Inßationar y Univ erse...1.3 Monopole Problem GUTs (Grand Unified Theories) Interaction among...

Post on 29-Aug-2020

0 views 0 download

Transcript of Inßationar y Univ erse...1.3 Monopole Problem GUTs (Grand Unified Theories) Interaction among...

Inflationary Universe

1. Problems in Standard Model

1.1 Flatness Problem

Friedmann Equation

!

a

a

"2

+K

a2!

!

3=

8!G

3"

!

"

"

#

"

"

$

H =aa

! =8!G"3H2

! =!

3H2 ! H2 = !H

2"

K

a2+ !H

2

! + ! ! 1 =K

a2H2

! + ! ! 1 =K

a2H2"

!

T!2 (RD)

T!1 (MD)

a ! 1/T, H ! !1/2! T 2

a ! 1/T, H ! !1/2! T 3/2

At present

!0 ! O(1) ! ! O(1) T0 ! 2.7K ! 3 " 10!4

eV

Teq ! 1eV = 10!9

GeV

At Planck time T ! 1019

GeV

! + ! ! 1 "

!

1019

10!9

"

!2 !

10!9

10!13

"

!1

" 10!60

! + ! = 1 10!60with accuracy

unnatural fine tuning !

Flatness Problem

Entropy of the UniverseS = a3s ! a = (S/s)1/3

K = 0,±1(3)R = ±1/a2

Re-definition of r, a

S =

!

K

H2(! + ! ! 1)

"3/2

s

At Present

s0 = 2!

45

!

2T 3",0 + 2 7

83T 3

#,0

"

= 2!

45

!

2T 3",0 + 2 7

83 4

11T 3

",0

"

= 1.715T 3",0 = 2.8 ! 103 cm!3

H!1

0! 3000 Mpc " 1028 cm

S >!

1087 Large Entropy Problem

S =

!

K

H2(! + ! ! 1)

"3/2

s

1.2 Horizon Problem

CMB is extremely isotropic

emitted at recombination (T ~ 3000K)

Observer at present sees CMB coming from two

opposite directions

P

Q

O

Q’

P’

O’

t = t rec

0t = t

distance between P and O

(a ! t2/3

MD)

PO!(trec) = a(trec)! t0

trec

dt!

a(t!)

= bt2/3! t0

trec

dt!

bt!2/3

= 3(t2/3rec t

1/30 ! trec)

Particle horizon at recombination

!H(trec) = bt2/3

rec

! trec

0

dt!

bt!2/3= 3trec

N =PQ!H

= 2

!

"

t0trec

#1/3

! 1

$

= 2

!

"

Trec

T0

#1/2

! 1

$

= 2

%

&

3000K

2.7K

'1/2! 1

(

" 74

P and Q are far away and have no causal

relation

unnatural Horizon Problem

1.3 Monopole Problem

GUTs (Grand Unified Theories)

Interaction among elementary particles can be described by one

gauge interaction with symmetry represented by group G

G ! SUc(3) " SUL(2) " UY (1)

Higgs Mechanism H: Higgs field !H" = 0 # !H" $= 0

When symmetry G is spontaneously broken to U(1) , topological

defects (monopoles) are produced (Kibble Mechanism)

Topological DefectDomain Wall (2dim)

Cosmic String (1dim)

Monopole (0dim)

Example (Domain Wall)

V

H

H- H+

T high

T=0H+

H+

H+

H-

H-

H-

H-

Domain Wall

coherent length

monopole

Monopole density at formation epoch t

coherent length ! < "H = 2tf

f

! nM = !!3 " "!3

H =1

8t3fEntropy density

s =2!2

45g!T

3

f

! " a!3

! " a!3

nM

s ! 1

8t3f

!

2!2

45g!T

3f

""1

=1

8

!

2!2g!

45

"3/2 T 6

f

M3

G

!

2!2

45g!T

3f

""1

=!

4#

2#

45g1/2!

T 3

f

M3

G

" 0.8!

Tf

MG

"3

Tf = 1015

GeV !nM

s

" 0.8

!

