Flux Cored Wires for LNG Applications

Post on 16-Oct-2021

7 views 0 download

Transcript of Flux Cored Wires for LNG Applications

Metrode Welding Consumables

Flux Cored Wires for LNG Applications

9 October 2013

ESOPE 2013, Paris

Zhuyao Zhang, Mark Golding and Pierre Gerard

www.lincolnelectric.eu

Content

• Controlled ferrite flux cored wires for low

carbon austenitic stainless steel piping

systems

• 625 type nickel base flux cored wire for 9%Ni

steel storage tanks

ESOPE 2013, Paris

www.lincolnelectric.eu

Content

• Main base alloys for LNG facilities

• Advantages of flux cored wire welding

• Flux cored wires for stainless steels

• Microstructure control – δ ferrite

• Mechanical properties

• Flux cored wire for 9%Ni steel

• Choice of filler alloy – NiCrMo-3 type nick base

• Mechanical properties

• Summary

ESOPE 2013, Paris

www.lincolnelectric.eu

Why LNG?

ESOPE 2013, Paris

• Natural gas is mainly methane

• LNG is produced by cooling natural gas to -161C

at atmospheric pressure

• Remains liquid by autorefrigeration (cryogen)

• Liquefaction reduces volume by a factor of 600

www.lincolnelectric.eu

Why LNG?

Rapid increase in natural gas consumption:

world consumption and forecast 1965 - 2015

Ref: Energy Insightes

www.lincolnelectric.eu

Why LNG?

Cost of natural gas transportation

Ref: Institute of Gas Technology

LNG vs gas through pipelines

www.lincolnelectric.eu

LNG transpiration and storage

LNG transportation

www.lincolnelectric.eu

LNG transpiration and storage

Storage tank

SS pipe work

www.lincolnelectric.eu

Main base alloys for LNG facilities

Base alloys for LNG

ESOPE 2013, Paris

www.lincolnelectric.eu

Base alloys for LNG

ESOPE 2013, Paris

Temp. °C Base Alloys

-50 CMn

-60 CMn (+Ni)

-75 3%Ni

-101 3/5%Ni

-196 9%Ni

-196 304L

-196 316L

-269 304L/316L

www.lincolnelectric.eu

Base alloys and consumables for LNG

ESOPE 2013, Paris

Temp. °C Base Alloys Consumable

-50 CMn

Low alloy -60 CMn (+Ni)

-75 3%Ni

-101 3/5%Ni

Ni-base -196 9%Ni

-196 304L

Control ferrite

-196 316L

-269 304L/316L Non-ferrite

www.lincolnelectric.eu

Welding processes for site-construction

ESOPE 2013, Paris

• Conventionally: GTAW + SMAW or

GTAW + SAW in the case of LNG tank 2G joint

www.lincolnelectric.eu

Base alloys and consumables for LNG

ESOPE 2013, Paris

Temp. ˚C Alloy Consumable Solid Wire SMAW SAW

-50 CMn

Low alloy

1Ni E8018-C3 (Tufmet 1Ni.B) --

-60 CMn (+Ni) 2Ni E8018-C1 (Tufmet 2Ni.B) --

-75 3%Ni 2Ni E8018-C2 (Tufmet 3Ni.B) --

-101 3/5%Ni

Ni-base

82 ENiCrFe-3 (Nimrod 182KS) --

-196 9%Ni 625 or C276 ENiCrMo-6 (Nyloid 2) C276 or 625 wire

+ flux

-196 304L

Control ferrite

ER308L(CF) E308L-16

Ultramet 308LCF

E308L-15

Ultramet B308LCF --

-196 316L ER316L(CF) E316-16

Ultramet 316LCF

E316L-15

Ultramet B316LCF --

-269 304L/316L Non-ferrite ER316MnNF

(nil ferrite)

E316L-16

(nil ferrite)

E316L-16

(nil ferrite) --

www.lincolnelectric.eu

Welding processes for site-construction

ESOPE 2013, Paris

• Conventionally: GTAW + SMAW or

GTAW + SAW in the case of LNG tank 2G joint

• Why flux cored wire?

www.lincolnelectric.eu

Welding processes for site-construction

ESOPE 2013, Paris

• Conventionally: GTAW + SMAW or

GTAW + SAW in the case of LNG tank 2G joint

• Why flux cored wire?

