theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of...

129
CALC-2006@BLTPh, Dubna Fractional APT in QCD Alexander P. Bakulev Bogoliubov Lab. Theor. Phys., JINR (Dubna, Russia) Fractional APT in QCD – p. 1

Transcript of theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of...

Page 1: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Fractional APT in QCDAlexander P. Bakulev

Bogoliubov Lab. Theor. Phys., JINR (Dubna, Russia)

Fractional APT in QCD – p. 1

Page 2: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

OUTLINE

Intro: Analytic Perturbation Theory (APT) in QCD

Problems of APT

Resolution — FAPT: Completed set {Aν ;Aν}ν∈R

and its properties

Technical development of FAPT: higher loops,convergence, accuracy

Applications: Phenomenological analysis of Higgs decayH0 → bb

Conclusions

Fractional APT in QCD – p. 2

Page 3: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Recent Related Publications

A. B., Mikhailov, Stefanis – hep-ph/0607040

A. B., Mikhailov, Stefanis – PRD 72 (2005) 074014

A. B., Karanikas, Stefanis – PRD 72 (2005) 074015

A. B., Stefanis – NPB 721 (2005) 50

A. B., Passek-Kumericki, Schroers, Stefanis –PRD 70 (2004) 033014

Karanikas&Stefanis – PLB 504 (2001) 225

Fractional APT in QCD – p. 3

Page 4: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Analytic Perturbation Theory

inQCD

Fractional APT in QCD – p. 4

Page 5: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Intro: PT in QCD

coupling αs(μ2) = (4π/b0) as(L) with L = ln(μ2/Λ2)

Fractional APT in QCD – p. 5

Page 6: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Intro: PT in QCD

coupling αs(μ2) = (4π/b0) as(L) with L = ln(μ2/Λ2)

RG equationd as(L)

dL= −a2

s − c1 a3s − . . .

Fractional APT in QCD – p. 5

Page 7: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Intro: PT in QCD

coupling αs(μ2) = (4π/b0) as(L) with L = ln(μ2/Λ2)

RG equationd as(L)

dL= −a2

s − c1 a3s − . . .

1-loop solution generates Landau pole singularity:as(L) = 1/L

Fractional APT in QCD – p. 5

Page 8: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Intro: PT in QCD

coupling αs(μ2) = (4π/b0) as(L) with L = ln(μ2/Λ2)

RG equationd as(L)

dL= −a2

s − c1 a3s − . . .

1-loop solution generates Landau pole singularity:as(L) = 1/L

2-loop solution generates square-root singularity:as(L) ∼ 1/

√L + c1 ln c1

Fractional APT in QCD – p. 5

Page 9: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Intro: PT in QCD

coupling αs(μ2) = (4π/b0) as(L) with L = ln(μ2/Λ2)

RG equationd as(L)

dL= −a2

s − c1 a3s − . . .

1-loop solution generates Landau pole singularity:as(L) = 1/L

2-loop solution generates square-root singularity:as(L) ∼ 1/

√L + c1 ln c1

PT series: D(L) = 1 + d1as(L) + d2a2s(L) + . . .

Fractional APT in QCD – p. 5

Page 10: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Intro: PT in QCD

coupling αs(μ2) = (4π/b0) as(L) with L = ln(μ2/Λ2)

RG equationd as(L)

dL= −a2

s − c1 a3s − . . .

1-loop solution generates Landau pole singularity:as(L) = 1/L

2-loop solution generates square-root singularity:as(L) ∼ 1/

√L + c1 ln c1

PT series: D(L) = 1 + d1as(L) + d2a2s(L) + . . .

RG evolution: B(Q2) =[Z(Q2)/Z(μ2)

]B(μ2) reduces in

1-loop approximation toZ ∼ aν(L)

∣∣∣ν = ν0 ≡ γ0/(2b0)

Fractional APT in QCD – p. 5

Page 11: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Basics of APT

Different effective couplings in Euclidean (S&S) andMinkowskian (R&K&P) regions

Fractional APT in QCD – p. 6

Page 12: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Basics of APT

Different effective couplings in Euclidean (S&S) andMinkowskian (R&K&P) regions

Based on RG + Causality

Fractional APT in QCD – p. 6

Page 13: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Basics of APT

Different effective couplings in Euclidean (S&S) andMinkowskian (R&K&P) regions

Based on RG + Causality⇓ ⇓

UV asymptotics Spectrality

Fractional APT in QCD – p. 6

Page 14: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Basics of APT

Different effective couplings in Euclidean (S&S) andMinkowskian (R&K&P) regions

Based on RG + Causality⇓ ⇓

UV asymptotics Spectrality

Euclidean: −q2 = Q2, L = ln Q2/Λ2, {An(L)}n∈N

Fractional APT in QCD – p. 6

Page 15: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Basics of APT

Different effective couplings in Euclidean (S&S) andMinkowskian (R&K&P) regions

Based on RG + Causality⇓ ⇓

UV asymptotics Spectrality

Euclidean: −q2 = Q2, L = ln Q2/Λ2, {An(L)}n∈N

Minkowskian: q2 = s, Ls = ln s/Λ2, {An(Ls)}n∈N

Fractional APT in QCD – p. 6

Page 16: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Basics of APT

Different effective couplings in Euclidean (S&S) andMinkowskian (R&K&P) regions

Based on RG + Causality⇓ ⇓

UV asymptotics Spectrality

Euclidean: −q2 = Q2, L = ln Q2/Λ2, {An(L)}n∈N

Minkowskian: q2 = s, Ls = ln s/Λ2, {An(Ls)}n∈N

PT∑m

dmams (Q2) ⇒ ∑

mdmAm(Q2) APT

Here dm are numbers in MS -scheme

Fractional APT in QCD – p. 6

Page 17: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Basics of APT

Different effective couplings in Euclidean (S&S) andMinkowskian (R&K&P) regions

Based on RG + Causality⇓ ⇓

UV asymptotics Spectrality

Euclidean: −q2 = Q2, L = ln Q2/Λ2, {An(L)}n∈N

Minkowskian: q2 = s, Ls = ln s/Λ2, {An(Ls)}n∈N

PT∑m

dmams (Q2) ⇒ ∑

mdmAm(Q2) APT

m – power ⇒ m – index

Here dm are numbers in MS -scheme

Fractional APT in QCD – p. 6

Page 18: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Spectral representation

By analytization we mean “Kallen–Lehman” representation

[f(Q2)

]an =

∫ ∞

0

ρf (σ)

σ + Q2 − iεdσ

with spectral density ρf (σ) = Im[f(−σ)

]/π.