1015

2.4 # 1018

"3

$ 6 # 10!11

!

nM

s

"

0

=

!

nM

s

"

fs0 = 2.8 ! 10

3cm

!3

Monopole massmM ! 10

16GeV

Monopole mass density

!M ! 1.6 " 109

GeVcm!3

Monopole Problem

!c = 1.053 ! 10!5h2

GeVcm!3

!M ! 1.6" 1014 # 1

1.4 Gravitino Problem

Supersymmetry (SUSY) Boson Fermion

Gravitino Superpartner of graviton!3/2

quark squarks

lepton slepton

photon photino

Hierarchy Problem

Keep electroweak scale against radiative correction

Coupling Constant Unification in GUT

mass of gravitino ~ O(100) GeV

Gravitinos are expected to be in thermal

equilibrium at Planck time

! n3/2 " n!

Lifetime of gravitino

!("3/2 → # + #) " 4 × 108 sec! m3/2

100GeV

"!3

Entropy production

!3/2

!!!

m3/2n3/2

Tn!!

m3/2

T" 1

!

!

t " 108 sec

T " 100 eV

"

Huge entropy production

Too much dilute baryon density BBN !nB

n!" 10

!10

Gravitino Problem

1.5 Density Fluctuation Problem

Structures of the Universe (galaxies...) are formed

from small density fluctuations through

gravitational instability

However, no mechanism to produce the fluctuations

in the standard model is found

horizon

galaxy scale

timetgal ! 2 " 10

9sec

2. Success of Inflation Model

2.1 Inflationary Universe

For some reason vacuum energy dominates the universe!

a

a

"2

=8!

3G"v = H2 !v : vacuum energy ! const

!

!

a(t) " exp(Ht)

H ="

8!G3

!v

#1/2

Exponential expansion

Inflation Model

Exponential (accelerated) expansion

End of exponential expansion and release of

vacuum energy into radiation

2.2 Flatness Problem

During inflation the scale factor increases by

af

ai= exp[H(tf ! ti)] " Z

ti tf

inflationRD RD

t = tf ! !R,f " !v

t = ti ! !R,i " !v TR

Ti = TR reheating

temp

entropy density s(ti) = s(tf )

scale factor Za(ti) = a(tf )

total entropy Z3S(ti) = S(tf )

Z >!

1029" S(tf ) >

!1087

even if S(ti)~1

2.3 Horizon Problem

Horizon length just before inflation

!H(ti) ! 2titi tf

inflationRD RD

Just after inflation

!H(tf ) ! 2tiZ

At present the scale corresponding the above horizon

L !

a(t0)

a(tf )2tiZ

TR ! 1016GeV "

a(t0)

a(tf )!

!

10!4eV

1016GeV

"

!1

! 1029

L ! 40Z cm >!

H!1

0! 10

28cm Z >

!10

26

(H!t >!

66)

ti ! H!1!

MG

!1/2v

!1018GeV

(1016GeV)2" (1014GeV)!1

" 2 # 10!28cm

H!

1 stan

dard

scale corresponding to H

!1

0

H!1

0

t0trec

L

inflation

2.5 Other Problems

Monopole

GravitinoDiluted by Z!3 >

!10

!87

Density

Fluctuations

Inflation has mechanism

generating density fluctuations

3. Chaotic Inflation Model

V

!

L =1

2!µ"!µ" ! V (")

V (!) =1

2m2!2

In general V (!) ="!n

nMn!4

G

0 < ! ! 1

3.1 Chaotic Condition

Initial Condition? t = tpl

Heisenberg Uncertainty Principle !E !t >!

1

Energy density

!! ! !E/(!x)3 >!

1/(!t)(!x)3 >!

M4pl

!x <!

!H ! M!1

pl

!t <!

tpl ! M!1

plEnergy density is determined

only with accuracy O(M )pl

!

!

"

"

#

"

"

$

!0"!0" " M4pl

!i"!i" " M4pl

V (") " M4pl

Chaotic Condition of

the Early Universe

initial value of ! is large

m2!2

i ! M4

pl m " Mpl # !i ! M2

pl/m $ Mpl

Suppose, in some region

(!0")2, (!i")2 < V (") ! M4pl

Friedmann eq.

Evolution of inflaton S =

! !"gLd4x =

!a3Ld4x

! + 3a

a! !

1

a2"! = !

dV

d!

3.2 Dynamics of Inflaton

!

a

a

"2

=1

3M2

G

#

!2

2+

(!!)2

2a2+ V (!)

$

!2, (!!)2 " V, ! "dV

d!slow roll approximation

a

a=

V (!)1/2

!

3MG3!

a

a=

!

3V (!)1/2

MG! = "

dV

d!

V = m2!2/2 !"

31

MG

m"

2!! = #m2!