• High productivity

www.lincolnelectric.eu

Base alloys for LNG

ESOPE 2013, Paris

50 100 150 200 250 300 350 400

Welding Current, A

0

2

4

6

8

10

Dep

osit

ion

Rate

, kg

/hFCAW (1.2mm)

GMAW (1.2mm)

SMAW

www.lincolnelectric.eu

Welding processes for site-construction

ESOPE 2013, Paris

• Conventionally: GTAW + SMAW or

GTAW + SAW in the case of LNG tank 2G joint

• Why flux cored wire?

• High productivity

• Possibility for fully automated welding

www.lincolnelectric.eu

Automated welding mock up: 9%Ni steel + ENiCrMo-3 FCW

ESOPE 2013, Paris

www.lincolnelectric.eu

Welding processes for site-construction

ESOPE 2013, Paris

• Conventionally: GTAW + SMAW or

GTAW + SAW in the case of LNG tank 2G joint

• Why flux cored wire?

• High productivity

• Possibility for fully automated welding

• Good weld cosmetic profile – particularly when involves nickel base filler

www.lincolnelectric.eu

Welding 9%Ni steel with nickel base filler metal

FCAW (3G) SMAW (3G)

9%Ni steel

Ni base

FCW

9%Ni steel

Ni base

SMAW

www.lincolnelectric.eu

Welding processes for site-construction

ESOPE 2013, Paris

• Conventionally: GTAW + SMAW or

GTAW + SAW in the case of LNG tank 2G joint

• Why flux cored wire?

• High productivity

• Possibility for fully automated welding

• Good weld cosmetic profile – particularly when involves nickel base filler

• Good weld metal integrity

• Excellent mechanical properties, particular low temperature impact toughness

www.lincolnelectric.eu

Base alloys and consumables for LNG

ESOPE 2013, Paris

Temp. ˚C Alloy Consumable Solid Wire SMAW FCAW

-50 CMn

Low alloy

1Ni E8018-C3 (Tufmet 1Ni.B) E71T1-21

Metcore DWA55E

-60 CMn (+Ni) 2Ni E8018-C1 (Tufmet 2Ni.B) --

-75 3%Ni 2Ni E8018-C2 (Tufmet 3Ni.B) --

-101 3/5%Ni

Ni-base

82 ENiCrFe-3 (Nimrod 182KS) --

-196 9%Ni 625 or C276 ENiCrMo-6 (Nyloid 2) ENiCrMo3T1-4

Supercore 625P

-196 304L

Control ferrite

ER308L(CF) E308L-16

Ultramet 308LCF

E308L-15

Ultramet B308LCF

E308LT1-4

Supercore 308LCF

-196 316L ER316L(CF) E316-16

Ultramet 316LCF

E316L-15

Ultramet B316LCF

E316LT1-4

Supercore 316LCF

-269 304L/316L Non-ferrite ER316MnNF

(nil ferrite)

E316L-16

(nil ferrite)

E316L-16

(nil ferrite)

E316L-T1-4

Supercore 316NF

www.lincolnelectric.eu

Base alloys and consumables for LNG

ESOPE 2013, Paris

Temp. ˚C Alloy Consumable Solid Wire SMAW FCAW

-50 CMn

Low alloy

1Ni E8018-C3 (Tufmet 1Ni.B) E71T1-21

Metcore DWA55E

-60 CMn (+Ni) 2Ni E8018-C1 (Tufmet 2Ni.B) --

-75 3%Ni 2Ni E8018-C2 (Tufmet 3Ni.B) --

-101 3/5%Ni

Ni-base

82 ENiCrFe-3 (Nimrod 182KS) --

-196 9%Ni 625 or C276 ENiCrMo-6 (Nyloid 2) ENiCrMo3T1-4

Supercore 625P

-196 304L

Control ferrite

ER308L(CF) E308L-16

Ultramet 308LCF

E308L-15

Ultramet B308LCF

E308LT1-4

Supercore 308LCF

-196 316L ER316L(CF) E316-16

Ultramet 316LCF

E316L-15

Ultramet B316LCF

E316LT1-4

Supercore 316LCF

-269 304L/316L Non-ferrite ER316MnNF

(nil ferrite)