Fractional APT in QCD – p. 7

Page 19: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Spectral representation

By analytization we mean “Kallen–Lehman” representation

[f(Q2)

]an =

∫ ∞

0

ρf (σ)

σ + Q2 − iεdσ

Then

A1(Q2) =

∫ ∞

0

ρ(σ)

σ + Q2dσ =

1

L− 1

eL − 1

Fractional APT in QCD – p. 7

Page 20: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Spectral representation

By analytization we mean “Kallen–Lehman” representation

[f(Q2)

]an =

∫ ∞

0

ρf (σ)

σ + Q2 − iεdσ

Then (note here pole remover):

A1(Q2) =

∫ ∞

0

ρ(σ)

σ + Q2dσ =

1

L− 1

eL − 1

Fractional APT in QCD – p. 7

Page 21: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Spectral representation

By analytization we mean “Kallen–Lehman” representation

[f(Q2)

]an =

∫ ∞

0

ρf (σ)

σ + Q2 − iεdσ

Then (note here pole remover):

A1(Q2) =

∫ ∞

0

ρ(σ)

σ + Q2dσ =

1

L− 1

eL − 1

A1(s) =

∫ ∞

s

ρ(σ)

σdσ =

1

πarccos

Ls√π2 + L2

s

Fractional APT in QCD – p. 7

Page 22: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Spectral representation

By analytization we mean “Kallen–Lehman” representation

[f(Q2)

]an =

∫ ∞

0

ρf (σ)

σ + Q2 − iεdσ

Then (note here pole remover):

A1(Q2) =

∫ ∞

0

ρ(σ)

σ + Q2dσ =

1

L− 1

eL − 1

A1(s) =

∫ ∞

s

ρ(σ)

σdσ =

1

πarccos

Ls√π2 + L2

s

as(L) =1

L

Fractional APT in QCD – p. 7

Page 23: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Spectral representation

By analytization we mean “Kallen–Lehman” representation

[f(Q2)

]an =

∫ ∞

0

ρf (σ)

σ + Q2 − iεdσ

with spectral density ρf (σ) = Im[f(−σ)

]/π. Then:

An(Q2) =

∫ ∞

0

ρn(σ)

σ + Q2dσ =

1

(n − 1)!

(− d

dL

)n−1

A1(LQ)

Fractional APT in QCD – p. 8

Page 24: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Spectral representation

By analytization we mean “Kallen–Lehman” representation

[f(Q2)

]an =

∫ ∞

0

ρf (σ)

σ + Q2 − iεdσ

with spectral density ρf (σ) = Im[f(−σ)

]/π. Then:

An(Q2) =

∫ ∞

0

ρn(σ)

σ + Q2dσ =

1

(n − 1)!

(− d

dL

)n−1

A1(LQ)

An(s) =

∫ ∞

s

ρn(σ)

σdσ =

1

(n − 1)!

(− d

dL

)n−1

A1(Ls)

Fractional APT in QCD – p. 8

Page 25: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Spectral representation

By analytization we mean “Kallen–Lehman” representation

[f(Q2)

]an =

∫ ∞

0

ρf (σ)

σ + Q2 − iεdσ

with spectral density ρf (σ) = Im[f(−σ)

]/π. Then:

An(Q2) =

∫ ∞

0

ρn(σ)

σ + Q2dσ =

1

(n − 1)!

(− d

dL

)n−1

A1(LQ)

An(s) =

∫ ∞

s

ρn(σ)

σdσ =

1

(n − 1)!

(− d

dL

)n−1

A1(Ls)

ans (L) =

1

(n − 1)!

(− d

dL

)n−1

as(L)

Fractional APT in QCD – p. 8

Page 26: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

APT graphics: Distorting mirror

First, couplings: A1(s) and A1(Q2)

-10 -5 0 5 10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Q2 [GeV2]−s [GeV2]

A1(Q2)�1(s)

Fractional APT in QCD – p. 9

Page 27: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

APT graphics: Distorting mirror

Second, square-images: A2(s) and A2(Q2)

-10 -5 0 5 10

0.02

0.04

0.06

0.08

0.1

Q2 [GeV2]−s [GeV2]

A2(Q2)�2(s)

Fractional APT in QCD – p. 9

Page 28: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

APT graphics: Distorting mirror

Second, square-images: A2(s) and A2(Q2)

-2 -1 0 1 2

0.02

0.04

0.06

0.08

0.1

Q2 [GeV2]−s [GeV2]

A2(Q2)�2(s)

Fractional APT in QCD – p. 9

Page 29: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Problemsof

APT

Fractional APT in QCD – p. 10

Page 30: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Problems of APT

Open Questions

“Analytization” of multi-scale amplitudes beyond LO ofpQCD

Fractional APT in QCD – p. 11

Page 31: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Problems of APT

Open Questions

“Analytization” of multi-scale amplitudes beyond LO ofpQCD

Appearance of additional logs depending on scale thatserves as factorization or renormalization scale

Fractional APT in QCD – p. 11

Page 32: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Problems of APT

Open Questions

“Analytization” of multi-scale amplitudes beyond LO ofpQCD

Appearance of additional logs depending on scale thatserves as factorization or renormalization scale

Evolution induces logarithms to some non-integer,fractional, powers of coupling constant

Fractional APT in QCD – p. 11

Page 33: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Problems of APT

Open Questions

“Analytization” of multi-scale amplitudes beyond LO ofpQCD

Appearance of additional logs depending on scale thatserves as factorization or renormalization scale

Evolution induces logarithms to some non-integer,fractional, powers of coupling constant

Resummation of gluonic corrections, giving rise toSudakov factors, under “Analytization” difficult task[Stefanis, Schroers, Kim – PLB 449 (1999) 299;EPJC 18 (2000) 137]

Fractional APT in QCD – p. 11

Page 34: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Problems of APT

In standard QCD PT we have not only power seriesF (L) =

∑m

fm ams (L), but also:

Fractional APT in QCD – p. 12

Page 35: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Problems of APT

In standard QCD PT we have not only power seriesF (L) =

∑m

fm ams (L), but also:

RG-improvment to account for higher-orders →

Z(L) = exp

{∫ as(L) γ(a)

β(a)da

}1-loop→ [as(L)]γ0/(2β0)

Fractional APT in QCD – p. 12

Page 36: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Problems of APT

In standard QCD PT we have not only power seriesF (L) =

∑m

fm ams (L), but also:

RG-improvment to account for higher-orders →

Z(L) = exp

{∫ as(L) γ(a)

β(a)da

}1-loop→ [as(L)]γ0/(2β0)

RG at 2 loops → [as(L)]n ln (as(L))

