 1 1 0 Q1 1 · 20

Count of edges between rows

0 Q7 7 · 261 1 0 1 · 25 Q5 5 · 241 1 1 1 0 2 · 23 Q3 3 · 221 1 1 1 1 1 0 3 · 21 Q1 1 · 20

Total number of edges

0 Q7 7 · 26 7 · 261 1 0 1 · 25 Q5 5 · 24 7 · 241 1 1 1 0 2 · 23 Q3 3 · 22 7 · 221 1 1 1 1 1 0 3 · 21 Q1 1 · 20 7 · 201 1 1 1 1 1 1 1 4∑b(n+1)/2c

k=1 (n − 1)2n−2k =(n−13

)2n[1−

(14

)b n+12c].

en =(n4

)[1 + (−1)n] +

(n−13

)2n[1−

(14

)b n+12c].

Direct count of edges in H5

00000

00001 00010 00100 01000

00011 00101 00110 01001 01010 01100

00111 01011 01101 01110

0111111011

11110 11001

1101011000

from \ to (start 0) (start 11) (start 1111)(start 0) 4 · 23 1 · 22 1 · 20(start 11) 2 · 21 1 · 20

(start 1111) 0Total to 4 · 23 4 · 21 4 · 2−1

32 8 242 edges in H5

Does Hn have a Hamiltonian path?

000000

001000

010000

011000

110000

000100

010100

110100

001100011100

111100

000010

001010

010010

011010

110010

000110

001110

010110

011110

110110

000001

001001

010001

011001

110001

000101

010101

110101

001101011101

111101

000011

001011

010011

011011

110011

000111

010111

110111

001111011111

111111

H6

Take the path through 0Qn−1 then move to 11Hn−2

A2 = {00, 01, 11}

00

01 10

11

00

01 10

11

H3

000

001 010 100

011 101 110

111

000

001 010

011 110

A3 = {000, 010, 110, 001, 011}

H4

0000

0001 0010 0100 1000

0011 0101 0110 1001 1010 1100

0111 1011 1101 1110

1111

0000

0001 0010 0100

0011 0101 0110 1100

0111 1101

1111

Summary

000

110010

001011

Verticies: |Hn| = Jn = 13(−1)

n + 23(2)

n

Edges: en =(n4

)[1 + (−1)n] +

(n−13

)2n[1−

(14

)b n+12c]

Hamiltonian Paths!

000000

001000

010000

011000

110000

000100

010100

110100

001100011100

111100

000010

001010

010010

011010

110010

000110

001110

010110

011110

110110

000001

001001

010001

011001

110001

000101

010101

110101

001101011101

111101

000011

001011

010011

011011

110011

000111

010111

110111

001111011111

111111