graduate school of medicine, the University of Tokyo ...

Post on 17-Oct-2021

6 views 0 download

Transcript of graduate school of medicine, the University of Tokyo ...

How molecular motor acts

2006.11.27. graduate school of medicine, the University of Tokyo Nobutaka Hirokawa

Life Science Seen from Molecular Motor

Low-angle, rotary shadowing electronmicrograph

Kinesin

KIF1A

Okada et al.Science 283:1152-, 1999

Optical Trapping Nanometry

Spatial resolution < 0.2 nmTemporal resolution < 1 ms

0.2μm beads⇒Small viscous drag

⇒ High temporal resolution

(Response time ≦ 0.25 ms)

Okada,Higuchi, and Hirokawa Nature 424:574-2003

Immobilization of KIF1A to Bead

Bidirectional and Step-wise Movement of a Single KIF1A Monomer

One ATP Hydrolysis Triggers One Stepping Movement.

Time (s)8 9 10

4080

120

-20 0 20

(nm)

(ms)-400

4080

120160

Cycle Time (ms)

0

200

400

600

800

0 200 400 600 800

Step size of KIF1A is 8×n nm, and varies stochastically.

02468

10

-32 32160-16step (nm)

12

Plus-end biased binding of KIF1A to the microtubule: ensemble average

Time (s)

on

0

2

4

-0.2 0 0.2

// MT⊥ MTControl

+-end

//^

Flush Ratchet Model

α β α β α βα β

- +

KIF1AATP

Phosphate

drelease ~0 nm

Dwell Detach

Load F Drag -gv

1D-diffusion under load

dbind ~3 nm

ADPBind

① ②

③④

Microtubule Structure Kikkawa et al.

JCB, 1994: Nature, 1995

Microtubule Microtubule-Kinesin complex

KIF1A-Microtubule Complex: cryo EM(15Å resolution)

Kikkawa et al. Cell 100: 241-, 2000

KIF1A-Microtubule Complex: cryo EM(15Å resolution)

ADP ATP(AMPPNP)

View from outside

ADP ATPView from outside

Tarzan Model

“Drag force” = diffusion might reflect the fluctuation of theflexible tether between KIF1A and tubulin (K-loop & E-hook).

TarzanTarzan

k i

Kikkawa et al. Nature 411: 439- ,2001

Structural Biological Analysis of kinesin motors

KIF1A alternately uses two loops to bind microtubules

Nitta,R. et al. Science 305:678- , 2004

Construction of KIF1A Motor Domain

Chemo-mechanical cycle of kinesin motors

Overall architecture of KIF1A

ATP(AMPPNP)

ADP-Pi (1)(ADP-AlF3)

ADP-Pi (2)(ADP-VO4)

ADP

Conformational changes of two switch regions

KIF1A*=ATP- Microtubule

KIF1A=ADP-Pi -Microtubule

KIF1A*=ADP-Pi -Microtubule

KIF1A=ADP -Microtubule

Nucleotide construct

wild type L12 L11 L8

AMPPNP 4.2±1.3 6.0±1.4 20.2±4.0 25.0±6.0

ADP 6.8±2.5 23.5±8.4 12.3±4.0 26.5±5.0

ATP 10.8±1.8 40.5±11.8 nd nd

ADP-AlFx 5.9±1.5 7.1±1.7 nd nd

ADP-Vi 21.4±4.3 167±66 nd nd

Equilibrium Binding Constants of KIF1A mutant

Design principle

of Walker-

type NTPase

s

Design principle of Walker-type NTPases

Model for the processive movement of the monomeric kinesin KIF1A

Univ. Tokyo

Takao NAKATAYoshimitsu KANAIYasuko NODASumio TERADAYosuke TAKEISen TAKEDAYasushi OKADAYosuke TANAKAMasahiko KAWAGISHIMitsutoshi SETOU

Laurent GUILLAUDRichard WONGJunlin TENGHarukata MIKIDae-Hyung SEOGChunjie ZHAOTerunaga NAKAGAWAMasahide KIKKAWAHiroaki YAJIMARyo NITTATadayuki OGAWA

UCSFRobert J. FletterickElena P. Sabrin

Univ. Hospital TokyoJunko TAKITAYasuhide HAYASHI

Niigata Univ. Brain Res. Inst.

Masaaki SAITOShoji TSUJI