Fractional APT in QCD – p. 12

Page 37: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Problems of APT

In standard QCD PT we have not only power seriesF (L) =

∑m

fm ams (L), but also:

RG-improvment to account for higher-orders →

Z(L) = exp

{∫ as(L) γ(a)

β(a)da

}1-loop→ [as(L)]γ0/(2β0)

RG at 2 loops → [as(L)]n ln (as(L))

Factorization → [as(L)]n Lm

Fractional APT in QCD – p. 12

Page 38: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Problems of APT

In standard QCD PT we have not only power seriesF (L) =

∑m

fm ams (L), but also:

RG-improvment to account for higher-orders →

Z(L) = exp

{∫ as(L) γ(a)

β(a)da

}1-loop→ [as(L)]γ0/(2β0)

RG at 2 loops → [as(L)]n ln (as(L))

Factorization → [as(L)]n Lm

Sudakov resummation → exp [−as(L) · f(x)]

Fractional APT in QCD – p. 12

Page 39: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Problems of APT

In standard QCD PT we have not only power seriesF (L) =

∑m

fm ams (L), but also:

RG-improvment to account for higher-orders →

Z(L) = exp

{∫ as(L) γ(a)

β(a)da

}1-loop→ [as(L)]γ0/(2β0)

RG at 2 loops → [as(L)]n ln (as(L))

Factorization → [as(L)]n Lm

Sudakov resummation → exp [−as(L) · f(x)]

New functions: (as)ν , (as)

ν ln(as), (as)ν Lm, e−as , . . .

Fractional APT in QCD – p. 12

Page 40: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Conceptual scheme of APT

PT[α

(l)s (Q2)

]n

AM AE

A(l)n (s) A(l)

n (Q2)D−→←−

R=D−1

APT

The index n in APT is restricted to integer values only.

Fractional APT in QCD – p. 13

Page 41: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Conceptual scheme of FAPT

PT[α

(l)s (Q2)

AM AE

A(l)ν (s) A(l)

ν (Q2)D−→←−

R=D−1

FAPT

In FAPT index ν can assume any real values. ✍

Fractional APT in QCD – p. 14

Page 42: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Conceptual scheme of FAPT

PT[α

(l)s (Q2)

ln (Q2/Λ2)

AM AE

L(l)ν (s) L(l)

ν (Q2)D−→←−

R=D−1

FAPT

This enables “analytization” of expressions like shown infigure.

Fractional APT in QCD – p. 14

Page 43: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Fractional

APT

Fractional APT in QCD – p. 15

Page 44: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

FAPT: Construction of Aν(L)

In 1-loop APT we have a very nice recursive relation

An(L) =1

(n − 1)!

(− d

dL

)n−1

A1(L)

Fractional APT in QCD – p. 16

Page 45: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

FAPT: Construction of Aν(L)

In 1-loop APT we have a very nice recursive relation

An(L) =1

(n − 1)!

(− d

dL

)n−1

A1(L)

We can use it to construct FAPT. Let us consider Laplacetransform (A1(L)

a1(L)

)=

∫ ∞

0e−Lt

(A1(t)

a1(t)

)dt

Fractional APT in QCD – p. 16

Page 46: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

FAPT: Construction of Aν(L)

In 1-loop APT we have a very nice recursive relation

An(L) =1

(n − 1)!

(− d

dL

)n−1

A1(L)

We can use it to construct FAPT. Let us consider Laplacetransform (A1(L)

a1(L)

)=

∫ ∞

0e−Lt

(A1(t)

a1(t)

)dt

with a1(t) = 1.

Fractional APT in QCD – p. 16

Page 47: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

FAPT: Construction of Aν(L)

In 1-loop APT we have a very nice recursive relation

An(L) =1

(n − 1)!

(− d

dL

)n−1

A1(L)

We can use it to construct FAPT. Let us consider Laplacetransform (A1(L)

a1(L)

)=

∫ ∞

0e−Lt

(A1(t)

a1(t)

)dt

with a1(t) = 1. Then

An(L) =

∫ ∞

0e−Lt

[tn−1

(n − 1)!· A1(t)

]dt

Fractional APT in QCD – p. 16

Page 48: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

FAPT: Construction of Aν(L)

In 1-loop APT we have a very nice recursive relation

An(L) =1

(n − 1)!

(− d

dL

)n−1

A1(L)

We can use it to construct FAPT. Let us consider Laplacetransform (A1(L)

a1(L)

)=

∫ ∞

0e−Lt

(A1(t)

a1(t)

)dt

with a1(t) = 1. Moreover, we can define for all ν ∈ R

Aν(L) =

∫ ∞

0e−Lt

[tν−1

(ν − 1)!· A1(t)

]dt

Fractional APT in QCD – p. 16

Page 49: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

FAPT: Construction of Aν(L)

In 1-loop APT we have a very nice recursive relation

An(L) =1

(n − 1)!

(− d

dL

)n−1

A1(L)

We can use it to construct FAPT. Let us consider Laplacetransform (A1(L)

a1(L)

)=

∫ ∞

0e−Lt

(A1(t)

a1(t)

)dt

with a1(t) = 1. Moreover, we can define for all ν ∈ R

Aν(L) =

∫ ∞

0e−Lt

[tν−1

(ν − 1)!· A1(t)

]dt

Only need to know A1(t) !

Fractional APT in QCD – p. 16

Page 50: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

FAPT: Properties of Aν(t)

A1(t) = 1 −∞∑

m=1

δ(t − m)

Fractional APT in QCD – p. 17

Page 51: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

FAPT: Properties of Aν(t)

Aν(t) =

[1 −

∞∑m=1

δ(t − m)

]tν−1

Γ(ν)

Fractional APT in QCD – p. 17

Page 52: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

FAPT: Properties of Aν(t)

Aν(t) =

[1 −

∞∑m=1

δ(t − m)

]tν−1

Γ(ν); Aν(t) =

[sin πt

πt

]tν−1

Γ(ν).

Graphics:

0 1 2 3 4 5

-1

-0.5

0

0.5

1

t

A1(t)

˜�1(t)

Fractional APT in QCD – p. 17

Page 53: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

FAPT: Properties of Aν(L)

First, Euclidean coupling (L = L(Q2)):

Aν(L) =1

Lν− F (e−L, 1 − ν)

Γ(ν)

Fractional APT in QCD – p. 18

Page 54: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

FAPT: Properties of Aν(L)

First, Euclidean coupling (L = L(Q2)):

Aν(L) =1

Lν− F (e−L, 1 − ν)

Γ(ν)

Here F (z, ν) is reduced Lerch transcendental function.It is analytic function in ν. Interesting: Aν(L) is entirefunction in ν.