! = !

"

2"

3MGm

! ! !i = !

"

2"

3MGm(t ! ti)

!

!

"

#

$

aa

%2= 1

3M2

G

V (!)

3 aa! = "

dVd!

a

a=

1!

3MG

1!

2m! =

m!

6MG

!

!i "

!

2!

3MGm(t " ti)

"

a = ai exp

!

1

4M2

G

(!2

i ! !2)

"

lna

ai=

m!6MG

!!i(t" ti)"

1!6MGm(t" ti)2

"

=1

4M2G

(!2i " !2)

3.3 Slow Roll Condition

! ! "

dVd!

3aa

! "

V !

3H! ! "

V !!

3H! !

V !!V !

9H2

(1) |!| !

!

!

!

!

dV

d!

!

!

!

!

!

!

!

!

!

V !!V !

9H2

!

!

!

!

" |V !| |V !!| ! 9H2

= 3V

M2

G

! !

V !!

VM2

G ! |!| " 1

(2)1

2!2

! V !(V !)2

9H2" 2V (V !)2 ! 18H

2V = 6

V 2

M2

G

! !1

2

!

V !

V

"2

M2

G ! ! " 1

For chaotic inflation V =1

2m2!2

! =m2

m2"2/2M2

G ! 1 " " #$

2MG

! =1

2

!

m2"

m2"2/2

"2

M2

G ! 1 " " #$

2MG

Inflation ends when ! ! 1 or " ! 1

!f !"

2MG

3.4 After Inflation

!! !! + 3a

a!2

= !

dV

d!! !

d

dt

!

1

2!2

+ V

"

= "3a

a!2

V =1

2m2!2 assume H = a/a ! m

We can neglect the cosmic expansion

1

2!2 =

1

2m2A2 cos2(mt + ")

!!

V

oscillation! + 3a

a! = !dV

d!

! = !m2! " ! = A sin(mt + ")

To see the effect of cosmic expansion, take average

over one oscillation !

1

2!2

"

=1

4m2A2 = !V (!)"

d

dt!! = !3

a

a!! " !! # a!3

Inflaton oscillation behaves as matter

!d

dt

!

1

2!2

+ V

"

= "3a

a!2

=12!!

Oscillation Reheatingparticle creation

3.5 N-efold

The scale factor increases by e from t to tNfN

ti tf

inflation

tN

dN

dtN=

d

dtNln

!

a(tf )

a(tN )

"

= !

a

a= !H

! N =

! tf

tN

dt("H) #

! !f

!N

"

"3H

V !d!

#

("H)

d!/dt = !V !/3H

! N "

! !f

!N

V

V !M2

G

d!

V =1

2m2!2Chaotic inflation

N = !

! !f

!N

m2!2/2

m2!M2

G

d!

= !1

2M2

G

! !f

!Nd!!

= 1

4M2

G

[!2N ! !2

f ]

= 1

4M2

G

[!2N ! 2M2

G]

Ntot =

! !f

!i

V

V !M2

G

d! =1

4M2

G

[!2

i ! 2M2

G] "

"

MG

m

#2

! 1010

3.5 Relation between N and Cosmological Scale L

At the end of inflation

Between t and t (reheating epoch)

Inflaton oscillation

inflation

tN tR

Hubble radius at t corresponds to the present scale LN

f R

H!1(tN ) ! e

NH

!1(tN )

!! =1

2!2

fm2

!

a(t)

a(tf )

"

!3

! : amplitude of oscillation

!!(tR) !"2

30g!T

4

R

!

!

a(tR)

a(tf )

"3

"

1

2!2

fm2

!2

30g!T

4R

=M2

Gm2

!2

30g!T

4R

! !f "#

2MG

At t=t the entropy of the region corresponding to R

H!1(tN )

s(tR) =2!2

45g!T

3

R

At present the entropy inside the region with scale L

SL = 1087

!

L

3000h!1Mpc

"3

! N = 54 + ln

!

L

3000h!1Mpc

"

+1

3ln

!

TR

1010GeV

"

+1

3ln

#

m

1013GeV

$

SN = H!3(tN )e3N

!a(tR)a(tf )

"3

s(TR)

4. Generation of Density Fluctuations

4.1 Fluctuations of scalar field during inflation

massless ! ! + 3a

a! !

1

a2"! = 0

ds2

= dt2! e

2Htd!x

2

[ak, a†q] = !(3)("k ! "q)

c.f. Minkowski space

!("x, t) =1

(2#)3/2

!d3k!