E316L-16

(nil ferrite)

E316L-16

(nil ferrite)

E316L-T1-4

Supercore 316NF

www.lincolnelectric.eu

Controlled ferrite FCW

• Controlled ferrite flux cored wires for low

carbon austenitic stainless steel piping

systems

ESOPE 2013, Paris

www.lincolnelectric.eu

Stainless in a LNG facility

ESOPE 2013, Paris

• Typically 304L and 316L types

• Base materials have excellent cryogenic toughness

• Pressure equipment

• Pipe to connect plant and also connect plant to jetty

www.lincolnelectric.eu

Stainless in a LNG facility

ESOPE 2013, Paris

• For simplicity cryogenic Charpy tests are normally carried out

at -196C, liquid nitrogen temperature

• A common requirement is 0.38mm lateral expansion (ASME

B31.3)

• Some European projects (TÜV) do have a minimum Charpy

energy requirement, for example 40J/cm2

Property requirements: Toughness

www.lincolnelectric.eu

Stainless in a LNG facility

ESOPE 2013, Paris

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

La

tera

l E

xp

an

sio

n,

mm

Impact Energy, J

LE=0.38mm

www.lincolnelectric.eu

Stainless in a LNG facility

ESOPE 2013, Paris

Weld metal toughness

• Base materials are carefully processed.

• Weld metals are as-cast and do not necessarily achieve the

required toughness.

• How to achieve weld metal impact properties?

• Solution annealing

• Fully austenitic consumables

• Gas shielded processes

• Specially designed ‘Controlled Ferrite’ consumables

www.lincolnelectric.eu

Stainless in a LNG facility

ESOPE 2013, Paris

Flux cored wires – specially designed with controlled ferrite ‘CF’

• Design philosophy

• Control ferrite

• Control alloy content

• Flux system

www.lincolnelectric.eu

Controlled ferrite FCWs for stainless steel in a LNG facility

ESOPE 2013, Paris

Ferrite control

www.lincolnelectric.eu

Ferrite control

Ferrite & LE – 308L weld

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

Late

ral E

xp

an

sio

n, m

m

Ferrite, FN

308L

www.lincolnelectric.eu

Ferrite control

Ferrite & LE – 308L & 316L welds

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

Late

ral E

xp

an

sio

n, m

m

Ferrite, FN

308L

316L

www.lincolnelectric.eu

Ferrite control

Ferrite & LE – 308L & 316L welds

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

Late

ral E

xp

an

sio

n, m

m

Ferrite, FN

308L

316L

LE=0.38mm

<5FN

www.lincolnelectric.eu

Ferrite control

Various standards have ferrite limits for stainless steels, for

example:

• ASME III requires 5FN minimum; 3-10FN for service

above 427C.

• API 582 has 3FN minimum, it is noted that for

cryogenic service lower FN may be required.