Fractional APT in QCD – p. 18

Page 55: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

FAPT: Properties of Aν(L)

First, Euclidean coupling (L = L(Q2)):

Aν(L) =1

Lν− F (e−L, 1 − ν)

Γ(ν)

Here F (z, ν) is reduced Lerch transcendental function.

Properties:A0(L) = 1;

Fractional APT in QCD – p. 18

Page 56: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

FAPT: Properties of Aν(L)

First, Euclidean coupling (L = L(Q2)):

Aν(L) =1

Lν− F (e−L, 1 − ν)

Γ(ν)

Here F (z, ν) is reduced Lerch transcendental function.

Properties:A0(L) = 1;A−m(L) = Lm for m ∈ N;

Fractional APT in QCD – p. 18

Page 57: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

FAPT: Properties of Aν(L)

First, Euclidean coupling (L = L(Q2)):

Aν(L) =1

Lν− F (e−L, 1 − ν)

Γ(ν)

Here F (z, ν) is reduced Lerch transcendental function.

Properties:A0(L) = 1;A−m(L) = Lm for m ∈ N;Am(L) = (−1)mAm(−L) for m ≥ 2 , m ∈ N;

Fractional APT in QCD – p. 18

Page 58: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

FAPT: Properties of Aν(L)

First, Euclidean coupling (L = L(Q2)):

Aν(L) =1

Lν− F (e−L, 1 − ν)

Γ(ν)

Here F (z, ν) is reduced Lerch transcendental function.

Properties:A0(L) = 1;A−m(L) = Lm for m ∈ N;Am(±∞) = 0 for m ≥ 2 , m ∈ N; ☞

Dk Aν ≡ dk

dνkAν

Fractional APT in QCD – p. 18

Page 59: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

FAPT: Properties of Aν(L)

First, Euclidean coupling (L = L(Q2)):

Aν(L) =1

Lν− F (e−L, 1 − ν)

Γ(ν)

Here F (z, ν) is reduced Lerch transcendental function.

Properties:A0(L) = 1;A−m(L) = Lm for m ∈ N;Am(±∞) = 0 for m ≥ 2 , m ∈ N; ☞

Dk Aν ≡ dk

dνkAν =

[dk

dνkaν

]an

Fractional APT in QCD – p. 18

Page 60: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

FAPT: Properties of Aν(L)

First, Euclidean coupling (L = L(Q2)):

Aν(L) =1

Lν− F (e−L, 1 − ν)

Γ(ν)

Here F (z, ν) is reduced Lerch transcendental function.

Properties:A0(L) = 1;A−m(L) = Lm for m ∈ N;Am(±∞) = 0 for m ≥ 2 , m ∈ N; ☞

Dk Aν ≡ dk

dνkAν =

[dk

dνkaν

]an

=[aν lnk(a)

]an

Fractional APT in QCD – p. 18

Page 61: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

FAPT: Properties of Aν(L)

First, Euclidean coupling (L = L(Q2)):

Aν(L) =1

Lν− F (e−L, 1 − ν)

Γ(ν)

Here F (z, ν) is reduced Lerch transcendental function.

Properties:A0(L) = 1;A−m(L) = Lm for m ∈ N;Am(±∞) = 0 for m ≥ 2 , m ∈ N; ☞

Dk Aν ≡ dk

dνkAν =

[dk

dνkaν

]an

=[aν lnk(a)

]an

Aν(L) = − 1

Γ(ν)

∞∑r=0

ζ(1 − ν − r)(−L)r

r!for |L| < 2π

Fractional APT in QCD – p. 18

Page 62: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

FAPT: Graphics of Aν(L) vs. L

Aν(L) =1

Lν− F (e−L, 1 − ν)

Γ(ν)

First, graphics for fractional ν ∈ [2, 3] : ☞

-15 -10 -5 0 5 10 15

0

0.02

0.04

0.06

0.08

0.1

L

A2.25(L)

A2.5(L)

A3(L)

A2(L)

Fractional APT in QCD – p. 19

Page 63: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

FAPT: Graphics of Aν(L) vs. L

A1(0) =1

2, A2(0) =

1

12, A4(0) = − 1

720, A3(0) = A5(0) = 0

Next, graphics for ν = 2, 3, 4, 5 : ☞

-15 -10 -5 0 5 10 15

-0.075

-0.05

-0.025

0

0.025

0.05

0.075

L

5A3(L)25A4(L)

125A5(L)

A(1)2 (L)

Fractional APT in QCD – p. 20

Page 64: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

FAPT: Graphics of Aν(L) vs. ν

Aν(L) =1

Lν− F (e−L, 1 − ν)

Γ(ν)

Now, graphics for ν ≤ 0 (note A−m(L) = Lm): ☞

-3 -2.5 -2 -1.5 -1 -0.5 0-5

-2.5

0

2.5

5

7.5

10

12.5

ν

Aν(+3)

Aν(−3)

Fractional APT in QCD – p. 21

Page 65: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

FAPT: Graphics of Aν(L) vs. ν

Aν(L) =1

Lν− F (e−L, 1 − ν)

Γ(ν)

Last, graphics for ν ≥ 0 : ☞

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

ν

Aν(−10)

Aν(+10)

A1(−∞)

Fractional APT in QCD – p. 21

Page 66: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

MFAPT: Properties of Aν(L)

Now, Minkowskian coupling (L = L(s)):

Aν(L) =sin

[(ν − 1) arccos

(L/

√π2 + L2

)]π(ν − 1) (π2 + L2)

(ν−1)/2

Here we need only elementary functions

Fractional APT in QCD – p. 22

Page 67: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

MFAPT: Properties of Aν(L)

Now, Minkowskian coupling (L = L(s)):

Aν(L) =sin

[(ν − 1) arccos

(L/

√π2 + L2

)]π(ν − 1) (π2 + L2)

(ν−1)/2

Here we need only elementary functionsProperties:

A0(L) = 1;

Fractional APT in QCD – p. 22

Page 68: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

MFAPT: Properties of Aν(L)

Now, Minkowskian coupling (L = L(s)):

Aν(L) =sin

[(ν − 1) arccos

(L/

√π2 + L2

)]π(ν − 1) (π2 + L2)

(ν−1)/2

Here we need only elementary functionsProperties:

A0(L) = 1;

A−1(L) = L;

Fractional APT in QCD – p. 22

Page 69: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

MFAPT: Properties of Aν(L)

Now, Minkowskian coupling (L = L(s)):

Aν(L) =sin

[(ν − 1) arccos

(L/

√π2 + L2

)]π(ν − 1) (π2 + L2)

(ν−1)/2

Here we need only elementary functionsProperties:

A0(L) = 1;

A−1(L) = L;