2k0

[a†ke+ik0t!i!k!x + ake!ik0t+i!k!x]

!k !e!ik0t

"2k0

! !("x, t) =1

(2#)3/2

!d3k[a†k$!k(t)e"i!k!x + ak$k(t)ei!k!x]

Remark:

!k + 3H!k + k2e!2Ht!k = 0

! = !H!1e!Ht, " = !3/2u

! u′′+

1

ηu′

+

!

k2"

9

4η2

"

u = 0 Bessel differential eq.

General sol.

H(1,2)3/2 : Hankel function

!k(t) =

!

"

2H#3/2[C1(k)H(1)

3/2(k#) + C2(k)H(2)3/2(k#)]

H(2)3/2 = (H(1)

3/2)! =

!2

!xe"ix

"1 +

1ix

#

k : comoving momentum

p = e!Htk : physical momentum

Quantization in de Sitter space should be the same as that in

Minkowski space in the limit of

! !k(t) =

""

2H#3/2H

(2)3/2

! C1(k) " 0 C2(k) " 1

!k ! "1#2k

!C1(k)e!iH!1k+ikt + C2(k)eiH!1k!ikt

"

=e!ikt

#2k

k !"

C1(k), C2(k)?

For cosmologically interesting fluctuations

at the start of the inflation

! C2 = 1, C1 = 0

! !k(t) ="iH

k#

2k

!

1 +k

iHe!Ht

"

exp

!

"ik

He!Ht

"

Large t!k(t) !

"iH

k#

2kno oscillation

vacuum fluctuations

p = ke!Ht!!2" =1

(2")3

!"

1

2+

H2

2p2

#

d3p

p

k ! H

!!2" =!

|"k|2d3k =1

(2#)3

! "e!2Ht

2k+

H2

2k3

#d3k

!!2" =H2

(2")2

!

d ln" p

H

#

! !" "H

2#

Fourier mode !"k =H!2k3/2

Density Fluctuations

Inflaton fluctuations metric fluctuations

density fluctuations

ds2 = (1 + 2!)dt2 ! a2(1 + 2")dx2newtonian gauge

Poisson Equation

!! = "4!Ga2"# k2!k = 4!Ga2"#k

!"k

"=

23

k2

a2H2!k =

25

k2

a2H2HI

!#k

#

! = !"

" = HI!"

"

!1! a

a2

" t

oadt

#! =

!"

#

23H !"

"(RD)

35H !"

"(MD)

!"k

"=

23

k2

a2H2!k =

25

k2

a2H2HI

!#k

#

!"k =HI!2k3/2

Power spectrum

Harrison-Zeldovich

P (k) =!

!"k

"

"2

=225

!k2

a2H2

"2H4

I

(#)2k!3 ! k

at Horizon crossing!

k3

2!2P (k)

"1/2

! 15!

3H3I

V ! =V 3/2

5"

3!V !M3G

! ! " V !

3HI

! 10!5 " m! ! 1013GeV for chaotic inf.

k/a = H scale invariant spectrum

Spectral Index P (k) ! kns

ns = 1 + 2d ln(V 3/2/V !)

d ln k

N ! 60 + ln(k!1/3000h!1Mpc)

N !!

d!(V/V !)M"2G

d ln k = !dN = ! V

V !M2G

d!

ns = 1! 6! + 2"

ns ! 0.96 for chaotic inf.

ns = 1! 2M2

Gd ln(V 3/2/V !)(V/V !)d!

= 1! 2M2G

V !

V

!3V !

V! V !!

V !

"

= 1! 6" + 2#

Other Inflation Models

New Inflation Model

e.g. V = µ4

!1!

!!

v

"n"2

n " 4!

V

v

Hybrid Inflation Model

V = (µ2 ! !"2)2 + #"2$2 +12m2

!$2

0

0.1

0.2

0.3

0.4

0.5 -0.2

-0.1

0

0.1

0.2-5

-4

-3

-2

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

-0.2

-0.1

0

0.1

0.2-5

-4

-3

-2

0

0.1

0.2

0.3

0.4

0.5

-5

-4

-3

-2

!"

ln V

ln V

!"

http://map.gsfc.nasa.gov/product/cobe

COBE

http://map.gsfc.nasa.gov/

WMAP (Wilkinson Microwave Anisotropy Probe)

WMAP Full Sky Map