www.lincolnelectric.eu

Ferrite control

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

Late

ral E

xp

an

sio

n, m

m

Ferrite, FN

308L

316L

LE=0.38mm

308L & 316L welds: ferrite control range

www.lincolnelectric.eu

Type C Mn Si Cr Ni Mo N

AWS/ASME

spec range 0.04 0.5-2.5 1.0

18.0-

21.0 9.0-11.0 0.75 -

Ultramet 308LCF

(E308L-16) <0.025 1.0 0.6 18.5 10.0 0.1 0.08

Ultramet B308LCF

(E308L-15) 0.03 1.2 0.3 18.5 10.2 0.1 0.04

Supercore 308LCF

(E308LT1-4) 0.03 1.4 0.6 18.5 10.5 0.1 0.03

Ferrite control – composition of the weld metals

ESOPE 2013, Paris

308L weld composition: rutile SMAW, basic SMAW, rutile FCW

www.lincolnelectric.eu

Type C Mn Si Cr Ni Mo N FN

AWS/ASME

spec range 0.04 0.5-2.5 1.0

18.0-

21.0 9.0-11.0 0.75 - -

Ultramet 308LCF

(E308L-16) <0.025 1.0 0.6 18.5 10.0 0.1 0.08 2-5

Ultramet B308LCF

(E308L-15) 0.03 1.2 0.3 18.5 10.2 0.1 0.04 2-5

Supercore 308LCF

(E308LT1-4) 0.03 1.4 0.6 18.5 10.5 0.1 0.03 2-5

Ferrite control – composition of the weld metals

ESOPE 2013, Paris

308L weld composition: rutile SMAW, basic SMAW, rutile FCW

www.lincolnelectric.eu

Type C Mn Si Cr Ni Mo N FN

AWS/ASME

spec range 0.04 0.5-2.5 1.0

18.0-

21.0 9.0-11.0 0.75 - -

Ultramet 308LCF

(E308L-16) <0.03 1.0 0.6 18.5 10.0 0.1 0.08 2-5

Ultramet B308LCF

(E308L-15) <0.03 1.2 0.3 18.5 10.2 0.1 0.04 2-5

Supercore 308LCF

(E308LT1-4) 0.03 1.4 0.6 18.5 10.5 0.1 0.03 2-5

Ferrite control – composition of the weld metals

ESOPE 2013, Paris

308L weld composition: rutile SMAW, basic SMAW, rutile FCW

www.lincolnelectric.eu

Type C Mn Si Cr Ni Mo N FN

AWS/ASME

spec range 0.04 0.5-2.5 1.0

17.0-

20.0

11.0-

14.0 2.0-3.5 - -

Ultramet 316LCF

(E316L-16) <0.03 1.0 0.6 18.0 12.0 2.2 0.08 2-5

Ultramet B316LCF

(E316L-15) <0.03 1.2 0.3 18.5 12.2 2.2 0.04 2-5

Supercore 316LCF

(E316LT1-4) 0.03 1.4 0.6 18.5 12.4 2.2 0.03 2-5

Ferrite control – composition of the weld metals

ESOPE 2013, Paris

316L weld composition: rutile SMAW, basic SMAW, rutile FCW

www.lincolnelectric.eu

Ferrite control – composition of the weld metals

9.0

10.0

11.0

12.0

13.0

14.0

15.0

16.0

17.0

18.0

17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0

Creq = %Cr+%Mo+0.7x%Nb

Nie

q =

Ni+

35x

%C

+2

0x

%N

+0

.25x

%C

u

0

2 4 6 8 10 12 14 1618

20 2224

2628

3035

4045

50

55

60

65

70

80

85

90

95

100

A

A+F

F+A

F

75

First solidifying phase: A

First solidifying phase: -F

www.lincolnelectric.eu

Ferrite control & Suutala diagram

308LCF

range 308LCF & 316LCF

range P+S=~0.03wt%

www.lincolnelectric.eu

Ferrite control & weld microstructure

Predicted ferrite

WRC = 4FN

5FN

measured

4FN

measured

Supercore 308LCF

weld cap

weld mid

www.lincolnelectric.eu

Controlled ferrite FCWs for stainless steel in a LNG facility

ESOPE 2013, Paris

Alloy control

www.lincolnelectric.eu

Alloy control – 308L weld

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10

Ferrite, FN

Late

ral ex

pan

sio

n,

mm

High alloy

LE=0.38mm

www.lincolnelectric.eu

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10

Ferrite, FN

Late

ral ex

pan

sio

n,

mm

Medium alloy

High alloy

Alloy control – 308L weld

LE=0.38mm

www.lincolnelectric.eu

Alloy control – 308L weld

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10

Ferrite, FN

Late

ral ex

pan

sio

n,

mm

Low alloyMedium alloyHigh alloy

LE=0.38mm

www.lincolnelectric.eu

Alloy control

ESOPE 2013, Paris

• Composition balanced to achieve the optimised ferrite level.

• More critical for 316L than 308L.

• For 316L FCW it means that Mo is in the range 2.0-2.5%.

• The controlled FCWs conforms to AWS 308L and 316L specifications; but the 316L type does not meet the EN ISO specification (EN ISP 17633-A) because it requires 2.5%Mo minimum.

www.lincolnelectric.eu

Controlled ferrite FCWs for stainless steel in a LNG facility

ESOPE 2013, Paris

Flux system

www.lincolnelectric.eu

Controlled ferrite FCWs for stainless steel in a LNG facility

ESOPE 2013, Paris

• For all-positional welding, fast freezing rutile flux system is used for the wires.