A−2(L) = L2 − π2

3, A−3(L) = L

(L2 − π2

), . . . ; ✍

Fractional APT in QCD – p. 22

Page 70: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

MFAPT: Properties of Aν(L)

Now, Minkowskian coupling (L = L(s)):

Aν(L) =sin

[(ν − 1) arccos

(L/

√π2 + L2

)]π(ν − 1) (π2 + L2)

(ν−1)/2

Here we need only elementary functionsProperties:

A0(L) = 1;

A−1(L) = L;

A−2(L) = L2 − π2

3, A−3(L) = L

(L2 − π2

), . . . ; ✍

Am(L) = (−1)mAm(−L) for m ≥ 2 , m ∈ N;

Fractional APT in QCD – p. 22

Page 71: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

MFAPT: Properties of Aν(L)

Now, Minkowskian coupling (L = L(s)):

Aν(L) =sin

[(ν − 1) arccos

(L/

√π2 + L2

)]π(ν − 1) (π2 + L2)

(ν−1)/2

Here we need only elementary functionsProperties:

A0(L) = 1;

A−1(L) = L;

A−2(L) = L2 − π2

3, A−3(L) = L

(L2 − π2

), . . . ; ✍

Am(L) = (−1)mAm(−L) for m ≥ 2 , m ∈ N;

Am(±∞) = 0 for m ≥ 2 , m ∈ N

Fractional APT in QCD – p. 22

Page 72: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

MFAPT: Graphics of Aν(L) vs. L

Aν(L) =sin

[(ν − 1) arccos

(L/

√π2 + L2

)]π(ν − 1) (π2 + L2)

(ν−1)/2

First, graphics for fractional ν ∈ [2, 3] : ☞

-15 -10 -5 0 5 10 15

0

0.02

0.04

0.06

0.08

0.1

L

�2.25(L)�2.5(L)

�3(L)

�2(L)

Fractional APT in QCD – p. 23

Page 73: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

MFAPT: Graphics of Aν(L) vs. L

A1(0) =1

2, A2(0) =

1

π2, A4(0) = − 1

3π4, A3(0) = A5(0) = 0

Next, graphics for ν = 2, 3, 4, 5 : ☞

-15 -10 -5 0 5 10 15-0.1

-0.05

0

0.05

0.1

L

5�3(L)

25�4(L) 125�5(L)

(1)2 (L)

Fractional APT in QCD – p. 24

Page 74: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

MFAPT: Graphics of Aν(L) vs. ν

Aν(L) =sin

[(ν − 1) arccos

(L/

√π2 + L2

)]π(ν − 1) (π2 + L2)

(ν−1)/2

Now, graphics for ν ≤ 0 : ☞

-3 -2.5 -2 -1.5 -1 -0.5 0

-10

-5

0

5

10

ν

�ν(+3)�ν(−3)

�ν(0)

Fractional APT in QCD – p. 25

Page 75: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

MFAPT: Graphics of Aν(L) vs. ν

Aν(L) =sin

[(ν − 1) arccos

(L/

√π2 + L2

)]π(ν − 1) (π2 + L2)

(ν−1)/2

Last, graphics for ν ≥ 0 : ☞

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

ν�ν(−10)

�ν(+10)

�1(−∞)

Fractional APT in QCD – p. 25

Page 76: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Comparison of PT, APT, and FAPT

Theory PT APT FAPT

Space{

aν}

ν∈R

{Am

}m∈N

{Aν

}ν∈R

Fractional APT in QCD – p. 26

Page 77: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Comparison of PT, APT, and FAPT

Theory PT APT FAPT

Space{

aν}

ν∈R

{Am

}m∈N

{Aν

}ν∈R

Series expansion∑∑∑m

fm am(L)∑m

fm Am(L)∑m

fm Am(L)

Fractional APT in QCD – p. 26

Page 78: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Comparison of PT, APT, and FAPT

Theory PT APT FAPT

Space{

aν}

ν∈R

{Am

}m∈N

{Aν

}ν∈R

Series expansion∑∑∑m

fm am(L)∑m

fm Am(L)∑m

fm Am(L)

Inverse powers (a(L))−m — A−m(L) = Lm

Fractional APT in QCD – p. 26

Page 79: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Comparison of PT, APT, and FAPT

Theory PT APT FAPT

Space{

aν}

ν∈R

{Am

}m∈N

{Aν

}ν∈R

Series expansion∑∑∑m

fm am(L)∑m

fm Am(L)∑m

fm Am(L)

Inverse powers (a(L))−m — A−m(L) = Lm

Multiplication aμaν = aμ+ν — —

Fractional APT in QCD – p. 26

Page 80: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Comparison of PT, APT, and FAPT

Theory PT APT FAPT

Space{

aν}

ν∈R

{Am

}m∈N

{Aν

}ν∈R

Series expansion∑∑∑m

fm am(L)∑m

fm Am(L)∑m

fm Am(L)

Inverse powers (a(L))−m — A−m(L) = Lm

Multiplication aμaν = aμ+ν — —

Index derivative aν lnka — DkAν

Fractional APT in QCD – p. 26

Page 81: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Development of FAPT:

Higher Loops and Logs

Fractional APT in QCD – p. 27

Page 82: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Development of FAPT: Two-loop coupling

Two-loop equation for normalized coupling a = b0 α/(4π)reads

da(2)

dL= −a2

(2)(L)[1 + c1 a(2)(L)

]with c1 ≡ b1

b20

Fractional APT in QCD – p. 28

Page 83: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Development of FAPT: Two-loop coupling

Two-loop equation for normalized coupling a = b0 α/(4π)reads

da(2)

dL= −a2

(2)(L)[1 + c1 a(2)(L)

]with c1 ≡ b1

b20

RG solution of this equation assumes form:

1

a(2)(L)+ c1 ln

[a(2)(L)

1 + c1a(2)(L)

]= L =

1

a(1)(L)

Fractional APT in QCD – p. 28

Page 84: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Development of FAPT: Two-loop coupling

RG solution of this equation assumes form:

1

a(2)(L)+ c1 ln

[a(2)(L)

1 + c1a(2)(L)

]= L =

1

a(1)(L)

Expansion of a(2)(L) in terms of a(1)(L) = 1/L with inclusionof terms O(a3

(1)):

a(2) = a(1) + c1 a2(1) ln a(1) + c2

1 a3(1)

(ln2 a(1) + ln a(1) − 1

)+ . . .

