Impact characteristics of liquid nitrogen droplets...ሢ / ሢ β€’ ሢ ~𝐴 ß 𝑇 βˆ’π‘‡...

Post on 06-Oct-2020

4 views 0 download

Transcript of Impact characteristics of liquid nitrogen droplets...ሢ / ሢ β€’ ሢ ~𝐴 ß 𝑇 βˆ’π‘‡...

Impact characteristics of liquid nitrogen droplets

Michiel AJ van Limbeek,

Thomas Nes, Marcel ter Brake and Srinivas Vanapalli

Spray cooling

π‘ˆ

Hot plate

Drop

αˆΆπ‘„ ?

2

Heat transfer

Phase change

Impact dynamics

Impact Target

β€’ Roughness

β€’ Material

β€’ Geometry

3

Frustrated Total Internal Reflection (FTIR)

Camera

Drop

Prism

Laser

ΞΈ

Shirota, M., van Limbeek, M. A. J., Lohse, D., & Sun, C. (2017). Measuring thin films using quantitative frustrated total internal reflection (FTIR). The European Physical Journal E, 40(5), 54.

𝑅𝑀𝑒𝑑

4

Impact dynamics: short timescales

Ethanol drop impacting at U=2m/s on a cold sapphire surface

Shirota, Minori, et al. "Dynamic Leidenfrost effect: relevant time and length scales." Physical review letters 116.6 (2016): 064501. 5

Impact dynamics: heatingLiquid nitrogen on heated sapphire (smooth surface)

6

Two types of measurements

β€’ Single drop β€’ Drop stream

7

Experimental Set-up

8

Results

9

U=1.3 m/s T=82 K

Slowed down 500x

ResultsIncreasing plate temperature

10

U=1.3 m/s T=92 K

Slowed down 500x

ResultsIncreasing plate temperature

11

U=1.3 m/s T=102 K

Slowed down 500x

Results

12

Ethanol vs LN2

𝑇𝑑𝑏

𝑇𝐿

Ξ˜π‘‘π‘ ≑𝑇𝐿 βˆ’ π‘‡π‘‘π‘π‘‡π‘π‘Ÿπ‘–π‘‘

13

Rescaling

Exp Data from multiple referenced papers14

Impact timescale

𝐷 = π‘‘π‘ˆβ€’How long does the drop take heat?

β€’ Impact timescale 𝜏 = 𝐷/π‘ˆ

β€’ Contact time (non LF) drop sticks until evaporated

β€’ Capillary timescale (LF)

π‘ˆHot plate

Drop

π‘ˆHot plate

Drop

πœπ‘π‘Žπ‘ =𝜌𝐷3

8𝛾

12

15

Dominant heat transfer mechanism

16

αˆΆπ‘„π‘π‘œπ‘›π‘‘/ αˆΆπ‘„π‘’π‘£π‘Žπ‘

β€’ αˆΆπ‘„π‘π‘œπ‘›π‘‘~𝐴𝑀𝑒𝑑 π‘˜π‘™π‘‡π‘‘π‘Ÿπ‘œπ‘βˆ’π‘‡π‘ 

𝛼𝑙𝑑

β€’ αˆΆπ‘„π‘’π‘£π‘Žπ‘~𝐿𝑐𝑙 αˆΆπ‘„π‘π‘™ β‰ˆ 𝐿𝑐𝑙0.2 (π‘‡π‘‘π‘Ÿπ‘œπ‘ βˆ’ 𝑇𝑠) [1]

β€’αˆΆπ‘„π‘π‘œπ‘›π‘‘αˆΆπ‘„π‘’π‘£π‘Žπ‘

~𝐴𝑀𝑒𝑑

𝐿𝑐𝑙

π‘˜π‘™

0.2 𝛼𝑙𝑑

17

[1] S. Herbert, S. Fischer, T. Gambaryan-Roisman, and P. Stephan, Local heat transfer and phase change phenomena during single drop impingement on a hot surface, IJHMT, vol. 61, 2013

Area vs contact line

18

Dominant heat transfer mechanism

19

Role of impact target: thermal propertiesIs the target isothermal during the impact?

