Lecture 20: Rotational kinematics and...

15
โ€ข Angular quantities โ€ข Rolling without slipping โ€ข Rotational kinetic energy โ€ข Moment of inertia โ€ข Energy problems Lecture 20: Rotational kinematics and energetics

Transcript of Lecture 20: Rotational kinematics and...

Page 1: Lecture 20: Rotational kinematics and energeticsweb.mst.edu/~vojtaa/engphys1/lectures/lec20.pdfRelationship between angular and linear motion ๐‘Ž = ๐‘ฃ2 =๐œ”2 Angular speed ๐œ”is

โ€ข Angular quantities

โ€ข Rolling without slipping

โ€ข Rotational kinetic energy

โ€ข Moment of inertia

โ€ข Energy problems

Lecture 20:

Rotational kinematics and energetics

Page 2: Lecture 20: Rotational kinematics and energeticsweb.mst.edu/~vojtaa/engphys1/lectures/lec20.pdfRelationship between angular and linear motion ๐‘Ž = ๐‘ฃ2 =๐œ”2 Angular speed ๐œ”is

Angle measurement in radians

๐œƒ(in radians) = ๐‘ /๐‘Ÿ

s is an arc of a circle of radius ๐‘Ÿ

Complete circle:

๐‘  = 2๐œ‹๐‘Ÿ , ๐œƒ=2๐œ‹

Page 3: Lecture 20: Rotational kinematics and energeticsweb.mst.edu/~vojtaa/engphys1/lectures/lec20.pdfRelationship between angular and linear motion ๐‘Ž = ๐‘ฃ2 =๐œ”2 Angular speed ๐œ”is

Angular Kinematic Vectors

Position: ฮธ

Angular displacement:

ฮ”ฮธ = ฮธ2 โˆ’ ฮธ1

Angular velocity:

ฯ‰๐‘ง =๐‘‘ฮธ

๐‘‘๐‘ก

Angular velocity vector

perpendicular to the plane of

rotation

Page 4: Lecture 20: Rotational kinematics and energeticsweb.mst.edu/~vojtaa/engphys1/lectures/lec20.pdfRelationship between angular and linear motion ๐‘Ž = ๐‘ฃ2 =๐œ”2 Angular speed ๐œ”is

Angular acceleration

ฮฑ๐‘ง =๐‘‘ฯ‰๐‘ง๐‘‘๐‘ก

Page 5: Lecture 20: Rotational kinematics and energeticsweb.mst.edu/~vojtaa/engphys1/lectures/lec20.pdfRelationship between angular and linear motion ๐‘Ž = ๐‘ฃ2 =๐œ”2 Angular speed ๐œ”is

Angular kinematics

For constant angular acceleration:

๐œƒ = ๐œƒ0 + ๐œ”0๐‘ง๐‘ก +1

2๐›ผ๐‘ง๐‘ก2

๐œ”๐‘ง = ๐œ”0๐‘ง + ๐›ผ๐‘ง๐‘ก

๐œ”๐‘ง2 = ๐œ”0๐‘ง

2 + 2 ๐›ผ๐‘ง ๐œƒ โˆ’ ๐œƒ0

๐‘ฅ = ๐‘ฅ0 + ๐‘ฃ0๐‘ฅ๐‘ก + ยฝ๐‘Ž๐‘ฅ๐‘ก2

๐‘ฃ๐‘ฅ = ๐‘ฃ0๐‘ฅ + ๐‘Ž๐‘ฅ๐‘ก

๐‘ฃ๐‘ฅ2 = ๐‘ฃ0๐‘ฅ

2 + 2๐‘Ž๐‘ฅ(๐‘ฅ โˆ’ ๐‘ฅ0)

Compare constant ๐‘Ž๐‘ฅ:

Page 6: Lecture 20: Rotational kinematics and energeticsweb.mst.edu/~vojtaa/engphys1/lectures/lec20.pdfRelationship between angular and linear motion ๐‘Ž = ๐‘ฃ2 =๐œ”2 Angular speed ๐œ”is

Relationship between angular and linear motion

๐‘Ž๐‘Ÿ๐‘Ž๐‘‘ =๐‘ฃ2

๐‘Ÿ= ๐œ”2 ๐‘Ÿ

Angular speed ๐œ” is the same for all points of a rigid

rotating body!

๐‘ฃ =๐‘‘๐‘ 

๐‘‘๐‘ก=๐‘‘

๐‘‘๐‘ก๐‘Ÿ๐œƒ = ๐‘Ÿ

๐‘‘๐œƒ

๐‘‘๐‘ก

linear velocity tangent to circular path:

๐‘ฃ = ๐œ”๐‘Ÿ

๐‘Ÿ distance of particle

from rotational axis

๐‘Ž๐‘ก๐‘Ž๐‘› = ฮฑ๐‘Ÿ

Page 7: Lecture 20: Rotational kinematics and energeticsweb.mst.edu/~vojtaa/engphys1/lectures/lec20.pdfRelationship between angular and linear motion ๐‘Ž = ๐‘ฃ2 =๐œ”2 Angular speed ๐œ”is

