Fat penguins and PQCD

40
Fat penguins and PQCD A.I. Sanda Nagoya University Collaborators: Y. Keum, E. Kou, T. Kurimoto, H-n. Li, C. D. Lu, N. Shinha, R. Shinha, K. Ukai, T. Yoshikawa M. Yang

description

Fat penguins and PQCD. A.I. Sanda Nagoya University. Collaborators: Y. Keum, E. Kou, T. Kurimoto, H-n. Li, C. D. Lu, N. Shinha, R. Shinha, K. Ukai, T. Yoshikawa M. Yang. My friend and I. π + π ― can be in I=0 or in I =2. rule. But π + π 0 can only be in I=2. Bit of history. - PowerPoint PPT Presentation

Transcript of Fat penguins and PQCD

Page 1: Fat penguins and PQCD

Fat penguinsand

PQCD

A.I. Sanda

Nagoya University

Collaborators:Y. Keum, E. Kou, T. Kurimoto, H-n. Li, C. D. Lu, N. Shinha, R. Shinha, K. Ukai, T. YoshikawaM. Yang

Page 2: Fat penguins and PQCD

My friend and I

Page 3: Fat penguins and PQCD

Bit of history

447)(

)(0

0

K

K

Bose statistics: S wave ππstate I=0, 2

π + π― can be in I=0 or in I =2

But π + π 0 can only be in I=2 2

1I rule

Gell-Man and Pais 50 years ago

Page 4: Fat penguins and PQCD

Penguins came to save the day

s du c t

g

KsTsdTduTudTs aaaL

aL |)(|

Penguin can not cause ΔI=2 transitions

SVZ

Page 5: Fat penguins and PQCD

KsTsdTduTudTs aaaL

aL |)(|

Kdsddduus LRLRLRRL |)(|

ffM

uTuKdTs

KuTudTs

K

La

LLa

L

La

LLa

L

2

0||||

||

Ffactor of 10 enhancement

0|| LRLRLR dsdddu Kus Ri

L ||

0|||| LRRRRRds

Li

Lds

dsdddumm

pKus

mm

q

fmm

Mf

mm

M

fpmm

pfpp

mm

pp

duds

K

dsK

ds

K

22

)()(

Chiral perturbation theory

Factorization   approximation

Page 6: Fat penguins and PQCD

π

π

σK

penguin

My understanding of theΔI=1/2 rule

Page 7: Fat penguins and PQCD

Penguins play important rolein the ΔI=1/2 rule

For B physics it also play important role

Rare decays give us chance to hunt for physics beyond the standard model

But, they pollute CP asymmetries

Page 8: Fat penguins and PQCD

What we have leaned

TVPeV

TVPeV

V

V

T

iP

T

iP

T

T

fBA

fBA

*

**

1

1

)(

)(

Ratio is independent of strong interaction if:

i

PT

i

PT

PeVTV

PeVTV

fBA

fBA**)(

)(

c

1. Penguin and Tree have same KM phase2. Penguin is absent

Page 9: Fat penguins and PQCD

V V V V V Vcb cd ub ud tb td* * * 0

1

2

3 KS

ππ

V Vcb cd*

V Vtb td*V Vub ud

*

sin( ) Im[ ]* *

*2 1 V V V

V V Vtb td cb

tb td cb

cdV*

cdV

Nearly   100%  CPV Nearly   100%  CPV

Bj notationRosner&AIS

Fermilab proeedings

Page 10: Fat penguins and PQCD

Large CP Violation has been discovered!

SKB

sin = 0.82±0.12(stat)±0.05(syst) Belle12

sin = 0.75±0.09(stat)±0.04(syst) Babar 12

Where do we go from here?

Page 11: Fat penguins and PQCD

PT

PT

PVVTVV

PVVTVV

BA

KBA

tdtbudub

tstbusub33

24

**

**

)(

)(

If T dominated over P, 20

1

)(

)( 2

BBr

KBBr

Penguins seems to be large in B decays

We expected )(log12

22

O

M

T

P W

T

P

BBr

KBBr1

)(

)(Fat penguins

Page 12: Fat penguins and PQCD

3)(

)(2

*

*

0

0

TVV

PVV

BBr

KBBr

udub

tstb

11.T

P

bu

T

0: IP

0B Pure T

s

u P

sb

u

d

d

0KB

Pure P

Page 13: Fat penguins and PQCD

03.006.092.0 pq

With an assumption that |q/p|=1:

03.006.092.0)()(

S

S

KBAKBA

pq

Babar

1

)sin()(1

)(2

)(1

)(/Im2

1)(

)()(

)(1

)(1

sin)sin(1cos1)(

22

222

2

2

22

SC

pqS

BA

BAC

MtCMtCtG

Page 14: Fat penguins and PQCD

16.13.

38.27.

25.31.

21.1

09.94.

S

C

11.03.0

14.25.053.56.

45.47..

