Fat penguins and PQCD

Post on 09-Jan-2016

28 views 3 download

description

Fat penguins and PQCD. A.I. Sanda Nagoya University. Collaborators: Y. Keum, E. Kou, T. Kurimoto, H-n. Li, C. D. Lu, N. Shinha, R. Shinha, K. Ukai, T. Yoshikawa M. Yang. My friend and I. π + π ― can be in I=0 or in I =2. rule. But π + π 0 can only be in I=2. Bit of history. - PowerPoint PPT Presentation

Transcript of Fat penguins and PQCD

Fat penguinsand

PQCD

A.I. Sanda

Nagoya University

Collaborators:Y. Keum, E. Kou, T. Kurimoto, H-n. Li, C. D. Lu, N. Shinha, R. Shinha, K. Ukai, T. YoshikawaM. Yang

My friend and I

Bit of history

447)(

)(0

0

K

K

Bose statistics: S wave ππstate I=0, 2

π + π― can be in I=0 or in I =2

But π + π 0 can only be in I=2 2

1I rule

Gell-Man and Pais 50 years ago

Penguins came to save the day

s du c t

g

KsTsdTduTudTs aaaL

aL |)(|

Penguin can not cause ΔI=2 transitions

SVZ

KsTsdTduTudTs aaaL

aL |)(|

Kdsddduus LRLRLRRL |)(|

ffM

uTuKdTs

KuTudTs

K

La

LLa

L

La

LLa

L

2

0||||

||

Ffactor of 10 enhancement

0|| LRLRLR dsdddu Kus Ri

L ||

0|||| LRRRRRds

Li

Lds

dsdddumm

pKus

mm

q

fmm

Mf

mm

M

fpmm

pfpp

mm

pp

duds

K

dsK

ds

K

22

)()(

Chiral perturbation theory

Factorization   approximation

π

π

σK

penguin

My understanding of theΔI=1/2 rule

Penguins play important rolein the ΔI=1/2 rule

For B physics it also play important role

Rare decays give us chance to hunt for physics beyond the standard model

But, they pollute CP asymmetries

What we have leaned

TVPeV

TVPeV

V

V

T

iP

T

iP

T

T

fBA

fBA

*

**

1

1

)(

)(

Ratio is independent of strong interaction if:

i

PT

i

PT

PeVTV

PeVTV

fBA

fBA**)(

)(

c

1. Penguin and Tree have same KM phase2. Penguin is absent

V V V V V Vcb cd ub ud tb td* * * 0

1

2

3 KS

ππ

V Vcb cd*

V Vtb td*V Vub ud

*

sin( ) Im[ ]* *

*2 1 V V V

V V Vtb td cb

tb td cb

cdV*

cdV

Nearly   100%  CPV Nearly   100%  CPV

Bj notationRosner&AIS

Fermilab proeedings

Large CP Violation has been discovered!

SKB

sin = 0.82±0.12(stat)±0.05(syst) Belle12

sin = 0.75±0.09(stat)±0.04(syst) Babar 12

Where do we go from here?

PT

PT

PVVTVV

PVVTVV

BA

KBA

tdtbudub

tstbusub33

24

**

**

)(

)(

If T dominated over P, 20

1

)(

)( 2

BBr

KBBr

Penguins seems to be large in B decays

We expected )(log12

22

O

M

T

P W

T

P

BBr

KBBr1

)(

)(Fat penguins

3)(

)(2

*

*

0

0

TVV

PVV

BBr

KBBr

udub

tstb

11.T

P

bu

T

0: IP

0B Pure T

s

u P

sb

u

d

d

0KB

Pure P

03.006.092.0 pq

With an assumption that |q/p|=1:

03.006.092.0)()(

S

S

KBAKBA

pq

Babar

1

)sin()(1

)(2

)(1

)(/Im2

1)(

)()(

)(1

)(1

sin)sin(1cos1)(

22

222

2

2

22

SC

pqS

BA

BAC

MtCMtCtG

16.13.

38.27.

25.31.

21.1

09.94.

S

C

11.03.0

14.25.053.56.

45.47..