Designations;-

•E308LT1-1/4 (Supercore 308LCF)

•R316LT1-1/4 (Supercore 316LCF)

• Low N2 helps achieving good toughness:

•FCW ~0.03%

•SMAW (-15) ~0.08%

•SMAW (-16) ~0.04%

•SAW ~0.06%

www.lincolnelectric.eu

Controlled ferrite FCWs for stainless steel in a LNG facility

ESOPE 2013, Paris

Mechanical properties

www.lincolnelectric.eu

Controlled ferrite FCWs – mechanical properties

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

10 15 20 25 30 35 40 45

Late

ral

Exp

an

sio

n, m

m

Impact Energy, J

308L

LE=0.38mm

LE vs Impact Energy @-196C

www.lincolnelectric.eu

Controlled ferrite FCWs – mechanical properties

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

10 15 20 25 30 35 40 45

Late

ral

Exp

an

sio

n,

mm

Impact Energy, J

308L

SC308LCF

LE=0.38mm

LE vs Impact Energy @-196˚C

www.lincolnelectric.eu

Controlled ferrite FCWs – mechanical properties

LE=0.38mm

LE vs Impact Energy @-196˚C

www.lincolnelectric.eu

Controlled ferrite FCWs – mechanical properties

Gas Position Heat Input

kJ/mm

Charpy energy

J

Lateral expansion

mm

Ar-20%CO2 1G 1.1 38 0.64

100%CO2 1G 1.0 33 0.68

Ar-20%CO2 3G 1.2 32 0.57

Ar-20%CO2 3G 1.8 36 0.67

100%CO2 3G 1.1 36 0.64

Procedural effects on FCAW toughness -196˚C

Welding position, shielding gas and heat input

www.lincolnelectric.eu

Controlled ferrite FCWs – mechanical properties

Consumable Supercore 308LCF Supercore 316LCF

Specification, AWS A5.22 E308LT1-4 E316LT1-4

Specification, EN ISO 17633-A T 19 9 L P M 2 --

Shielding gas Ar-20%CO2 Ar-20%CO2

Tensile strength, MPa 544 546

0.2% Proof stress, MPa 393 410

Elongation, % 4d 50 42

5d 47.5 38.5

Reduction of area, % 54 44

Impact properties -196°C:

impact energy, J 36 34

lateral expansion, mm 0.72 0.55

www.lincolnelectric.eu

Controlled ferrite FCWs – mechanical properties

Process FCAW SMAW FCAW SMAW

Consumable Supercore 308LCF

Ultramet 308LCF

Supercore 316LCF

Ultramet 316LCF

Specification, AWS A5.22 E308LT1-4 E308L-16 E316LT1-4 E316L-16

Specification, EN ISO 17633/EN 1600

T 19 9 L P M 2 E 19 9 L R 3 2 -- --

Shielding gas Ar-20%CO2 -- Ar-20%CO2 --

Tensile strength, MPa 544 583 546 565

0.2% Proof stress, MPa 393 452 410 461

Elongation, % 4d

50 53 42 52

5d 48 47 39 47

Reduction of area, % 54 52 44 63

Impact properties -196°C:

impact energy, J 36 32 34 33

lateral expansion, mm 0.72 0.49 0.55 0.46

www.lincolnelectric.eu

Controlled ferrite FCWs – mechanical properties

FCAW SMAW SAW FCAW SMAW SAW

Supercore 308LCF

Ultramet 308LCF

ER308LCF Supercore 316LCF

Ultramet 316LCF

ER316LCF

E308LT1-4 E308L-16 ER308L E316LT1-4 E316L-16 ER316L

T 19 9 L P M 2 E 19 9 L R 3 2 S 19 9 L -- -- S 19 12 3 L

Ar-20%CO2 -- LA491 Ar-20%CO2 -- LA491

544 583 552 546 565 563

393 452 398 410 461 402

50 53 49 42 52 48.5

48 47 45 39 47 44

54 52 55 44 63 67

36 32 45 34 33 32

0.72 0.49 0.69 0.55 0.46 0.49

www.lincolnelectric.eu

Controlled ferrite FCWs for stainless steel in a LNG facility

ESOPE 2013, Paris

Project examples

www.lincolnelectric.eu

Controlled ferrite FCWs for stainless steel in a LNG facility

ESOPE 2013, Paris

SAGE terminal - UK

• First use of ‘CF’ consumables, early 1990’s.