Fractional APT in QCD – p. 28

Page 85: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Development of FAPT: Two-loop coupling

RG solution of this equation assumes form:

1

a(2)(L)+ c1 ln

[a(2)(L)

1 + c1a(2)(L)

]= L =

1

a(1)(L)

Expansion of a(2)(L) in terms of a(1)(L) = 1/L with inclusionof terms O(a3

(1)):

a(2) = a(1) + c1 a2(1) ln a(1) + c2

1 a3(1)

(ln2 a(1) + ln a(1) − 1

)+ . . .

Analytic version of this expansion:

A(2)1 (L) = A(1)

1 + c1 DA(1)ν=2 + c2

1

(D2 + D1 − 1) A(1)

ν=3 + . . .

Fractional APT in QCD – p. 28

Page 86: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Development of FAPT: Two-loop couplingNice convergence of this expansion:

ΔFAPT2 (L) = 1 − A(1)

1 (L) + c1 DA(1)ν=2(L)

A(2)1 (L)

-2 0 2 4 6

0

0.02

0.04

0.06

0.08

0.1

L

ΔFAPT2 (L)

ΔFAPT3 (L)

(a)

Fractional APT in QCD – p. 29

Page 87: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Development of FAPT: Two-loop couplingNice convergence of this expansion:

ΔFAPT3 (L) = ΔFAPT

2 (L) − c21

(D2 + D1 − 1) A(1)

ν=3(L)

A(2)1 (L)

0 1 2 3 4 5 6 7

0

0.02

0.04

0.06

0.08

0.1

L

ΔPT3 (L)

ΔFAPT3 (L)

(b)

Fractional APT in QCD – p. 29

Page 88: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

FAPT: Two-loop coupling A(2)ν (L)

A(2)ν (L) = A(1)

ν + c1ν DA(1)ν+1 + c2

1 ν

[(ν + 1)

2D2 + D − 1

]A(1)

ν+2 + . .

-4 -2 0 2 4 6

0.25

0.5

0.75

1

1.25

1.5

L

a0.62(L)

AFAPT0.62 (L)

(b)

Fractional APT in QCD – p. 30

Page 89: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

FAPT: Two-loop coupling A(2)ν (L)

A(2)2 (L) = A(1)

2 + 2 c1 DA(1)ν=3 + c2

1

[3D2 + 2D − 2

]A(1)ν=4 + . . .

-2 0 2 4

0.01

0.02

0.03

0.04

0.05

0.06

L

A(2)2 (L)

Fractional APT in QCD – p. 30

Page 90: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

FAPT: Two-loop coupling A(2)ν (L)

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

L

A(2)0.25(L)

A(2)0.75(L)

A(2)1.5(L)

A(2)2 (L)

Fractional APT in QCD – p. 30

Page 91: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

MFAPT: Two-loop coupling A(2)ν (L)

ΔMFAPT2 (L) = 1 − A

(1)1 (L) + c1 DA

(1)ν=2(L)

A(2)1 (L)

-10 -5 0 5 10

-0.075

-0.05

-0.025

0

0.025

0.05

0.075

L

ΔMFAPT2 (L)

ΔMFAPT3 (L)

Fractional APT in QCD – p. 31

Page 92: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

MFAPT: Two-loop coupling A(2)ν (L)

ΔMFAPT3 (L) = ΔMFAPT

2 (L) − c21 [. . .]

A(2)1 (L)

-10 -5 0 5 10

-0.075

-0.05

-0.025

0

0.025

0.05

0.075

L

ΔMFAPT2 (L)

ΔMFAPT3 (L)

Fractional APT in QCD – p. 31

Page 93: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

MFAPT: Two-loop coupling A(2)ν (L)

A(2)2 (L) = A

(1)2 + 2 c1 DA

(1)ν=3 + c2

1

[3D2 + 2D − 2

]A

(1)ν=4 + . . .

-2 0 2 4

0.02

0.04

0.06

0.08

L

(2)2 (L)

Fractional APT in QCD – p. 31

Page 94: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

MFAPT: Two-loop coupling A(2)ν (L)

ΔMFAPT5 (L) = ΔMFAPT

4 (L) − c41 [. . .]

A(2)2 (L)

-10 -5 0 5 10

-0.075

-0.05

-0.025

0

0.025

0.05

0.075

L

ΔMFAPT5 (L)

ΔMFAPT4 (L)

Fractional APT in QCD – p. 31

Page 95: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Application:

Pion FF in FAPT

Fractional APT in QCD – p. 32

Page 96: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Factorizable part of pion FF at NLOScaled hard-scattering amplitude truncated at NLO andevaluated at renormalization scale μ2

R = λRQ2 reads

Q2TNLOH

(x, y,Q2;μ2

F , λRQ2)

= αs

(λRQ2

)t(0)H (x, y)

+α2

s

(λRQ2

)4π

CF t(1,F)H,2

(x, y;

μ2F

Q2

)+

α2s

(λRQ2

)4π

{b0 t

(1,β)H (x, y;λR) + t

(FG)H (x, y)

}with shorthand notation

t(1,F)H,2

(x, y;

μ2F

Q2

)= t

(0)H (x, y)

[2(3 + ln(x y )

)ln

Q2

μ2F

]

Fractional APT in QCD – p. 33

Page 97: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Pion Distribution Amplitude

Leading twist 2 pion DA at normalization scaleμ2

0 ≈ 1 GeV2 given by

ϕπ(x, μ20) = 6x (1 − x)

[1 + a2(μ

20) C

3/22 (2x − 1)

+ a4(μ20) C

3/24 (2x − 1) + . . .

]All nonperturbative information encapsulated in Gegenbauercoefficients an(μ2

0).

Fractional APT in QCD – p. 34

Page 98: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Pion Distribution Amplitude

Leading twist 2 pion DA at normalization scaleμ2

0 ≈ 1 GeV2 given by

ϕπ(x, μ20) = 6x (1 − x)

[1 + a2(μ

20) C

3/22 (2x − 1)

+ a4(μ20) C

3/24 (2x − 1) + . . .