Rolling without slipping

Translation of CMRotation about CM

If ๐‘ฃ๐‘Ÿ๐‘–๐‘š = ๐‘ฃ๐ถ๐‘€: ๐‘ฃ๐‘๐‘œ๐‘ก๐‘ก๐‘œ๐‘š = 0 no slipping

๐‘ฃ๐ถ๐‘€ = ๐œ”๐‘…

Rolling w/o slipping

Page 8: Lecture 20: Rotational kinematics and energeticsweb.mst.edu/~vojtaa/engphys1/lectures/lec20.pdfRelationship between angular and linear motion ๐‘Ž = ๐‘ฃ2 =๐œ”2 Angular speed ๐œ”is

Rotational kinetic energy

๐พ๐‘Ÿ๐‘œ๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› = โˆ‘ยฝ๐‘š๐‘›๐‘ฃ๐‘›2 = โˆ‘ยฝ๐‘š๐‘› (ฯ‰๐‘›๐‘Ÿ๐‘›)

2

= โˆ‘ยฝ๐‘š๐‘› (ฯ‰ ๐‘Ÿ๐‘›)2 = ยฝ [ โˆ‘๐‘š๐‘›๐‘Ÿ๐‘›

2] ๐œ”2

๐ผ =

๐‘›

๐‘š๐‘›๐‘Ÿ๐‘›2

Moment of inertia

๐พ๐‘Ÿ๐‘œ๐‘ก = ยฝ ๐ผ๐œ”2

with

Page 9: Lecture 20: Rotational kinematics and energeticsweb.mst.edu/~vojtaa/engphys1/lectures/lec20.pdfRelationship between angular and linear motion ๐‘Ž = ๐‘ฃ2 =๐œ”2 Angular speed ๐œ”is

Moment of inertia

๐ผ =

๐‘›

๐‘š๐‘›๐‘Ÿ๐‘›2

๐‘Ÿ๐‘› perpendicular distance from axis

Continuous objects:

๐ผ =

๐‘›

๐‘š๐‘›๐‘Ÿ๐‘›2โŸถ ๐‘Ÿ2๐‘‘๐‘š

Table p. 291* No calculation of moments of inertia

by integration in this course.

Page 10: Lecture 20: Rotational kinematics and energeticsweb.mst.edu/~vojtaa/engphys1/lectures/lec20.pdfRelationship between angular and linear motion ๐‘Ž = ๐‘ฃ2 =๐œ”2 Angular speed ๐œ”is

Properties of the moment of inertia

1. Moment of inertia ๐ผ depends upon the axis of

rotation. Different ๐ผ for different axes of same object:

Page 11: Lecture 20: Rotational kinematics and energeticsweb.mst.edu/~vojtaa/engphys1/lectures/lec20.pdfRelationship between angular and linear motion ๐‘Ž = ๐‘ฃ2 =๐œ”2 Angular speed ๐œ”is

Properties of the moment of inertia

2. The more mass is farther from the axis of rotation,

the greater the moment of inertia.

Example:

Hoop and solid disk of the same radius R and mass M.

Page 12: Lecture 20: Rotational kinematics and energeticsweb.mst.edu/~vojtaa/engphys1/lectures/lec20.pdfRelationship between angular and linear motion ๐‘Ž = ๐‘ฃ2 =๐œ”2 Angular speed ๐œ”is

Properties of the moment of inertia

3. It does not matter where mass is along the

rotation axis, only radial distance ๐‘Ÿ๐’ from the axis

counts.

Example:

๐ผ for cylinder of mass ๐‘€ and radius ๐‘…: ๐ผ = ยฝ๐‘€๐‘…2

same for long cylinders and short disks

Page 13: Lecture 20: Rotational kinematics and energeticsweb.mst.edu/~vojtaa/engphys1/lectures/lec20.pdfRelationship between angular and linear motion ๐‘Ž = ๐‘ฃ2 =๐œ”2 Angular speed ๐œ”is

Parallel axis theorem

๐ผ๐‘ž = ๐ผ๐‘๐‘š||๐‘ž +๐‘€๐‘‘2

Example:

๐ผ๐‘ž =1

12๐‘€๐ฟ2 +๐‘€

๐ฟ

2

2

=1

12๐‘€๐ฟ2 +

1

4๐‘€๐ฟ2 =

1

3๐‘€๐ฟ2

Page 14: Lecture 20: Rotational kinematics and energeticsweb.mst.edu/~vojtaa/engphys1/lectures/lec20.pdfRelationship between angular and linear motion ๐‘Ž = ๐‘ฃ2 =๐œ”2 Angular speed ๐œ”is

Rotation and translation

๐พ = ๐พ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘  + ๐พ๐‘Ÿ๐‘œ๐‘ก = ยฝ๐‘€๐‘ฃ๐ถ๐‘€2 + ยฝ ๐ผ๐œ”2

๐‘ฃ๐ถ๐‘€ = ๐œ”๐‘…with

Page 15: Lecture 20: Rotational kinematics and energeticsweb.mst.edu/~vojtaa/engphys1/lectures/lec20.pdfRelationship between angular and linear motion ๐‘Ž = ๐‘ฃ2 =๐œ”2 Angular speed ๐œ”is

Hoop-disk-race

Demo: Race of hoop and disk down incline

Example: An object of mass ๐‘€, radius ๐‘… and

moment of inertia ๐ผ is released from rest and is

rolling down incline that makes an angle ฮธ with the

horizontal. What is the speed when the object has

descended a vertical distance ๐ป?