• ExxonMobil/Ralph M Parsons.

• 6G fixed pipe.

• SMAW.

• GTAW.

www.lincolnelectric.eu

Controlled ferrite FCWs for stainless steel in a LNG facility

ESOPE 2013, Paris

Isle of Grain, UK

• First use of the ‘CF’ flux

cored wire.

• 304L pipe.

• 10mm wall thickness.

• 915mm OD.

www.lincolnelectric.eu

Controlled ferrite FCWs for stainless steel in a LNG facility

Isle of Grain, UK

STT root

FCAW fill & cap

www.lincolnelectric.eu

Controlled ferrite FCWs for stainless steel in a LNG facility

Isle of Grain, UK: Project procedure data

Contractor P M Associates UK Ltd

Project Grain-LNG importation facility, Isle of Grain, UK

Material 304L 36in Schedule 10S

Root welding process and consumable.

Lincoln STT GMAW LNM 304Si

Filling process and consumable. FCAW Supercore 308LCF

Transverse tensile strength, MPa 621, 621

Weld impact properties -196˚C: 10x7.5mm

- impact energy, J 32, 29, 34 (32)

- lateral expansion, mm 0.81, 0.70, 0.73 (0.75)

HAZ impact properties -196˚C: 10x7.5mm

- impact energy, J 107, 74, 70 (84)

- lateral expansion, mm 1.44, 1.02, 1.04 (1.17)

www.lincolnelectric.eu

Content

• Controlled ferrite flux cored wires for low

carbon austenitic stainless steel piping

systems

• 625 type nickel base flux cored wire for 9%Ni

steel storage tanks

ESOPE 2013, Paris

www.lincolnelectric.eu

LNG Tank Construction

ESOPE 2013, Paris

Storage tank

www.lincolnelectric.eu

LNG Tank Construction

ESOPE 2013, Paris

Concrete pre-stressed outer shell

Steel vapor barrier 304L cryogenic piping work

9%Nickel steel inner tank

Suspended Aluminum deck

Insulation

www.lincolnelectric.eu

LNG Tank Construction: 9%Ni steel

ESOPE 2013, Paris

Concrete pre-stressed outer shell

Steel vapor barrier 304L cryogenic piping work

9%Nickel steel inner tank

Suspended Aluminum deck

Insulation

www.lincolnelectric.eu

Background of 9% Nickel steel

ESOPE 2013, Paris

Two principle types of 9% Nickel steel used to build LNG

storage tanks:

• Double normalized + Tempered (NN+T)

- ASTM A353 / A353M

• Quenched & Tempered (Q+T)

- ASTM A553 / A553M

• Both NN+T & Q+T steel have a martesitic microstructure

containing Nickel rich ferrite and stable high carbon Austenite

provides good strength and low temperature impact

toughness

www.lincolnelectric.eu

Background of 9% Nickel steel

ESOPE 2013, Paris

Tensile @ambient:-

•Yield Strength: >430 MPa

•UTS: 690-825 MPa

•Elongation: >35 %

Toughness @-196°C

•Impact (CVN): 47-70 J

•Lateral Expansion: >0.38mm

•Shear Fraction: >80 %

•CTOD: >0.30mm

www.lincolnelectric.eu

LNG tank construction: 9%Ni steel

ESOPE 2013, Paris

9%Nickel steel inner

tank construction

A: 9%Ni Inner tank 2G joint: 625 SAW or HAS C276 SAW B: 9%Ni Inner tank 3G joint:

ENiCrMo-6 SMAW ENiCrMo3T1-4 FCAW

www.lincolnelectric.eu

Nickel base FCW for 9%Ni steel LNG

ESOPE 2013, Paris

• AWS A5.34:2007: ENiCrMo3T1-4

• ISO 12153:2011: T Ni 6625 P M 2

* Single values are maximums

Type C Mn Si Cr Ni Mo Nb+Ta Ti Fe Cu

AWS/ASME

spec range 0.10 0.50 0.50

20.0-

23.0 58.0min

8.0-

10.0

3.15-

4.15 0.40 5.0 0.50

ISO

spec range 0.10 0.50 0.5

20.0-

23.0 58.0min

8.0-

10.0

3.15-

4.15 0.40 5.0 0.50

SC625P:

typical 0.020 0.30 0.20 20.5 66.0 8.2 3.30 0.18 1.0 0.016

www.lincolnelectric.eu

Nickel base FCW for 9%Ni steel LNG – SUPERCORE 625P

ESOPE 2013, Paris

* Single values are maximums

• All position rutile flux cored wire

• Designed for either M21 or 100%CO2 shielding gases

• Diameter 1.2mm

• Minimal spatter

• Very stable arc

• Self releasing slag

General features

www.lincolnelectric.eu

Nickel base FCW for 9%Ni steel LNG – SUPERCORE 625P

ESOPE 2013, Paris

* Single values are maximums

Operating parameters

• Polarity: DC+

• Gas flow: 15-20 litre/min

• ESO: 15-20mm

• Parameters: G/3F: ~25-26V

~150-170A (6-8m/min)

1G/2F: ~28-29V

~180-210A (8-10m/min)

• Metal recovery: 90%

• Very similar to welding with all-positional stainless steel FCWs

www.lincolnelectric.eu

Nickel base FCW for 9%Ni steel LNG – SUPERCORE 625P

* Single values are maximums

Semi-auto: Root pass (60° V) Full-auto: Capping (60°V)

Operability

www.lincolnelectric.eu

Nickel base FCW for 9%Ni steel LNG – SUPERCORE 625P

ESOPE 2013, Paris

Operating parameters

Optimum

range

www.lincolnelectric.eu

Nickel base FCW for 9%Ni steel LNG – SUPERCORE 625P

ESOPE 2013, Paris

Deposition rate

~4.5kg/h

~2.5kg/h

www.lincolnelectric.eu

Nickel base FCW for 9%Ni steel LNG – SUPERCORE 625P

ESOPE 2013, Paris

Deposition rates comparison: FCAW vs. SMAW

De

po

sitio

n r

ate

kg

/h

160% Metal recovery & 99%Ni core wire

1,09 1,15

1,65 1,68

2,03

2,25

0,5

0,7

0,9

1,1

1,3

1,5

1,7

1,9

2,1

2,3

2,5

2.5 low 75A 2.5 high 90 A 3.2 low 130A 3.2 high 145A 4.0 low 150A 4.0 high 180A

www.lincolnelectric.eu

Nickel base FCW for 9%Ni steel LNG – SUPERCORE 625P

ESOPE 2013, Paris

~4.5kg/h

MMA high: ~2.25kg/h

MMA low: ~1.1kg/h

~2.5kg/h

Deposition rates comparison: FCAW vs. SMAW

www.lincolnelectric.eu

Nickel base FCW for 9%Ni steel LNG – SUPERCORE 625P

All weld metal properties

Tensile at ambient temperature:

Toughness:

Position Rp0.2, MPa Rm, MPa A4, % A5, % Z, %

All-weld 1G 496 770 44.0 42.5 41

All-weld 3G 498 772 42.5 40.5 41

www.lincolnelectric.eu

Nickel base FCW for 9%Ni steel LNG – SUPERCORE 625P

All weld metal properties

Tensile at ambient temperature:

Toughness:

Position Rp0.2, MPa Rm, MPa A4, % A5, % Z, %

All-weld 1G 496 770 44.0 42.5 41

All-weld 3G 498 772 42.5 40.5 41

AWS - - >690 >25 - -

EN SIO - >420 >690 - >22 -

9%Ni steel

weld typical: - >430 690-825 >35 - -

www.lincolnelectric.eu

Nickel base FCW for 9%Ni steel LNG – SUPERCORE 625P

All weld metal properties

Toughness:

Toughness:

Position RT

J

-100°C

J

-196°C J

LE at -196°C

mm

All-weld PF/3G 104 98 86 1.44

All-weld PF/3G 87 83 76 1.32

9%Ni steel

weld metal typical

requirement - - - 47-70 >0.38

www.lincolnelectric.eu

Nickel base FCW for 9%Ni steel LNG – SUPERCORE 625P

Hot cracking susceptibility test: T-joint test

Test set-up (JIS Z 3153 – 1993):