]All nonperturbative information encapsulated in Gegenbauercoefficients an(μ2

0).To obtain factorized part of pion FF ⇒ convolute pion DAwith hard-scattering amplitude:

F Factπ (Q2) = ϕπ(x, μ2

0)⊗x

TNLOH

(x, y,Q2;μ2

F , λRQ2)⊗

yϕπ(y, μ2

0)

Fractional APT in QCD – p. 34

Page 99: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Analyticity of Pion FF at NLO

Naive “analytization” [Stefanis, Schroers, Kim – PLB449 (1999) 299; EPJC 18 (2000) 137][Q2TH

(x, y,Q2;μ2

F, λRQ2)]

Nai-An =

A(2)1 (λRQ2) t

(0)H (x, y) +

(A(2)

1 (λRQ2))2

4πt(1)H

(x, y;λR,

μ2F

Q2

)

Fractional APT in QCD – p. 35

Page 100: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Analyticity of Pion FF at NLO

Naive “analytization” [Stefanis, Schroers, Kim – PLB449 (1999) 299; EPJC 18 (2000) 137][Q2TH

(x, y,Q2;μ2

F, λRQ2)]

Nai-An =

A(2)1 (λRQ2) t

(0)H (x, y) +

(A(2)

1 (λRQ2))2

4πt(1)H

(x, y;λR,

μ2F

Q2

)Maximal “analytization” [Bakulev, Passek, Schroers,Stefanis – PRD 70 (2004) 033014][Q2TH

(x, y,Q2;μ2

F, λRQ2)]

Max-An =

A(2)1 (λRQ2) t

(0)H (x, y) +

A(2)2 (λRQ2)

4πt(1)H

(x, y;λR,

μ2F

Q2

)Fractional APT in QCD – p. 35

Page 101: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Factorized Pion FF in Standard MS scheme

BLM , default, PMS, FAC

10 20 30 40 50

0.1

0.2

0.3

0.4

0.5

Q2F Factπ (Q2, μ2

R)

Q2 [GeV2]

Fractional APT in QCD – p. 36

Page 102: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Factorized Pion FF in Naive Analyticization

BLM , default, BLM, αv

10 20 30 40 50

0.1

0.2

0.3

0.4[Q2F Fact

π (Q2)]NaiAn

Q2 [GeV2]

Fractional APT in QCD – p. 37

Page 103: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Factorized Pion FF in Max. Analyticization

BLM , default, BLM, αv

10 20 30 40 50

0.1

0.2

0.3

0.4[Q2F Fact

π (Q2)]MaxAn

Q2 [GeV2]

Fractional APT in QCD – p. 38

Page 104: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Pion form factor in analytic NLO pQCD

[AB-Passek-Schroers-Stefanis, PRD70 (2004)033014]

1 2 3 4 5 6 7 8

0.1

0.2

0.3

0.4

0.5

0.6

����

����

�� ������

Curves Schemes

μ2R = 1 GeV2

μ2R = Q2

BLM scaleαV -scheme

Practical independence on scheme/scale setting!

Fractional APT in QCD – p. 39

Page 105: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Pion form factor in analytic NLO pQCD

[AB-Passek-Schroers-Stefanis, PRD70 (2004)033014]

1 2 3 4 5 6 7 8

0.1

0.2

0.3

0.4

0.5

0.6

Q2Fπ(Q2)

Q2 [GeV2]

Curves Schemes

μ2R = 1 GeV2

μ2R = Q2

BLM scaleαV -scheme

soft part

Practical independence on scheme/scale setting!

Fractional APT in QCD – p. 39

Page 106: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Application:

Higgs decay in MFAPT

Fractional APT in QCD – p. 40

Page 107: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Higgs boson decay into bb-pair

This decay can be expressed in QCD by means of thecorrelator of quark scalar currents JS(x) = : b(x)b(x) :

Π(Q2) = (4π)2i

∫dxeiqx〈0| T [ JS(x)JS(0) ] |0〉

Fractional APT in QCD – p. 41

Page 108: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Higgs boson decay into bb-pair

This decay can be expressed in QCD by means of thecorrelator of quark scalar currents JS(x) = : b(x)b(x) :

Π(Q2) = (4π)2i

∫dxeiqx〈0| T [ JS(x)JS(0) ] |0〉

in terms of discontinuity of its imaginary part

RS(s) = ImΠ(−s − iε)/(2π s) ,

so that

Γ(H → bb) =GF

4√

2πMHm2

b(MH)RS(s = M2H) .

Fractional APT in QCD – p. 41

Page 109: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Standard PT analysis of RS

Direct multi-loop calculations are usually performed in theEuclidean region for the corresponding Adler function DS,where QCD perturbation theory works:

DS(Q2;μ2) = 3m2

b(μ2)

[1 +

∑n>0

dn(Q2/μ2) αns (μ2)

]

Fractional APT in QCD – p. 42

Page 110: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Standard PT analysis of RS

Direct multi-loop calculations are usually performed in theEuclidean region for the corresponding Adler function DS,where QCD perturbation theory works:

μ2=Q2

−→ DS(Q2) = 3m2

b(Q2)

[1 +

∑n>0

dn αns (Q2)

].

Fractional APT in QCD – p. 42

Page 111: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Standard PT analysis of RS

Direct multi-loop calculations are usually performed in theEuclidean region for the corresponding Adler function DS,where QCD perturbation theory works:

μ2=Q2

−→ DS(Q2) = 3m2

b(Q2)

[1 +

∑n>0

dn αns (Q2)

].

The functions D and R can be related to each other via adispersion relation without any reference to perturbationtheory. This generates relations between rn and dn

RS(s, μ2) ≡ 3m2

b(μ2)

[1 +

∑n>0

rn(s/μ2) αns (μ2)

]

Fractional APT in QCD – p. 42

Page 112: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Standard PT analysis of RS

Direct multi-loop calculations are usually performed in theEuclidean region for the corresponding Adler function DS,where QCD perturbation theory works:

μ2=Q2

−→ DS(Q2) = 3m2

b(Q2)

[1 +

∑n>0

dn αns (Q2)

].

The functions D and R can be related to each other via adispersion relation without any reference to perturbationtheory. This generates relations between rn and dn

μ2=s−→ RS(s) = 3m2b(s)

[1 +

∑n>0

rn αns (s)

].

Fractional APT in QCD – p. 42

Page 113: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Standard PT analysis of RS

Coefficients rn contain ‘π2 terms’ due to integraltransformation of lnk(Q2/μ2) in dn.☞

Fractional APT in QCD – p. 43

Page 114: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Standard PT analysis of RS

Coefficients rn contain ‘π2 terms’ due to integraltransformation of lnk(Q2/μ2) in dn.☞

Influence of these π2 terms can be substantial, see[Baikov, Chetyrkin, and Kuhn, PRL 96 (2006) 012003]

Fractional APT in QCD – p. 43

Page 115: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Standard PT analysis of RS

Coefficients rn contain ‘π2 terms’ due to integraltransformation of lnk(Q2/μ2) in dn.☞

Influence of these π2 terms can be substantial, see[Baikov, Chetyrkin, and Kuhn, PRL 96 (2006) 012003][

3m2b

]−1RS = 1 + 5.6668 as + 29.147 a2

s + 41.758 a3s − 825.7 a4

s

Fractional APT in QCD – p. 43

Page 116: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Standard PT analysis of RS

Coefficients rn contain ‘π2 terms’ due to integraltransformation of lnk(Q2/μ2) in dn.☞

Influence of these π2 terms can be substantial, see[Baikov, Chetyrkin, and Kuhn, PRL 96 (2006) 012003][

3m2b

]−1RS = 1 + 5.6668 as + 29.147 a2

s + 41.758 a3s − 825.7 a4

s

= 1 + 0.2075 + 0.0391 + 0.0020 − 0.00148 .