S

C

Belle

Babar

Page 15: Fat penguins and PQCD

)Im(2

)Im(2

||||

||1

)Re()|||(|

)Re()||1(

)Re()|||(|

)Re()||1(

sincos)(

*

1

22

21

*2221

12121

*2221

12121

2/2/

d

d

c

c

b

b

a

p

qa

MtdeMtcebeatG ttt

3 unknownsLots of observables

Page 16: Fat penguins and PQCD

Model independent measurement is difficult

Dynamical calculation of P and TShould be used as guide lines

In digging for physics beyond the SM

We have learned that Penguins are large!

)(

)(

B

KB

Page 17: Fat penguins and PQCD

Nonleptonic 2 body decays

Over 70 decay modes

Page 18: Fat penguins and PQCD

• Brodsky Lepage PR D22,2157(80)

• Isgar Llewellynsmith NPB317,526(89)• Botts Sterman NP B325, 62(89)

• Li and his collaborators

• Kroll Eur.Phys.J.C12,99(00)

• Li, Keum, AIS hep-ph/0004173 PR hep-ph/0004004 PL

History of pQCD approach

Page 19: Fat penguins and PQCD

Feynman’s Mistake? Pion form factor

)( 2QF Probability of finding a parton near 1x

)( 2QF

Depends on wee dynamicsCannot be computed by perturbative QCD

1p

2p

2Q),0,0,(2 PPp

2QP

Wee parton

1pP

1x

2Q

Wee’s don’t know which way they are moving

2p

P

Page 20: Fat penguins and PQCD

Feynman’s reasoning – Naive QCD

Infrared singularity! Infrared singularity!Isgar Llewellynsmith NPB317,526(89) Isgar Llewellynsmith NPB317,526(89)

B

1k

b

2k

uB

d1k

b

2k

u

d a b

Page 21: Fat penguins and PQCD

Sudakov Factor in QED

Page 22: Fat penguins and PQCD

This is not so in QCD!

Feynman says small x and small dominates k

The quark and anti-quark are far apart in space

Sudakov factor suppress these regions

xb

1

Page 23: Fat penguins and PQCD

PQCD approach to pion form factor

X ""

Gluon

S

Page 24: Fat penguins and PQCD

π

π

Color Singlet state does not radiate

Sudakov factor

Pion form factor

Page 25: Fat penguins and PQCD

Factorization Theorem

H + H=

H + H-H X 1+

This is free of infrared and linear divergences

This is a divergent operatorBut it is multiplicative and can beabsorbed into the wave function

Brodsky Lepage PR D22,2157(80)Botts Sterman NP B325, 62(89)

Li and his collaborators

Page 26: Fat penguins and PQCD

Pion wave function

Pion formfactor

)( 2QF

Page 27: Fat penguins and PQCD

d

XB

b

dB

b quark decay

Page 28: Fat penguins and PQCD

PQCD approach

Gluon

d

d

B

Page 29: Fat penguins and PQCD

buVG

ubF )1(2

5

X

d

Bb

u

)(

)()(

)()1()(

222

22

212

22

21

152

qFqq

mM

qFqq

mMpp

pBbup

B

B

  transition form factor

Page 30: Fat penguins and PQCD

)( 22 GeVQ

  transition form factor

Page 31: Fat penguins and PQCD

We now know Why FA works

Page 32: Fat penguins and PQCD

Exp PQCD

K 0 π± 18.4± 2.2 16.4± 3.3

K±π± 18.5± 1.5 15.5± 3.3

K±π 0 11.5± 1.5 9.1± 1.9

K 0 π 0 8.8 ± 2.2 8.6± 2.2

π + π― 4.6± 0.8 7.0± 2.0

π + π 0 5.9± 1.4 3.7± 1.3

π 0 π 0 0.3±0.1

ππ branching ratio would agree better if penguins are larger

Page 33: Fat penguins and PQCD

)cos()cos(2||||

)sin()sin(2

)()(

)()(22

ABBA

AB

fBfB

fBfB

)''()()( ii BeAefBA

)''()()( ii BeAefBA

CP asymmetry

Page 34: Fat penguins and PQCD

The diagram which produces strong interaction phase -> CP violation

Page 35: Fat penguins and PQCD

)()(

)()(

fBfB

fBfB

K 0 π± 0.186±0.105

K±π± -0.062±0.054

K±π 0 -0.087±0.115

CP asymmetries will become smallerif penguins are larger

We should not worry about the disagreement until K 0 π± asymmetry is settled

Page 36: Fat penguins and PQCD

P

b

u

s

d

d 0KB

Pure P

)''()()( ii BeAefBA

)cos()cos(2||||

)sin()sin(2

)()(

)()(22

ABBA

AB

fBfB

fBfB

)''()()( ii BeAefBA

Page 37: Fat penguins and PQCD
Page 38: Fat penguins and PQCD
Page 39: Fat penguins and PQCD

Conclusion

• PQCD is at its infant stage

• Seems very promising

• Predicts 2 body decay rates

• Input: wave function

• Predicts strong interaction phase

• Existence of CP violation at 10-20% level for some channels

Page 40: Fat penguins and PQCD

Summary 2

• Are large CPV inconsistent with experiment?

• May be, but can’t say until K+π0 CP asymmetry is in order 0∼