20

Thermal timescale

β€’ 1D Heat equation πœ•π‘‘π‘‡ = π›Όπœ•π‘₯

2𝑇

β€’ Heat flux across the vapour layerπ‘˜π‘ πœ•π‘₯𝑇 = β„Ž 𝑇 βˆ’ π‘‡π‘ π‘Žπ‘‘

π‘₯𝑇 π‘₯, 𝑑

𝑇 π‘₯, 0 = 𝑇0π‘˜π‘ , πœŒπ‘  , 𝐢𝑝,𝑠

π‘‡π‘ π‘Žπ‘‘

Θ = expt

πœπ‘‘β„Žerfc ΰ΅—t πœπ‘‘β„Ž

where Θ =𝑇π‘₯=0βˆ’π‘‡π‘ π‘Žπ‘‘

𝑇0βˆ’π‘‡π‘ π‘Žπ‘‘and πœπ‘‘β„Ž = π‘˜π‘ πœŒπ‘ πΆπ‘,π‘ β„Ž

βˆ’2

0 𝑙

21

Thermal properties of impactor

β€’ Thermal timescaleΞ€π‘˜πœŒπΆπ‘ β„Ž2~0.1 s β‰ͺ 𝐷/π‘ˆ

β€’ Isothermal behaviour

MAJ van Limbeek et al. Vapour cooling of poorly conducting hot substrates increases the dynamic Leidenfrost temperatureInt J Heat&Mass Transfer 97 (2016): 101-109

300K

Sapphire100K

22

Test setup

J.W. Ekins Experimental Techniques for Low-TemperatureMeasurements Oxford University Press 2006

D

U

TemperatureSensor

30x

23

Droplet stream

D

U

24

Droplet stream

25

Results

26

U=1.6 m/s

Slowdown 5x

Results

27

Varying the velocity Zoom

28

Thermal effect of plate changes 𝑇𝐿

29

Solid properties

Property Sapphire 80K Sapphire 300K Glass 300K unitsDensity πœŒπ‘  4000 4000 2520 kg/m3

Specific heat 𝐢𝑝,𝑠 100 776 816 kJ/kg K

Thermal conductivity π‘˜π‘  1000 32 1 W/K m

Thermal diffusivity 𝛼𝑠 = ΰ΅—π‘˜π‘ 

πœŒπ‘ πΆπ‘,𝑠1βˆ™10-3 1βˆ™10-5 4βˆ™10-7 m2/s

Thermal timescale πœπ‘‘β„Ž 100 15 3 ms

30

Delayed touchdown on glass

T=292oC U=3.8m/s31

32

Glass Phase diagram

van Limbeek, Shirota, Sleutel, Prosperetti, Sun and Lohse, IJHMT 2016

Leidenfrost boiling

Transition boiling

Contact boiling

33

Surface cooling

πœπ‘‘β„Ž = π‘˜π‘ πœŒπ‘ πΆπ‘,𝑠 β„Žβˆ’2

34

Competition of two timescales

β€’ Impact timescale πœπ‘–π‘šπ‘ = β‰ˆ1 ms

represents the contact or residence time of the drop near the surface

β€’ Cooling effects become relevant when πœπ‘‘β„Ž β‰ˆ πœπ‘–π‘šπ‘

which is the case for a glass surface:0.3 ms β‰ˆ1 ms

Drop diameterImpact velocity

35

Micro droplet

T=265oC T=305oC

U=10 m/s, slowed 20k

36

Conclusion/Overview

β€’ We studied the impact of liquid nitrogen drops and obtained the phase diagram for the dynamic Leidenfrost effect

β€’ The high thermal conductivity of the sapphire impact target enables us to measure the temperature of the plate during spray cooling and relate it to the wetting behavior using FTIR imaging.

β€’ A strong correlation between the cooling of the sapphire and the wetting behavior was observed.

β€’ Conductive cooling is stronger than evaporation

37