Here as = αs(M2H)/π = 0.0366 correspondsg to Higgs boson

mass MH = 120 GeV.

Fractional APT in QCD – p. 43

Page 117: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

MFAPT analysis of RS

Running mass m(Q2) is described by the RG equation

m2(Q2) = m2[as(Q

2)]ν0

[1 +

c1b0

4πas(Q

2)

]ν1

.

with RG-invariant mass m2 (for b-quark mb ≈ 14.6 GeV) andν0 = 1.04, ν1 = 1.86.

Fractional APT in QCD – p. 44

Page 118: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

MFAPT analysis of RS

Running mass m(Q2) is described by the RG equation

m2(Q2) = m2[as(Q

2)]ν0

[1 +

c1b0

4πas(Q

2)

]ν1

.

with RG-invariant mass m2 (for b-quark mb ≈ 14.6 GeV) andν0 = 1.04, ν1 = 1.86. This gives us[

3 m2b

]−1DS(Q

2) =(as(Q

2))ν0

+∑m>0

dm

(as(Q

2))m+ν0

.

Fractional APT in QCD – p. 44

Page 119: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

MFAPT analysis of RS

Running mass m(Q2) is described by the RG equation

m2(Q2) = m2[as(Q

2)]ν0

[1 +

c1b0

4πas(Q

2)

]ν1

.

with RG-invariant mass m2 (for b-quark mb ≈ 14.6 GeV) andν0 = 1.04, ν1 = 1.86. This gives us[

3 m2b

]−1DS(Q

2) =(as(Q

2))ν0

+∑m>0

dm

(as(Q

2))m+ν0

.

Following the procedure illustrated in ☞ we obtain

R(l)MFAPTS =

[3m2

] (4

b0

)ν0[A

(l)ν0 +

∑m>0

d(l)m

(4

b0

)m

A(l)m+ν0

]

Fractional APT in QCD – p. 44

Page 120: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

MFAPT analysis of RS in two loops

PT-series convergence using MH = 120 GeV.

Scheme RS(M2

H

)O(1) O(as) O(a2

s) O(a3s) O(a4

s)

pQCD 24.08 75.8% 20.2% 3.7% 0.3% −0.1%

Fractional APT in QCD – p. 45

Page 121: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

MFAPT analysis of RS in two loops

PT-series convergence using MH = 120 GeV.

Scheme RS(M2

H

)O(1) O(as) O(a2

s) O(a3s) O(a4

s)

pQCD 24.08 75.8% 20.2% 3.7% 0.3% −0.1%

MFAPT(1) 31.89 74.4% 17.7% 5.4% 1.8% 0.7%

Fractional APT in QCD – p. 45

Page 122: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

MFAPT analysis of RS in two loops

PT-series convergence using MH = 120 GeV.

Scheme RS(M2

H

)O(1) O(as) O(a2

s) O(a3s) O(a4

s)

pQCD 24.08 75.8% 20.2% 3.7% 0.3% −0.1%

MFAPT(1) 31.89 74.4% 17.7% 5.4% 1.8% 0.7%

MFAPT(2) 27.63 72.3% 20.7% 5.1% 1.4% 0.5%

Fractional APT in QCD – p. 45

Page 123: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

MFAPT analysis of RS in two loops

PT-series convergence using MH = 120 GeV.

Scheme RS(M2

H

)O(1) O(as) O(a2

s) O(a3s) O(a4

s)

pQCD 24.08 75.8% 20.2% 3.7% 0.3% −0.1%

MFAPT(1) 31.89 74.4% 17.7% 5.4% 1.8% 0.7%

MFAPT(2) 27.63 72.3% 20.7% 5.1% 1.4% 0.5%

Quality of convergence for all schemes ≈ the same.But: in MFAPT convergence could be traced down tos = 1 GeV2.

Fractional APT in QCD – p. 45

Page 124: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Graphics for RS in two loops

Illustration of RS(M2H) calculation in different schemes:

2-loop QCD PT (dashed red line),1-loop MFAPT (dotted green line), and2-loop MFAPT (solid blue line).

70 80 90 100 110 120 130

10

20

30

40

MH [GeV]

RS(MH) [GeV2]

Fractional APT in QCD – p. 46

Page 125: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Concluding Remarks

Implementation of analyticity at amplitude level ⇒Extension of APT to FAPT and MFAPT ;

Fractional APT in QCD – p. 47

Page 126: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Concluding Remarks

Implementation of analyticity at amplitude level ⇒Extension of APT to FAPT and MFAPT ;

Rules to apply FAPT and MFAPT at 2-loop levelformulated;

Fractional APT in QCD – p. 47

Page 127: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Concluding Remarks

Implementation of analyticity at amplitude level ⇒Extension of APT to FAPT and MFAPT ;

Rules to apply FAPT and MFAPT at 2-loop levelformulated;

Bonus: Convergence of perturbative expansionsignificantly improved;

Fractional APT in QCD – p. 47

Page 128: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Concluding Remarks

Implementation of analyticity at amplitude level ⇒Extension of APT to FAPT and MFAPT ;

Rules to apply FAPT and MFAPT at 2-loop levelformulated;

Bonus: Convergence of perturbative expansionsignificantly improved;

Advantages entailed: Minimal sensitivity to bothrenormalization and factorization scale setting (pion’selectromagnetic form factor);

Fractional APT in QCD – p. 47

Page 129: theor.jinr.rutheor.jinr.ru/~calc2006/Talks/bakulev_calc06.pdf · CALC-2006@BLTPh, Dubna Problems of APT Open Questions “Analytization” of multi-scale amplitudes beyond LO of pQCD

CALC-2006@BLTPh, Dubna

Concluding Remarks

Implementation of analyticity at amplitude level ⇒Extension of APT to FAPT and MFAPT ;

Rules to apply FAPT and MFAPT at 2-loop levelformulated;

Bonus: Convergence of perturbative expansionsignificantly improved;

Advantages entailed: Minimal sensitivity to bothrenormalization and factorization scale setting (pion’selectromagnetic form factor);

Advantage of applying MFAPT (decay H0 → bb) isthat the coupling parameters Aν include the resummedcontribution of all π2-terms due to analytic continuationfrom the Euclidean to the Minkowski space.

Fractional APT in QCD – p. 47