S

C

Belle

Babar

)Im(2

)Im(2

||||

||1

)Re()|||(|

)Re()||1(

)Re()|||(|

)Re()||1(

sincos)(

*

1

22

21

*2221

12121

*2221

12121

2/2/

d

d

c

c

b

b

a

p

qa

MtdeMtcebeatG ttt

3 unknownsLots of observables

Model independent measurement is difficult

Dynamical calculation of P and TShould be used as guide lines

In digging for physics beyond the SM

We have learned that Penguins are large!

)(

)(

B

KB

Nonleptonic 2 body decays

Over 70 decay modes

• Brodsky Lepage PR D22,2157(80)

• Isgar Llewellynsmith NPB317,526(89)• Botts Sterman NP B325, 62(89)

• Li and his collaborators

• Kroll Eur.Phys.J.C12,99(00)

• Li, Keum, AIS hep-ph/0004173 PR hep-ph/0004004 PL

History of pQCD approach

Feynman’s Mistake? Pion form factor

)( 2QF Probability of finding a parton near 1x

)( 2QF

Depends on wee dynamicsCannot be computed by perturbative QCD

1p

2p

2Q),0,0,(2 PPp

2QP

Wee parton

1pP

1x

2Q

Wee’s don’t know which way they are moving

2p

P

Feynman’s reasoning – Naive QCD

Infrared singularity! Infrared singularity!Isgar Llewellynsmith NPB317,526(89) Isgar Llewellynsmith NPB317,526(89)

B

1k

b

2k

uB

d1k

b

2k

u

d a b

Sudakov Factor in QED

This is not so in QCD!

Feynman says small x and small dominates k

The quark and anti-quark are far apart in space

Sudakov factor suppress these regions

xb

1

PQCD approach to pion form factor

X ""

Gluon

S

π

π

Color Singlet state does not radiate

Sudakov factor

Pion form factor

Factorization Theorem

H + H=

H + H-H X 1+

This is free of infrared and linear divergences

This is a divergent operatorBut it is multiplicative and can beabsorbed into the wave function

Brodsky Lepage PR D22,2157(80)Botts Sterman NP B325, 62(89)

Li and his collaborators

Pion wave function

Pion formfactor

)( 2QF

d

XB

b

dB

b quark decay

PQCD approach

Gluon

d

d

B

buVG

ubF )1(2

5

X

d

Bb

u

)(

)()(

)()1()(

222

22

212

22

21

152

qFqq

mM

qFqq

mMpp

pBbup

B

B

  transition form factor

)( 22 GeVQ

  transition form factor

We now know Why FA works

Exp PQCD

K 0 π± 18.4± 2.2 16.4± 3.3

K±π± 18.5± 1.5 15.5± 3.3

K±π 0 11.5± 1.5 9.1± 1.9

K 0 π 0 8.8 ± 2.2 8.6± 2.2

π + π― 4.6± 0.8 7.0± 2.0

π + π 0 5.9± 1.4 3.7± 1.3

π 0 π 0 0.3±0.1

ππ branching ratio would agree better if penguins are larger

)cos()cos(2||||

)sin()sin(2

)()(

)()(22

ABBA

AB

fBfB

fBfB

)''()()( ii BeAefBA

)''()()( ii BeAefBA

CP asymmetry

The diagram which produces strong interaction phase -> CP violation

)()(

)()(

fBfB

fBfB

K 0 π± 0.186±0.105

K±π± -0.062±0.054

K±π 0 -0.087±0.115

CP asymmetries will become smallerif penguins are larger

We should not worry about the disagreement until K 0 π± asymmetry is settled

P

b

u

s

d

d 0KB

Pure P

)''()()( ii BeAefBA

)cos()cos(2||||

)sin()sin(2

)()(

)()(22

ABBA

AB

fBfB

fBfB

)''()()( ii BeAefBA

Conclusion

• PQCD is at its infant stage

• Seems very promising

• Predicts 2 body decay rates

• Input: wave function

• Predicts strong interaction phase

• Existence of CP violation at 10-20% level for some channels

Summary 2

• Are large CPV inconsistent with experiment?

• May be, but can’t say until K+π0 CP asymmetry is in order 0∼