40

70

12

Weld 2:

Test weld

Weld 1:

Restraining weld

45˚

www.lincolnelectric.eu

Nickel base FCW for 9%Ni steel LNG – SUPERCORE 625P

Hot cracking susceptibility test: T-joint test

Test welds:

www.lincolnelectric.eu

Nickel base FCW for 9%Ni steel LNG – SUPERCORE 625P

Hot cracking susceptibility test: T-joint test

Test welds: layer by layer dye penetration assessment

Cross section of test weld (height=~5mm)

Test weld

Restraining

weld

www.lincolnelectric.eu

Nickel base FCW for 9%Ni steel LNG – SUPERCORE 625P

Hot cracking susceptibility test: T-joint test

Cross section of test weld

(height=~5mm)

Test Weld

(top surface)

Test welds: layer by layer dye penetration assessment

www.lincolnelectric.eu

Nickel base FCW for 9%Ni steel LNG – SUPERCORE 625P

Test Weld:

(1.0mm below top surface)

Test Weld:

(2.5mm below top surface)

www.lincolnelectric.eu

Nickel base FCW for 9%Ni steel LNG – SUPERCORE 625P

ESOPE 2013, Paris

Procedure test: 9%Ni 3G joints

Root on ceramic

Root on ceramic + seal weld

Root on round ceramic

1 3

2

www.lincolnelectric.eu

Nickel base FCW for 9%Ni steel LNG – SUPERCORE 625P

ESOPE 2013, Paris

Procedure test: joint 3

Weld metal

microstructure

Weld cap

Joint macro image

www.lincolnelectric.eu

Nickel base FCW for 9%Ni steel LNG – SUPERCORE 625P

Procedure test: joint impact toughness @-196°C

Joint CLW CLW* HAZ HAZ* BM BM*

1 59 78 116 154 127 196

2 57 76 120 160 120 160

3 79 (2/3) n.a. 165 n.a. - n.a.

74 (1/3) n.a. 136 n.a. - n.a.

71 (root) n.a. 96 n.a. - n.a.

* 7,5mm sub size CVN values converted to full size values

www.lincolnelectric.eu

Nickel base FCW for 9%Ni steel LNG – SUPERCORE 625P

Procedure test: joint impact toughness @-196°C

HAZ

165J

96J

136J

Weld

79J

71J

74J

www.lincolnelectric.eu

Nickel base FCW for 9%Ni steel LNG – SUPERCORE 625P

Procedure test: tensile properties

AWS type and 9%Ni steel joints tensile properties

Joint Position Rp0.2, MPa Rm, MPa A4, % A5, % Z, %

AWS type coupon 1G 496 770 44.0 42.5 41

AWS type coupon 3G 498 772 42.5 40.5 41

9%Ni joint

All-weld

3G

(2/3 thickness) 438 737 49.5 49.5 43

9%Ni

X-weld tensile

3G

(2/3 thickness) - 787 - - -

3G

(2/3 thickness) - 785 - - -

9%Ni steel

weld typical >430 690-825 >35

www.lincolnelectric.eu

Nickel base FCW for 9%Ni steel LNG – SUPERCORE 625P

Procedure test: bend test – side and transverse

Root (transvers) Face (transverse)

www.lincolnelectric.eu

FCWs for LNG applications

ESOPE 2013, Paris

• All-positional flux cored wires are now available for applications of LNG facility constructions;

• FCW for 304L and 316L grade stainless steels are controlled ferrite 308L and 316L types;

• FCW for LNG storage tank 9%Ni steel is 625 type which enables full automated 3G welding;

• These flux cored wires demonstrated very good weldability; satisfactory strength; excellent cryogenic (-196˚C) toughness. The impact properties are compatible and in most cases better than equivalent SMAW electrode welds;

• Benefiting from its nature of continuous welding and capability of fully automated welding, FCW process offers considerable advantages in producing weld joints with sound microstructure quality and low rate in defects;

• Applications of FCWs in the LNG construction offer significant productivity benefit, hence provide potential to substantially reduce the project cost.

Summary

Metrode Welding Consumables

ESOPE 2013, Paris

Thank you for your attention